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Markov Decision Process (S, A, H, T, R) 

Given 

n  S: set of states 

n  A: set of actions 

n  H: horizon over which the agent will act 

n  T: S x A x S x {0,1,…,H} à [0,1] ,    Tt(s,a,s’) = P(st+1 = s’ | st = s, at =a) 

n  R:  S x A x S x {0, 1, …, H} à     ,    Rt(s,a,s’) = reward for (st+1 = s’, st = s, at 
=a) 

Goal:  

n  Find    : S x {0, 1, …, H} à A  that maximizes expected sum of rewards, i.e.,  
π



= MDP 

 BUT 

don’t get to observe the state itself, instead get sensory 
measurements 

 

 

 

 

Now: what action to take given current probability distribution 
rather than given current state. 

POMDP – Partially Observable MDP 



POMDPs: Tiger Example 



Belief State 
n  Probability of S0 vs S1 being true underlying state 

n  Initial belief state: p(S0)=p(S1)=0.5 

n  Upon listening, the belief state should change according to 
the Bayesian update (filtering) 

TL TR 



Policy – Tiger Example 
n  Policy π is a map from [0,1] → {listen, open-left, open-right} 

n  What should the policy be? 

n  Roughly: listen until sure, then open 

n  But where are the cutoffs? 



n  Canonical solution method 1: Continuous state “belief MDP” 

n  Run value iteration, but now the state space is the space of 
probability distributions 

n  à value and optimal action for every possible probability 
distribution 

n  à will automatically trade off information gathering actions 
versus actions that affect the underlying state 

n  Value iteration updates cannot be carried out because 
uncountable number of belief states – approximation 

Solving POMDPs 



n  Canonical solution method 2: 

n  Search over sequences of actions with limited look-ahead 

n  Branching over actions and observations 

Solving POMDPs 

Finite horizon:  
                 
                  nodes 



n  Approximate solution: becoming tractable for |S| in millions 

n  α-vector point-based techniques 

n  Monte Carlo Tree Search 

n  …Beyond scope of course… 

Solving POMDPs 



n  Canonical solution method 3:  

n  Plan in the MDP  

n  Probabilistic inference (filtering) to track probability 
distribution 

n  Choose optimal action for MDP for currently most likely state 

Solving POMDPs 
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Facilitate reliable operation of cost-effective robots that use: 

n  Imprecise actuation mechanisms – serial elastic actuators, cables 

n  Inaccurate encoders and sensors – gyros, accelerometers 

Motivation 

Cable-driven  
7-DOF arms Perception 

(stereo, depth) 
Motors connected 

to joints using cables 



      Continuous state/action/observation spaces 

Motivation 

Cable-driven  
7-DOF arms Perception 

(stereo, depth) 
Motors connected 

to joints using cables 



Model Uncertainty As Gaussians 

Start 

Uncertainty parameterized by  
mean and covariance 

Start 



Dark-Light Domain 

State space plan 

start 

goal 

Problem Setup 

[Example from Platt, Tedrake, Kaelbling, Lozano-Perez, 2010] 



Dark-Light Domain 

start 

goal 

Problem Setup Belief space plan 

Tradeoff information gathering vs. actions 



Problem Setup 

n  Stochastic motion and observation Model 

n  Non-linear 

n  User-defined objective / cost function 

n  Plan trajectory that minimizes expected cost  



Locally Optimal Solutions 

n  Belief is Gaussian 

n    

n  Belief dynamics – Bayesian filter 

n  [X] Kalman Filter 

(underlying state space) (belief space) 



State Space – Trajectory Optimization 



(Gaussian) Belief Space Planning 

	
  	
  	
  	
  	
  	
  	
  

minµ,Σ,u

H�

t=0

c(µt,Σt, ut)

s.t. (µt+1,Σt+1) = xKF (µt,Σt, ut, wt, vt)

µH = goal

u ∈ U



(Gaussian) Belief Space Planning 

	
  	
  	
  	
  	
  	
  	
  

= maximum likelihood assumption for observations 
Can now be solved by Sequential Convex Programming 
 
[Platt et al., 2010; also Roy et al ; van den Berg et al. 2011, 2012] 

minµ,Σ,u

H�

t=0

c(µt,Σt, ut)

s.t. (µt+1,Σt+1) = xKF (µt,Σt, ut, 0, 0)

µH = goal

u ∈ U Obstacles? 



Dark-Light Domain 

start 

goal 

Problem Setup Belief space plan 

Tradeoff information gathering vs. actions 



n  Prior work approximates robot geometry as points or spheres 

 

 

n  Articulated robots cannot be approximated as points/spheres 

n  Gaussian noise in joint space 

n  Need probabilistic collision avoidance w.r.t robot links 

Collision Avoidance 

Van den Berg et al. 



n  Definition: Convex hull of a robot link transformed (in joint 
space) according to sigma points 

n  Consider sigma points lying on the !-standard deviation 
contour of uncertainty covariance (UKF) 

Sigma Hulls 



Collision Avoidance Constraint 
    Consider signed distance between obstacle and sigma hulls 



n  Gaussian belief state in joint space: ​#↓% =[█■​)↓% @​Σ↓%  ] 

n  Optimization problem: 

 Variables:  

 

Belief space planning using trajectory 
optimization 

mean 
covariance 

Belief dynamics (UKF) 
Probabilistic collision avoidance 
Reach desired end-effector pose 
Control inputs are feasible 



n  Robot trajectory should stay at least 
distance from other objects 

Collision avoidance constraint 



n  Robot trajectory should stay at least 
distance from other objects 

n  Linearize signed distance at current belief 

Collision avoidance constraint 



n  Robot trajectory should stay at least 
distance from other objects 

n  Linearize signed distance at current belief 

n  Consider the closest point              lies on a 
face spanned by vertices 

Collision avoidance constraint 



n  Discrete collision avoidance can lead to trajectories that 
collide with obstacles in between time steps 

n  Use convex hull of sigma hulls between consecutive time 
steps 

n  Advantages: 

n  Solutions are collision-free                                                          
in between time-steps 

n  Discretized trajectory can                                                      
have less time-steps 

Continuous Collision Avoidance Constraint 



n  During execution, update the belief state based on the actual 
observation 

n  Re-plan after every belief state update 

n  Effective feedback control, provided one can re-plan sufficiently fast 

Model Predictive Control (MPC) 



   State space trajectory 

Example: 4-DOF planar robot 



       1-standard deviation belief space trajectory 

Example: 4-DOF planar robot 



      4-standard deviation belief space trajectory 

Example: 4-DOF planar robot 



   Probability of collision 

Experiments: 4-DOF planar robot 



        Mean distance from target 

Experiments: 4-DOF planar robot 



n  Efficient trajectory optimization in Gaussian belief 
spaces to reduce task uncertainty 

n  Prior work approximates robot geometry as a 
point or a single sphere 

n  Pose collision constraints using signed distance 
between sigma hulls of robot links and obstacles 

n  Sigma hulls never explicitly computed – fast 
convex collision checking and analytical gradients 

n  Iterative re-planning in belief space (MPC) 

Take-Away 
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Discontinuities in Sensing Domains 

Zero gradient, hence local optimum     

start 

goal 

“dark” “light” 

Patil et al., under review 



Increasing difficulty 

≈	
  Noise level determined by signed distance to sensing region  
   * homotopy iteration 

Discontinuities in Sensing Domains 



Signed Distance to Sensing Discontinuity 

Field of view (FOV)  
discontinuity 

Occlusion  
discontinuity 



            vs. Signed distance 



Modified Belief Dynamics 

: Binary variable {0,1}	
  
0 -> No measurement 
1 -> Measurement  



Incorporating     in SQP   

n  Binary non-convex program – difficult to solve 

n  Solve successively smooth approximations 



Algorithm Overview 

n  While δ not within desired tolerance 

n  Solve optimization problem with current value of α	



n  Increase α	



n  Re-integrate belief trajectory 

n  Update δ	



	





Increasing difficulty 

≈	
  Noise level determined by signed distance to sensing region  
   * homotopy iteration 

Discontinuities in Sensing Domains 



“No measurement” Belief Update 

Truncate Gaussian Belief if no measurement obtained 



  
 
 
 
 
 
 
 
Without “No measurement” Belief Update 

 With “No measurement” Belief Update 

Effect of Truncation 



Experiments 



Car and Landmarks (Active Exploration) 



Arm Occluding (Static) Camera 

Initial belief State space 
plan execution 

   (way-point)                (end) 
   Belief space plan execution 



Arm Occluding (Moving) Camera 

Initial belief State space 
plan execution 

   (way-point)                (end) 
   Belief space plan execution 
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n  Assume: 

n  Goal: 

n  Then, optimal control policy consists of: 

1. Offline/Ahead of time: Run LQR to find optimal control policy for fully 
observed case, which gives sequence of feedback matrices  

   

2. Online: Run Kalman filter to estimate state, and apply control 

xt+1 = Axt +But + wt wt ∼ N (0, Qt)

zt = Cxt + vt vt ∼ N (0, Rt)

minimize E

�
H�

t=0

u�
t
Utut + x�

t
Xtxt

�

K1,K2, . . .

ut = Ktµt|0:t

Separation Principle  



Extensions 

n  Current research directions 

n  Fast! belief space planning 

n  Multi-modal belief spaces 

n  Physical experiments with the Raven surgical robot 



Recap 

n  POMDP = MDP but sensory measurements instead of exact 
state knowledge 

n  Locally optimal solutions in Gaussian belief spaces  

n  Augmented state vector (mean, covariance)  

n  Trajectory optimization 

n  Sigma Hulls for probabilistic collision avoidance  

n  Homotopy methods for dealing with discontinuities in sensing 
domains  


