Discretization

Pieter Abbeel
UC Berkeley EECS

Markov Decision Process

action
a,

Assumption: agent gets to observe the state

[Drawing from Sutton and Barto, Reinforcement Learning: An Introduction, 1998]

Given
m S:set of states

m A:set of actions

= T:SxAxSx{0,1,..H}—>[0,1],

= R: SxAxSx{0,1,..,H}=2R

state

reward
r,

o

Markov Decision Process (S, A, T, R, 7, H)

, l Agent l

action
a,

L
-

I ~
} Si4s

m € (0,1]: discount factor

Goal:

Environment]4—

T.(s,a,s") =P(s,,;=5" | s, =5, a, =a)
R.(s,a,s’) = reward for (s,,; =5’, s, = s, a, =a)

H: horizon over which the agent will act

= Find m:Sx{0, 1, ..., H} = A that maximizes expected sum of rewards, i.e.,

H
T = arg mgx E[Z ’Yth(St, A, Si1)|m]

t=0

Value lteration

s Algorithm:
= Start with V' (s) = 0 forallss.
= Fori=1,..,H

For all statess € S:

ij_l(s) — mC?XZT(S, a,s) [R(S,CL, s + ’YV;'*(S/”

S

7T;<_|_1(S) « arg TeajZT(s, a,s)[R(s,a,s’) + ’yVZ-*(s/)]
S/

This is called a value update or Bellman update/back-up

sk
Vi (3) = the expected sum of rewards accumulated when
starting from state s and acting optimally for a horizon of i steps

m 7Tf2k (3)= the optimal action when in state s and getting to act
for a horizon of i steps

Continuous State Spaces

m S =continuous set

m Value iteration becomes impractical as it requires to
compute, for all states s € S:

szil_l(s) . maaxZT(s,a, s {R(s,a, s + V;*(S/)}

S

Markov chain approximation to continuous state space
dynamics model (“discretization”)

= Original MDP (S, A, T, R, 7, H)

= Grid the state-space: the vertices are the
discrete states.

= Reduce the action space to a finite set.
= Sometimes not needed:

When Bellman back-up can be computed
exactly over the continuous action space

When we know only certain controls are
part of the optimal policy (e.g., when we
know the problem has a “bang-bang”
optimal solution)

s Transition function: see next few slides.

= Discretized MDP (S,A,T, R,~, H)

Discretization Approach A: Deterministic Transition
onto Nearest Vertex --- 0'th Order Approximation

o
€1 €3 Discrete states: { &, , ..., & }
P(&)€1,a) = 0.1+0.3=0.4;
[[
Similarly define transition
54 €6 probabilities for all &

= > Discrete MDP just over the states {¢,, ..., & }, which we can solve with value
iteration

= If a (state, action) pair can results in infinitely many (or very many) different next states:
Sample next states from the next-state distribution

Discretization Approach B: Stochastic Transition onto
Neighboring Vertices --- 1’st Order Approximation

Discrete states: { &, ..., €., }
&q P(&[&1,a) = pa;

P(&3[€1,a) = pB;

P(&l€1,a) = pe;

s.t. 8" = pa&s + prés + pcés

€10 €11 €12

If stochastic: Repeat procedure to account for all possible transitions and
weight accordingly

Need not be triangular, but could use other ways to select neighbors that
contribute. “Kuhn triangulation” is particular choice that allows for efficient

computation of the weights p,, ps, P, also in higher dimensions

Discretization: Our Status

= Have seen two ways to turn a continuous state-space MDP into
a discrete state-space MDP

= When we solve the discrete state-space MDP, we find:
= Policy and value function for the discrete states

= They are optimal for the discrete MDP, but typically not for
the original MDP

= Remaining questions:
= How to act when in a state that is not in the discrete states
set?

= How close to optimal are the obtained policy and value
function?

How to Act (i): O-step Lookahead

For non-discrete state s choose action based on policy in nearby states

= Nearest Neighbor: m(s) =m(&) for & =arg min |[s =
€€{£1~-€N}
S N E.g., m(s) = 7(¢2)
é-4 é-5 56
N
= (Stochastic) Interpolation: Find py,...,pn s.t. s= Zpi&:

Policy at s: choose 7(§;) with probability p;.
If continuous action space, can interpolate actions and choose Zfil pim(&;)

E.g., let ps, p3, pg be such that

s = p282 + p3&s + peée
then choose m(&2), 7(&3), (&)
with probabilities ps, p3, pg respectively.

How to Act (ii): 1-step Lookahead

Use value function found for discrete MDP

m(s) = arg m(?,xz P(s'|s,a) (R(s, a,s’) + Z P(&;; 3')V(£7;)>

= Nearest Neighbor:

P(fi;s’) _ {1 if fz = argmln&e{& En) ”S _ 5”

0 otherwise

= (Stochastic) Interpolation:

N
P(&;;s") such that s Z (&8

How to Act (iii): n-step Lookahead

s Think about how you could do this for n-step lookahead

= Why might large n not be practical in most cases?

Example: Double integrator---quadratic cost

Dynamics: q+1 = G+ Got
di+1 = ¢+ udt

Cost function: g(q, ¢, u) = ¢* +u?

double integrator, dt=0.01, LOR solution. red dots: starting points, green dots: ending points
0.8-

0.6 -
04- "\

-0.2-

04-
.06 - —_ Nt

0.8 l | | | 1 | . . .
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 04 0.5

0’th Order Interpolation, 1 Step Lookahead for
Action Selection --- Trajectories

- double integrator, dt=0.01, nearest neighbor, h=1 LQR cost us =-1 -0.5 -0.2 Q 0.2 0.5 1
double integrator, dt=0.01, LOR solution. red dots: starting points, green dots: ending points 3r .

08-
T LT :
04 h ’ T
i
0.2:
o 0~ o 0
0.2-
- A
04-
N ighbor, h = 1
earest neignopor, n =
85 35 04 03 0z 01 0 01 02 03 04 o5
\dol{g}
08- ! 08
06- 06 .
04- 0al
02 02| D e
o 0- o Ok N T
02- 02} \. o .
04- \'A\ = - - ’ g / 04| e T _ . A N N
NN — ' , — . T /v,,':f’
earest neighbor, h = 0.1 eare. or, h =0.
208" | | . o T - | | | 0.8 L L L L L I I 1
08 06 04 02 0 02 04 06 05 04 03 02 04 0 0.1 0.2 03 04 05
\dot{q} \dot{g}

dt=0.1

15t Order Interpolation, 1-Step Lookahead for
Action Selection --- Trajectories

double integrator, dt=0.01, LOR solution. red dots: starting points, green dots: ending points o gciuble integrator. dt=0.01. h=1LQR cost us =-1 -05 02 0 02 0.5 1
0.6- T T ——
04- T o)

e T 0w —— - — Tl
0.2~ T
04- I T —
N T
) N — — —_— — e
06~ T e 06~ K h Htr / h —_ 1
optimal uhntriang., h =
08 ' ' | | [| l . . 08 L 1 I I L L
05 04 03 0.2 0.1 0 0.1 0.2 0.3 0.4 05 -05 -0.4 -0.2 -0.2 -0.1 a 01 02 03 04 05
\dot{q} \dot{q}
Couble Integrator. di=0.07, h=01 [QR cost us=-1 05 -0.2 0 02 05 1 double integrator, dt=0.01, h=0.02 LQR cost us=-1 0.5 -0.2 0 02 05 1
OV -

06

04

02|

' Kuhn triang., h=0.1

-0.8 L
-0.5 -0.4 -0.3 -0.2 -01 0.1 0.2 0.3 0.4 0.5 . ,

0
08 . ‘
\dot{a 05 04 03 02 -0d 0 0.1 0.2 03 04 05

Discretization Quality Guarantees

m Typical guarantees:

s Assume: smoothness of cost function, transition model

= For h = 0, the discretized value function will approach the
true value function

m To obtain guarantee about resulting policy, combine above
with a general result about MDP’s:

= One-step lookahead policy based on value function V which
is close to V* is a policy that attains value close to V*

Quality of Value Function Obtained from
Discrete MDP: Proof Techniques

m Chow and Tsitsiklis, 1991:

= Show that one discretized back-up is close to one “complete” back-up
+ then show sequence of back-ups is also close

s Kushner and Dupuis, 2001:

= Show that sample paths in discrete stochastic MDP approach sample
paths in continuous (deterministic) MDP [also proofs for stochastic
continuous, bit more complex]

= Function approximation based proof (see later slides for what
is meant with “function approximation”)

= Great descriptions: Gordon, 1995; Tsitsiklis and Van Roy, 1996

Example result (Chow and Tsitsiklis,1991)

Al | g(x, uy — g(x', w)| = K|(x, u) = (x', w)| .
forall x, x’eSand u, u' eC;

A2: |P(y|x, wy— Py'|x', u)| =K|(y, x, u) -
(¥, x, u)|,, forall x, x’, y, y€eSand u, u' eC;

A.3: forany x, x' €8 and any u’ € U(x’). there exists
some u € U(x) such that || — '], = K| x — x| .;

A4: 0= P(ylx, wy=K and [P(y|x, u) dy =1,
forall x, yeSand ueC.

Theorem 3.1: There exist constants K, and K, (depend-
ing only on the constant K of assumptions A.1-A.4) such
that for all ke (0, 1/2K] and all Je #(S)

179 = TyJllw < (K, + aKy | J)5)h. (3.6)

Furthermore,

| J* = J¥le =

(Ky + aKy || J*5)h. (3.7)

1 — oy

Value Iteration with Function Approximation

Provides alternative derivation and interpretation of the
discretization methods we have covered in this set of slides:

= Start with V(s) = 0foralls.
= Fori=0, 1, ..., H-1

for all states s € Swhere Gs the discrete state set

11 (s) + mC?XZT(S, a,s’) [R(s, a,s’) + \7@*(8/)}
S/
where V7'(s') =) P(&;8")Vi" (&)
J
0’th Order Function Approximation 15t Order Function Approximation

Py s') = 1 if & = argmingeqe, .. ¢n} |5 — €|
v 0 otherwise

N
P(&;;8") such that & = Z P(&i;8")&
i=1

& N &

® 5 , ° s
¢, .\\i./gz €, '/@ 3

& &

° ° °
é4 55 & 6 59

Discretization as function approximation

s O’th order function approximation

builds piecewise constant approximation of value function

s 15t order function approximatin

builds piecewise (over “triangles”) linear approximation of
value function

Kuhn triangulation™**

= Allows efficient computation of the vertices participating in a
point’s barycentric coordinate system and of the convex
interpolation weights (aka the barycentric coordinates)

;-‘ X / ab :“__
s / Figure 2. The Kuhn
/ triangulation of a (3d)
/ & L rectangle. The point x
4 7 satisfying 1 > xo >
g/ xrog > x1 > 0 is in the
Solf— 51 simplex (€0, &4, &5, 7).

m See Munos and Moore, 2001 for further details.

Kuhn triangulation (from Munos and Moore)**

3.1. Computational issues

Although the number of simplexes inside a rectangle is factorial with the dimension
d. the computation time for interpolating the value at any point inside a rectangle
is only of order (dInd), which corresponds to a sorting of the d relative coordinates

(2y.....xy 1) of the point inside the rectangle.

Assume we want to compute the indexes i,.....14 of the (d + 1) vertices of the
simplex containing a point defined by its relative coordinates (xy.....x,; 1) with
respect to the rectangle in which it belongs to. Let {&.&a} be the corners of
this d-rectangle. The indexes of the corners use the binary decomposition in dimen
sion d, as illustrated in Figure 2. Computing these indexes is achieved by sorting
the coordinates from the highest to the smallest: there exist indices jy.....jq 1.
permutation of {0,...d — 1}, such that 1 > &; > 2;, > .. > x;, , > 0. Then
the indices iy,14 of the (d + 1) vertices of the simplex containing the point are:
o =0,d; =ig+ 29, iy =ip +20, g =iy +2¢e1 =29 _ 1 For
example. if the coordinates satisfy: 1 > 2y > xy > 21 > 0 (illustrated by the point
x in Figure 2) then the vertices are: & (every simplex contains this vertex, as well
as &1 1 = &), & (we added 22). & (we added 2") and & (we added 21).

Let us define the barycentric coordinates Ay. Ay of the point 2 inside the sim-
plex &,..... &, as the positive coefficients (uniquely) defined by: Z’: oAk = 1 and

1 ' . . .

v M = @ Usually, these baryeentric coordinates are expensive to com
pute: however, in the case of Kuhn triangulation these coefficients are simply:
AN =1—x. A\ =, —xj,. . \p =5, | — 2. . Ag=ux;, , —0=ux;, . In

the])1‘(‘.\'i()ll$ (!Xi-ll'l'l])](‘. the l)i-ll’}'(f(‘.l’lfl‘i(f coordinates are: /\[) =1 €T /\] = Io —Ip.
,\._, = I'p — I, /\;g = I].

Continuous time**

= One might want to discretize time in a variable way such that one
discrete time transition roughly corresponds to a transition into
neighboring grid points/regions

= Discounting: exp(—ﬁ&)
dt depends on the state and action

See, e.g., Munos and Moore, 2001 for details.

Note: Numerical methods research refers to this connection between time
and space as the CFL (Courant Friedrichs Levy) condition. Googling for
this term will give you more background info.

I1'1 nearest neighbor tends to be especially sensitive to having the correct
match [Indeed, with a mismatch between time and space 1 nearest

neighbor might end up mapping many states to only transition to
themselves no matter which action is taken.]

Nearest neighbor quickly degrades when time
and space scale are mismatched**

double integrator, dt=0.01. nearest neighbor, h=0.02 LQR cost us =-1 -0.5 -0.2 4] 0.2 05 1
1-

double integrator, dt=0.01. nearest neighbor, h=0.1 LQR cost us =-1 -0.5 -0.2 Q 02 05 1
ey B

25—

05 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 03 0.4 05
\dot{q} -1 -05 0 05
\dot{q}

06-

04

0.2

o 0-
dt=0.1

-02-

-0.4-

-06-

08 |
08 -06

