
Sampling-Based Motion Planning

Pieter Abbeel
UC Berkeley EECS

Many images from Lavalle, Planning Algorithms

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.:
AAAAAAAAAAAA

n  Problem

n  Given start state xS, goal state xG

n  Asked for: a sequence of control inputs that leads from
start to goal

n  Why tricky?

n  Need to avoid obstacles

n  For systems with underactuated dynamics: can’t simply
move along any coordinate at will

n  E.g., car, helicopter, airplane, but also robot manipulator hitting
joint limits

Motion Planning

n  Could try by, for example, following formulation:

 Xt can encode obstacles

n  Or, with constraints, (which would require using an infeasible method):

n  Can work surprisingly well, but for more complicated problems with longer
horizons, often get stuck in local maxima that don’t reach the goal

Solve by Nonlinear Optimization for Control?

n  Helicopter path planning

n  Swinging up cart-pole

n  Acrobot

Examples

Examples

Examples

Examples

n  Configuration Space

n  Probabilistic Roadmap

n  Boundary Value Problem

n  Sampling

n  Collision checking

n  Rapidly-exploring Random Trees (RRTs)

n  Smoothing

Motion Planning: Outline

= { x | x is a pose of the robot}

n  obstacles à configuration space obstacles

Configuration Space (C-Space)

Workspace Configuration Space

(2 DOF: translation only, no rotation)

free space
obstacles

Motion planning

11

Probabilistic Roadmap (PRM)
Free/feasible space Space ℜn forbidden space

12

Probabilistic Roadmap (PRM)
Configurations are sampled by picking coordinates at random

13

Probabilistic Roadmap (PRM)
Configurations are sampled by picking coordinates at random

14

Probabilistic Roadmap (PRM)
Sampled configurations are tested for collision

15

Probabilistic Roadmap (PRM)
The collision-free configurations are retained as milestones

16

Probabilistic Roadmap (PRM)
Each milestone is linked by straight paths to its nearest neighbors

17

Probabilistic Roadmap (PRM)
Each milestone is linked by straight paths to its nearest neighbors

18

Probabilistic Roadmap (PRM)
The collision-free links are retained as local paths to form the PRM

19

Probabilistic Roadmap (PRM)

s

g

The start and goal configurations are included as milestones

20

Probabilistic Roadmap (PRM)
The PRM is searched for a path from s to g

s

g

n  Initialize set of points with xS and xG

n  Randomly sample points in configuration space

n  Connect nearby points if they can be reached from each
other

n  Find path from xS to xG in the graph

n  Alternatively: keep track of connected components
incrementally, and declare success when xS and xG are in
same connected component

Probabilistic Roadmap

PRM example

PRM example 2

n  How to sample uniformly at random from [0,1]n ?

n  Sample uniformly at random from [0,1] for each
coordinate

n  How to sample uniformly at random from the surface of the
n-D unit sphere?

n  Sample from n-D Gaussian à isotropic; then just
normalize

n  How to sample uniformly at random for orientations in 3-D?

Sampling

1. Connecting neighboring points: Only easy for holonomic
systems (i.e., for which you can move each degree of freedom at
will at any time). Generally requires solving a Boundary Value
Problem

2. Collision checking:

 Often takes majority of time in applications (see Lavalle)

PRM: Challenges

Typically solved without
collision checking; later
verified if valid by collision
checking

n  Pro:

n  Probabilistically complete: i.e., with probability one, if run
for long enough the graph will contain a solution path if
one exists.

n  Cons:

n  Required to solve 2 point boundary value problem

n  Build graph over state space but no particular focus on
generating a path

PRM’s Pros and Cons

Rapidly exploring Random Trees

n  Basic idea:

n  Build up a tree through generating “next states” in the
tree by executing random controls

n  However: not exactly above to ensure good coverage

Rapidly-exploring Random Trees (RRT)

RANDOM_STATE(): often uniformly at random over space with probability 99%, and the goal state
with probability 1%, this ensures it attempts to connect to goal semi-regularly

n  NEAREST_NEIGHBOR(xrand, T): need to find (approximate)
nearest neighbor efficiently

n  KD Trees data structure (upto 20-D) [e.g., FLANN]

n  Locality Sensitive Hashing

n  SELECT_INPUT(xrand, xnear)

n  Two point boundary value problem
n  If too hard to solve, often just select best out of a set of control

sequences. This set could be random, or some well chosen set of
primitives.

RRT Practicalities

n  No obstacles, holonomic:

n  With obstacles, holonomic:

n  Non-holonomic: approximately (sometimes as approximate as picking
best of a few random control sequences) solve two-point boundary value
problem

RRT Extension

Growing RRT

Demo: http://en.wikipedia.org/wiki/File:Rapidly-exploring_Random_Tree_(RRT)_500x373.gif

n  Volume swept out by unidirectional RRT:

n  Volume swept out by bi-directional RRT:

n  Difference becomes far more pronounced in higher dimensions

xS

Bi-directional RRT

xG

xS xG

n  Planning around obstacles or through narrow passages can
often be easier in one direction than the other

Multi-directional RRT

n  Issue: nearest points chosen for
expansion are (too) often the ones
stuck behind an obstacle

Resolution-Complete RRT (RC-RRT)

RC-RRT solution:

n  Choose a maximum number of times, m, you are willing to try to expand each node

n  For each node in the tree, keep track of its Constraint Violation Frequency (CVF)

n  Initialize CVF to zero when node is added to tree

n  Whenever an expansion from the node is unsuccessful (e.g., per hitting an obstacle):

n  Increase CVF of that node by 1

n  Increase CVF of its parent node by 1/m, its grandparent 1/m2, …

n  When a node is selected for expansion, skip over it with probability CVF/m

RRT*

Source: Karaman and Frazzoli

n  Asymptotically optimal

n  Main idea:

n  Swap new point in as parent for nearby vertices who can
be reached along shorter path through new point than
through their original (current) parent

RRT*

RRT*

Source: Karaman and Frazzoli

RRT

RRT*

RRT*

Source: Karaman and Frazzoli

RRT RRT*

n  Idea: grow a randomized
tree of stabilizing
controllers to the goal

n  Like RRT

n  Can discard sample
points in already
stabilized region

LQR-trees (Tedrake, IJRR 2010)

LQR-trees (Tedrake)
Ck: stabilized
region after
iteration k

LQR-trees (Tedrake)

Randomized motion planners tend to find not so great paths for
execution: very jagged, often much longer than necessary.

à In practice: do smoothing before using the path

n  Shortcutting:

n  along the found path, pick two vertices xt1, xt2 and try to
connect them directly (skipping over all intermediate
vertices)

n  Nonlinear optimization for optimal control

n  Allows to specify an objective function that includes
smoothness in state, control, small control inputs, etc.

Smoothing

