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n  Problem 

n  Given start state xS, goal state xG 

n  Asked for: a sequence of control inputs that leads from 
start to goal 

n  Why tricky? 

n  Need to avoid obstacles 

n  For systems with underactuated dynamics: can’t simply 
move along any coordinate at will 

n  E.g., car, helicopter, airplane, but also robot manipulator hitting 
joint limits 

Motion Planning 



n  Could try by, for example, following formulation: 

 Xt can encode obstacles  

n  Or, with constraints, (which would require using an infeasible method): 

n  Can work surprisingly well, but for more complicated problems with longer 
horizons, often get stuck in local maxima that don’t reach the goal 

Solve by Nonlinear Optimization for Control? 



n  Helicopter path planning 

n  Swinging up cart-pole 

n  Acrobot 

Examples 
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n  Configuration Space 

n  Probabilistic Roadmap 

n  Boundary Value Problem 

n  Sampling 

n  Collision checking 

n  Rapidly-exploring Random Trees (RRTs) 

n  Smoothing 

Motion Planning: Outline 



= { x |  x is a pose of the robot} 

n  obstacles à configuration space obstacles 

Configuration Space (C-Space) 

Workspace Configuration Space 

(2 DOF: translation only, no rotation) 

free space 
obstacles 



Motion planning 
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Probabilistic Roadmap (PRM) 
Free/feasible space Space ℜn forbidden space 
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Probabilistic Roadmap (PRM) 
Configurations are sampled by picking coordinates at random 
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Probabilistic Roadmap (PRM) 
Configurations are sampled by picking coordinates at random 
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Probabilistic Roadmap (PRM) 
Sampled configurations are tested for collision 
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Probabilistic Roadmap (PRM) 
The collision-free configurations are retained as milestones 
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Probabilistic Roadmap (PRM) 
Each milestone is linked by straight paths to its nearest neighbors 
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Probabilistic Roadmap (PRM) 
Each milestone is linked by straight paths to its nearest neighbors 
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Probabilistic Roadmap (PRM) 
The collision-free links are retained as local paths to form the PRM 
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Probabilistic Roadmap (PRM) 

s 

g 

The start and goal configurations are included as milestones 
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Probabilistic Roadmap (PRM) 
The PRM is searched for a path from s to g 

s 

g 



n  Initialize set of points with xS and xG 

n  Randomly sample points in configuration space 

n  Connect nearby points if they can be reached from each 
other 

n  Find path from xS to xG in the graph 

n  Alternatively: keep track of connected components 
incrementally, and declare success when xS and xG are in 
same connected component 

Probabilistic Roadmap 



PRM example 



PRM example 2 



n  How to sample uniformly at random from [0,1]n ? 

n  Sample uniformly at random from [0,1] for each 
coordinate 

n  How to sample uniformly at random from the surface of the 
n-D unit sphere? 

n  Sample from n-D Gaussian à isotropic; then just 
normalize 

n  How to sample uniformly at random for orientations in 3-D? 

Sampling 



1.  Connecting neighboring points: Only easy for holonomic 
systems (i.e., for which you can move each degree of freedom at 
will at any time).  Generally requires solving a Boundary Value 
Problem 

2. Collision checking:  

 Often takes majority of time in applications (see Lavalle) 

 

PRM: Challenges 

Typically solved without 
collision checking; later 
verified if valid by collision 
checking 



n  Pro: 

n  Probabilistically complete: i.e., with probability one, if run 
for long enough the graph will contain a solution path if 
one exists. 

n  Cons: 

n  Required to solve 2 point boundary value problem 

n  Build graph over state space but no particular focus on 
generating a path 

PRM’s Pros and Cons 



Rapidly exploring Random Trees 

n  Basic idea: 

n  Build up a tree through generating “next states” in the 
tree by executing random controls 

n  However: not exactly above to ensure good coverage 

 

 



Rapidly-exploring Random Trees (RRT) 

RANDOM_STATE(): often uniformly at random over space with probability 99%, and the goal state 
with probability 1%, this ensures it attempts to connect to goal semi-regularly 



n  NEAREST_NEIGHBOR(xrand, T): need to find (approximate) 
nearest neighbor efficiently 

n  KD Trees data structure (upto 20-D)  [e.g., FLANN] 

n  Locality Sensitive Hashing 

n  SELECT_INPUT(xrand, xnear) 

n  Two point boundary value problem 
n  If too hard to solve, often just select best out of a set of control 

sequences.  This set could be random, or some well chosen set of 
primitives. 

RRT Practicalities 



n  No obstacles, holonomic: 

n  With obstacles, holonomic: 

n  Non-holonomic: approximately (sometimes as approximate as picking 
best of a few random control sequences) solve two-point boundary value 
problem 

RRT Extension 



Growing RRT 

Demo: http://en.wikipedia.org/wiki/File:Rapidly-exploring_Random_Tree_(RRT)_500x373.gif 



n  Volume swept out by unidirectional RRT: 

n  Volume swept out by bi-directional RRT: 

n  Difference becomes far more pronounced in higher dimensions 

xS 

Bi-directional RRT 

xG 

xS xG 



n  Planning around obstacles or through narrow passages can 
often be easier in one direction than the other 

Multi-directional RRT 



n  Issue: nearest points chosen for 
expansion are (too) often the ones 
stuck behind an obstacle 

Resolution-Complete RRT (RC-RRT) 

RC-RRT solution: 

n  Choose a maximum number of times, m, you are willing to try to expand each node 

n  For each node in the tree, keep track of its Constraint Violation Frequency (CVF) 

n  Initialize CVF to zero when node is added to tree 

n  Whenever an expansion from the node is unsuccessful (e.g., per hitting an obstacle): 

n  Increase CVF of that node by 1 

n  Increase CVF of its parent node by 1/m, its grandparent 1/m2, … 

n  When a node is selected for expansion, skip over it with probability CVF/m 



RRT* 

Source: Karaman and Frazzoli 



n  Asymptotically optimal 

n  Main idea: 

n  Swap new point in as parent for nearby vertices who can 
be reached along shorter path through new point than 
through their original (current) parent 

RRT* 



RRT* 

Source: Karaman and Frazzoli 

RRT 

RRT* 



RRT* 

Source: Karaman and Frazzoli 

RRT RRT* 



n  Idea: grow a randomized 
tree of stabilizing 
controllers to the goal 

n  Like RRT 

n  Can discard sample 
points in already 
stabilized region 

LQR-trees (Tedrake, IJRR 2010) 



LQR-trees   (Tedrake) 
Ck: stabilized 
region after 
iteration k 



LQR-trees   (Tedrake) 



Randomized motion planners tend to find not so great paths for 
execution: very jagged, often much longer than necessary. 

à In practice: do smoothing before using the path 

n  Shortcutting:  

n  along the found path, pick two vertices xt1, xt2 and try to 
connect them directly (skipping over all intermediate 
vertices) 

n  Nonlinear optimization for optimal control 

n  Allows to specify an objective function that includes 
smoothness in state, control, small control inputs, etc. 

Smoothing 


