Smoother

Pieter Abbeel
UC Berkeley EECS

Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics
Overview

- **Filtering:**

\[P(x_t | z_0, z_1, \ldots, z_t) \]

- **Smoothing:**

\[P(x_t | z_0, z_1, \ldots, z_T) \]

- Note: by now it should be clear that the “u” variables don’t really change anything conceptually, and going to leave them out to have less symbols appear in our equations.
Filtering

\[
P(x_2|z_0, z_1, z_2) \propto P(x_2, z_0, z_1, z_2)
\]
\[
= \sum_{x_0, x_1} P(z_2|x_2) P(x_2|x_1) P(z_1|x_1) P(x_1|x_0) P(z_0|x_0) P(x_0)
\]
\[
= P(z_2|x_2) \sum_{x_1} P(x_2|x_1) P(z_1|x_1) \sum_{x_0} P(x_1|x_0) P(z_0|x_0) P(x_0)
\]
\[
= P(x_1, z_0)
\]
\[
P(x_1, z_0, z_1)
\]
\[
P(x_2, z_0, z_1, z_2)
\]

- Generally, recursively compute:

\[
P(x_{t+1}, z_0, \ldots, z_t) = \sum_{x_t} P(x_{t+1}|x_t) P(x_t, z_0, \ldots, z_t)
\]
\[
P(x_{t+1}, z_0, \ldots, z_t, z_{t+1}) = p(z_{t+1}|x_{t+1}) P(x_{t+1}, z_0, \ldots, z_t)
\]
Smoothing

\[P(x_2|z_0, z_1, z_2, z_3, z_4) \]
\[\propto P(x_2, z_0, z_1, z_2, z_3, z_4) \]
\[= \sum_{x_0, x_1, x_3, x_4} P(z_4|x_4)P(x_4|x_3)P(z_3|x_3)P(x_3|x_2)P(z_2|x_2)P(x_2|x_1)P(z_1|x_1)P(x_1|x_0)P(z_0|x_0)P(x_0) \]
\[= \sum_{x_3, x_4} P(z_4|x_4)P(x_4|x_3)P(z_3|x_3)P(x_3|x_2)P(z_2|x_2) \left(\sum_{x_1} P(x_2|x_1)P(z_1|x_1) \left(\sum_{x_0} P(x_1|x_0)P(z_0|x_0)P(x_0) \right) \right) \]
\[= \left(\sum_{x_3} P(z_3|x_3)P(x_3|x_2) \left(\sum_{x_4} P(z_4|x_4)P(x_4|x_3) \right) \right) \cdot P(z_2|x_2) \left(\sum_{x_1} P(x_2|x_1)P(z_1|x_1) \left(\sum_{x_0} P(x_1|x_0)P(z_0|x_0)P(x_0) \right) \right) \]
\[b(x_3) = P(z_4|x_3) \]
\[P(x_1, z_0, z_1) \]

\[b(x_2) = P(z_3, z_4|x_2) \]
\[P(x_2, z_0, z_1, z_2) \]

- Generally, recursively compute:
 - **Forward**: (same as filter)
 \[P(x_{t+1}, z_0, \ldots, z_t) = \sum_{x_t} P(x_{t+1}|x_t)P(x_t, z_0, \ldots, z_t) \]
 \[P(x_{t+1}, z_0, \ldots, z_t, z_{t+1}) = p(z_{t+1}|x_{t+1})P(x_{t+1}, z_0, \ldots, z_t) \]
 - **Backward**:
 \[P(z_{t+1}, \ldots, z_T|x_{t+1}) = P(z_{t+1}|x_{t+1})P(z_{t+2}, \ldots, z_T|x_{t+1}) \]
 \[P(z_{t+1}, \ldots, z_T|x_t) = \sum_{x_{t+1}} P(x_{t+1}|x_t)P(z_{t+1}, \ldots, z_T|x_{t+1}) \]
 - **Combine**:
 \[P(x_t, z_0, \ldots, z_T) = P(x_t, z_0, \ldots, z_T)P(z_{t+1}, \ldots, z_T|x_t) \]
Complete Smoother Algorithm

- **Forward pass (= filter):**
 1. Init: $a_0(x_0) = P(z_0|x_0)P(x_0)$
 2. For $t = 0, \ldots, T - 1$
 - $a_{t+1}(x_{t+1}) = P(z_{t+1}|x_{t+1}) \sum_{x_t} P(x_{t+1}|x_t)a_t(x_t)$

- **Backward pass:**
 1. Init: $b_T(x_T) = 1$
 2. For $t = T - 1, \ldots, 0$
 - $b_t(x_t) = \sum_{x_{t+1}} P(x_{t+1}|x_t)P(z_{t+1}|x_{t+1})b_{t+1}(x_{t+1})$

- **Combine:**
 1. For $t = 0, \ldots, T$
 - $P(x_t, z_0, \ldots, z_T) = P(x_t, z_0, \ldots, z_t)P(x_{t+1}, z_{t+1}, \ldots, z_T|x_t) = a_t(x_t)b_t(x_t)$

Note 1: computes for all times t in one forward+backward pass

Note 2: can find $P(x_t | z_0, \ldots, z_T)$ by simply renormalizing
Important Variation

- Find \(P(x_t, x_{t+1}, z_0, \ldots, z_T) \)

- Recall:

\[
\begin{align*}
 a_t(x_t) & = P(x_t, z_0, \ldots, z_T) \\
 b_t(x_t) & = P(z_{t+1}, \ldots, z_T | x_t)
\end{align*}
\]

- So we can readily compute

\[
P(x_t, x_{t+1}, z_0, \ldots, z_T) \\
= P(x_t, z_0, \ldots, z_t) P(x_{t+1} | x_t, z_0, \ldots, z_t) P(z_{t+1}, \ldots, z_T | x_{t+1}, x_t, z_0, \ldots, z_t) \quad \text{(Law of total probability)} \\
= P(x_t, z_0, \ldots, z_t) P(x_{t+1} | x_t) P(z_{t+1}, \ldots, z_T | x_{t+1}) \quad \text{(Markov assumptions)} \\
= a_t(x_t) P(x_{t+1} | x_t) b_{t+1}(x_{t+1}) \quad \text{(definitions a, b)}
\]
Exercise

- Find $P(x_t, x_{t+k}, z_0, \ldots, z_T)$
Kalman Smoother

- = smoother we just covered instantiated for the particular case when \(P(x_{t+1} | x_t) \) and \(P(z_t | x_t) \) are linear Gaussians

- We already know how to compute the forward pass (=Kalman filtering)

- Backward pass:

\[
b_t(x_t) = \int_{x_{t+1}} P(x_{t+1} | x_t) P(z_{t+1} | x_{t+1}) b_{t+1}(x_{t+1}) dx_{t+1}
\]

- Combination:

\[
P(x_t, z_0, \ldots, z_T) = a_t(x_t)b_t(x_t)
\]
Kalman Smoother Backward Pass

- TODO: work out integral for b_t
- TODO: insert backward pass update equations
- TODO: insert combination \rightarrow bring renormalization constant up front so it's easy to read off $P(X_t \mid z_0, \ldots, z_T)$
Matlab code data generation example

- \(A = [0.99 \quad 0.0074; \quad -0.0136 \quad 0.99]; \) \(C = [1 \ 1; \ -1 \ 1]; \)
- \(x(:,1) = [-3;2]; \)
- \(\Sigma_w = \text{diag}([0.3 \ 0.7]); \) \(\Sigma_v = [2 \ 0.5; \ 0.05 \ 1.5]; \)
- \(w = \text{randn}(2,T); \) \(w = \text{sqrtm}(\Sigma_w) \times w; \) \(v = \text{randn}(2,T); \) \(v = \text{sqrtm}(\Sigma_v) \times v; \)
- for \(t=1:T-1 \)
 - \(x(:,t+1) = A \times x(:,t) + w(:,t); \)
 - \(z(:,t) = C \times x(:,t) + v(:,t); \)
end
- % now recover the state from the measurements
- \(P_0 = \text{diag}([100 \ 100]); \) \(x0 = [0; 0]; \)
- % run Kalman filter and smoother here
- % + plot
Kalman filter/smoother example