Function Approximation

Pieter Abbeel
UC Berkeley EECS

Outline

= Value iteration with function approximation

= Linear programming with function approximation

Value lteration

= Algorithm: Impractical for large
= Start with V' (s) = 0 forallss. state spaces
= Fori=l, .., H

For all statess € S:

Vit 1(s) « mngT(S, a,s') [R(S,a, s') + 7\/2-*(3’)}

S

W;k_|_1(3) « arg rg]eajl(ZT(s, a,s)[R(s,a,s’) + ’yVZ-*(s/)]
S/

= V.*(s)=the expected sum of rewards accumulated when
starting from state s and acting optimally for a horizon of i steps

0 7Tf2k (S) = the optimal action when in state s and getting to act
for a horizon of i steps

Example: tetris

state: board configuration + shape of the falling piece ~22% states!

action: rotation and translation applied to the falling piece

88
. . DDEEIS_
22 features aka basis functions ¢, Dalmamﬁo

]
@

U

[] 00)]
[(][]
oans

SIS
e
EEEE]

O

Ten basis functions, O, . . ., 9, mapping the state to the height h[k] of each of the
ten columns.

Nine basis functions, 10, . . ., 18, each mapping the state to the absolute
difference between heights of successive columns: |h[k+1] - h[k]|, k=1, ..., 9.

One basis function, 19, that maps state to the maximum column height: max, h[k]
One basis function, 20, that maps state to the number of ‘holes’ in the board.

One basis function, 21, that is equal to 1 in every state.

Vo(s) = Z 0idi(s) = 0" d(s)

[Bertsekas & loffe, 1996 (TD); Bertsekas & Tsitsiklis 1996 (TD); Kakade 2002 (policy gradient); Farias & Van Roy, 2006 (approximate LP)]

Function Approximation

V(s) = (90 + 91 “distance to closest ghost”
+(92 “distance to closest power pellet”
+(93 “in dead-end”

+(94 “closer to power pellet than ghost is”
+

— 297:@(8) =0"¢(s)

Function Approximation

s O’th order approximation (1-nearest neighbor):

3
EERG
0
(O
g X5 g X6 .X7 g X8 0 A
I 5 S [Y e
0
EECEEt
\ 0

Only store values for x1, x2, ..., x12
—call these values 601,05, ...,015

o, .n

Assign other states value of nearest “x” state

A

V(s) =V (zd) =64

Function Approximation

s 1'th order approximation (k-nearest neighbor interpolation):

V(s) = ¢1(5)01 + ¢2(5)02 + ¢5(s5)05 + de(s)06
_—
mx1 m X2 ' m x4 (0.2\
s 0.6
0
g X5 s 6 . X7 g X8 0 ~
S S P v
0.15
CECERN
\ 0
Only store values for x1, x2, ..., x12

— call these values 6,05, ...,045
Assign other states interpolated value of nearest 4 “x” states

Function Approximation

s Examples:

= S V(S) — (91 -+ (928

J—]R,
= S = R, V(S) — (91 + (928 -+ (9382

. S=R, V(s)= Z@isi
i=0
1

. S Vi(s) = log(1 x0T o))

)

Function Approximation

= Main idea:

= Use approximation VQ of the true value function V/,

" 9 is a free parameter to be chosen from its domain ('—')

= Representation size: |S‘% downto: |@|
+ : less parameters to estimate

- : less expressiveness, typically there exist many V for which there

is no@such that V@ — V

Supervised Learning

s Given:

= set of examples

(s, V(s), (s, V(s'?),.., (s, V(st™)

m Asked for:
- llbest” "/\/e

= Representative approach: find v through least squares:

m

' 7 (s()) (4)1)2
min Y~ (Vo(s0) = V(s)

1=1

Supervised Learning Example

= Linear regression

Observation y

Prediction g

Overfitting

m To avoid overfitting: reduce number of features used

m Practical approach: leave-out validation

= Perform fitting for different choices of feature sets using
just 70% of the data

= Pick feature set that led to highest quality of fit on the
remaining 30% of data

Status

m Function approximation through supervised learning

BUT: where do the supervised examples come from?

Value Iteration with Function Approximation

= Picksome G’ C § (typically |S/‘ < <L ‘S|)
= [nitialize by choosing some setting for 9(0)
m |teratefori=0,1, 2, .., H:

= Step 1: Bellman back-ups

Vs e S 1 Vipi(s) mC?XZT(s, a,s’) {R(s,a, s") + V0 (s’)}

= Step 2: Supervised learning

find 9(i+1) as the solution of:

min 3 (Voo ()~ Vi (5))

seS’

Value Iteration with Function
Approximation --- Example

= Mini-tetris: two types of blocks, can only choose translation (not rotation)

= Example state:

LA

= Reward =1 for placing a block

= Sink state / Game over is reached when block is placed such that part
of it extends above the red rectangle

= If you have a complete row, it gets cleared

Value Iteration with Function

Approximation --

Xxample

o [e —~
l |
Y Sem———

>

Value Iteration with Function

Approximation --- Example

<|
<I

s=(p L Ed . B . [

m 10 features aka basis functions Ai

= Four basis functions, O, . . ., 3, mapping the state to the height h[k] of each of
the four columns.

= Three basis functions, 4, . . ., 6, each mapping the state to the absolute
difference between heights of successive columns: |h[k+1] - h[k]|, k=1,..., 3.

= One basis function, 7, that maps state to the maximum column height: max, h(k]
= One basis function, 8, that maps state to the number of "holes’ in the board.

= One basis function, 9, that is equal to 1 in every state.

s it =(-1,-1,-1,-1,-2,-2,-2,-3,-2,10)

Va
Ap

ue lteration with Function

oroximation --- Example

= Bellman back-ups for the states in S’:

V(

1

) = max {0.5 *(1+~ V(

0.5 *(1+~ V(i

0.5 *(1+~ V(

0.5 *(1+~ V(

MN+0.5*%(1 ++ V(_—5),

)+0.5%(1 +- V(R)),

)+0.5%(1 +y V(EE),

N+0.5%(1 + V(H),

Va
Ap

ue lteration with Function

oroximation --- Example

= Bellman back-ups for the states in S’:

V(

1

) = max {0.5 *(1+~ V(

0.5 *(1+~ V(i

0.5 *(1+~ V(

0.5 *(1+~ V(

MN+0.5*%(1 ++ V(

))+0.5%(1 +~ V(

))+0.5%(1 +~ V(

))+0.5%(1 4+~ V(

Value Iteration with Function

Approximation --- Example

<|
<I

m 10 features aka basis functions Ai

Four basis functions, O, . . ., 3, mapping the state to the height h[k] of each of the
four columns.

Three basis functions, 4, . . ., 6, each mapping the state to the absolute difference
between heights of successive columns: |h[k+1] - h[k]|, k=1, ..., 3.

One basis function, 7, that maps state to the maximum column height: max, h(k]
= One basis function, 8, that maps state to the number of "holes’ in the board.

= One basis function, 9, that is equal to 1 in every state.

m Init 0© =(-1,-1,-1,-1,-2,-2,—-2,-3,—2,20)

Va
Ap

ue lteration with Function

oroximation --- Example

= Bellman back-ups for the states in S’:

V(

N

1 y=max {0.5 *(1+~ 76

(6I214I0I 4/ 2[

0.5 *(14~ ' o(

(2I6I4IOI 4[2I 4’ 6’ OI 1)

0.5 *(1+ 170

(sink-state, V=0)

0.5 *(1+7§'¢(

(0,0,2,2,0,2,0, 2,0, 1)

:ll

1)4+0.5%(1 ++ §74(

u

:]

| H
N+0.5%(1 +~ g ol),
4,6,0,1) (6,2,4,0,4,2,4,6,0,1)
: -

H N)+0.5%(1 +v6To (FE),

(2I6I4I0I 4’ 2’ 4[6[0I 1)

)),

(sink-state, V=0)

5i))+o.5*(1 +79T¢()

(0,0,2,2,0,2,0, 2,0, 1)

Value Iteration with Function
Approximation --- Example

= Bellman back-ups for the states in S’:

V()=max {0.5 *(1+y -30)+0.5*%(1 +v -30

0.5 *(1+~y -30)+0.5*%(1 +v -30
0.5 *(1+~ 0)+0.5*%(1 +~ 0

0.5 *(1+~ 6)+0.5%(1 +~ 6

= 6.4 (for~ =0.9)

Va
Ap

ue lteration with Function

oroximation --- Exam

ple
PO =(-1,-1,-1,-1,-2,-2, -2, -3, —2,20)

s Bellman back-ups for the second state in S’:

V(

|

|| _
")=max {0.5 *(1+~ 6" (|

(sink-state,

]

| |

0.5 *(1+~ 0 o(F

(sink-state,

B

0.5 *(1++ 4o (L]

: 1)40.5%(1 4+~ M(

|

c]

5}))+o.5*(1 +fT6 (

)),

V=0) (sink-state, V=0)

B | |
] =

i"))+0.5*(1 +v9" ¢ (-]

),

V=0) (sink-state, V=0)

(sink-state, V=0) (sink-state, V=0)
| |
| Ly
) | L
0.5 *(1++ 7o [E] D+0.5%1 +407 (EE]) 3
(0,0,0,0,0,0,0,0,0, 1) (0,0,0,0, 0,0,0, 0, 0, 1)
=19 >V =20 >V =20

Va
Ap

ue lteration with Function

oroximation --- Exam

ple
PO =(-1,-1,-1,-1,-2,-2, -2, -3, —2,20)

s Bellman back-ups for the third state in S’:

V(

-)=max {0.5 *(1+~ HTd) ('_I__
(4,4,0,0, 0,4,0,
->V=-8

0.5 *(1+~ 6" o(E

->V=-14

0.5 *(1+~ M(D

(0,0,0,0, 0,0,0, 0, 0, 1)

-> V=20

c]

5}))+o.5*(1 +fT6 (B

),

4[0I 1) (4[410101 0I4'IOI 4'I OI 1)

:J

N)+0.5%(1 +y476 (F

(2I4I4I0I 2I0I4I 4[Ol 1)

->V=-8

),

(2I4I4IOI 21014I 4/ OI 1)

B ->V=-14

N+0.5%(1 +474(EH).,

(0,0,0,0, 0,0,0, 0, 0, 1)

->V =20

Value Iteration with Function

Approximation --- Example
PO =(-1,-1,-1,-1,-2,-2, -2, -3, —2,20)
= Bellman back-ups for the fourth state in S’:

C] =

* y=max {0.5 *(1+ 4 o (F N+0.551 +0 ([),

(6,6,4,0,0,2,4, 6,4, 1) (6,6,4,0,0,2,4,6, 4, 1)
->V=-34 ->V =-34

:J

:J [
0.5 *(1+~ 67 o(FHH H)+0.5%(1 +v¢7s ([HH)) ,

(4,6,6,0,2,0,6,6,4,1) (4,6.6,0, 2,0,6, 6, 4, 1)

->V=-38 4 >V =-38
) | L1
m —
0.5 *(1+~ 0T¢ ;Eif N+0.5*%(1 ++ 9T¢(;E:)),
(4,0,6,6,4,6,0,6, 4, 1) (4,0,6,6, 4,6,0, 6, 4, 1)
->V =-42 >V =-42

= -29.6

back-ups for all 4 states in

S’ we have:
|
| |
| |
V()=6.4
u (2,2,4,0,0,24,4,0, 1)
| |
7
V(FEH)= 19
1 (44,4,0,004,4,0,1)
V(IEH)=19
= (2,2,0,0,0,2,0,2,0,1)
V(IEEH)= -29.6

(4IOI4I0I 4.I4-I4-I 4’ 0’ 1)

Value Iteration with Function

Approximation --- Example
fter running the Bellman

= We now run supervised learning
on these 4 examples to find a new

m1n(64 0" o[
+(19 — (9T o(|
+(19 - 0" o([E

)2

)
)2

+((—29.6) - 0" o([F)’

- Running least squares gives new 6

o) = (0.195,6.24, —2.11,0, —6.05,0.13, —2.11, 2.13, 0, 1.59)

Potential guarantees?

Simple example**

O—

Function approximator: [12] * 6

r=0

Simple example**

. 1

0=[1]o
TV (1) = 0+7Jpo (x2) = 2700
JD(zg) = 0+~Jpo (22) = 270

Function approximation with least squares fit:
BHGE s
Least squares fit results in:
o) 279(0)

Repeated back-ups and function approximations result in:

. 6 \°
o) (_7) §(0)
5
S

which diverges if v > Z even though the function approximation class can
represent the true value function.]

Composing operators™**

m Definition. An operator G is a non-expansion with respect to
anorm || .|| if

|Gy — GJo|| < ||J1 — J2|

m Fact. If the operator F is a y contraction with respect to a
norm || . || and the operator G is a non-expansion with
respect to the same norm, then the sequential application of
the operators G and F is a y-contraction, i.e.,

|GFJy — GF || < v[|Jy — 2]

m Corollary. If the supervised learning step is a non-expansion,
then iteration in value iteration with function approximation
is a y-contraction, and in this case we have a convergence
guarantee.

Averager function approximators are
non-expansions™**

DeriNiTION: A real-valued function approximation scheme is an averager if every fitted value is the weighted
average of zero or more target values and possibly some predetermined constants. The weights involved in
calculating the fitted value Y; may depend on the sample vector Xp, but may not depend on the target values
}".1?’;31'0 precisely, for a fixed Xg, if Y has n elements, there must exist n real numbers k;, n® nonnegative
real numbers j;;, and n nonnegative real numbers f;, so that for each ¢ we have 3; 4 Zj Fi; = 1 and

Y; = Gik; + Z:j .3{)'}}.

s Examples:
= nearest neighbor (aka state aggregation)

= linear interpolation over triangles (tetrahedrons, ...)

Averager function approximators are
non-expansions™**

Proof: Let J; and J be two vectors in R”. Consider a particular entry s of
HJl and HJQZ

|(HJ1)<S) - (HJQ)(S)l - |/BSO + ZﬂSS’Jl(SI) - 530 + ZﬁSS’J2(S,)|

1 Bur(A(s) — a(s))
< max|Ji(s") = J2(s")]
= |1 = 2l

This holds true for all s, hence we have

[T1J; =TIz |loe < [|J1 = J2||oo

Linear regression ® **

(S)]

0

(a)

2

(%]

0

0

—
a2

(b)

Figure 2: The mapping associated with linear regression when samples are taken at the points 2 = 0,1, 2. In
(a) we see a target value function (solid line) and its corresponding fitted value function (dotted line). In (b)
we see another target function and another fitted function. The first target function has values y = 0,0,0
at the sample points; the second has values y = 0,1,1. Regression exaggerates the difference between the
two functions: the largest difference between the two target functions at a sample point is 1 (at 2 = 1 and
2 = 2), but the largest difference between the two fitted functions at a sample point is I (at & = 2).

[Example taken from Gordon, 1995.]

Guarantees for fixed point**

Theorem. Let J* be the optimal value function for a finite MDP with discount
factor . Let the projection operator II be a non-expansion w.r.t. the infinity
norm and let J be any fixed point of II. Suppose |J — J*||c < €. Then IIT
converges to a value function J such that:

2ve
I —~

1T — J*|| < 26 +

= l.e,, if we pick a non-expansion function approximator which
can approximate J* well, then we obtain a good value
function estimate.

m To apply to discretization: use continuity assumptions to
show that J* can be approximated well by chosen
discretization scheme

Outline

¥ Value iteration with function approximation

= Linear programming with function approximation

Infinite Horizon Linear Program

S/

L4 is @ probability distribution over S, with py(s)> 0 for all s € S.

Theorem. V' is the solution to the above LP.

Infinite Horizon Linear Program

S/

- Linear program that finds Vg(s) — HTgb(S)

Approximate Linear Program —
Guarantees™*

s LP solver will converge

= Solution quality: [de Farias and Van Roy, 2002]

Assuming one of the features is the feature that is equal to
one for all states, and assuming S’=S we have that:

* 2 . *
[V* = @01, < ﬁmemHV — ®0| o
(slightly weaker, probabilistic guarantees hold for S’ not
equal to S, these guarantees require size of S’ to grow as the
number of features grows)

