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n  Often state of robot and state of its environment are 
unknown and only noisy sensors available 

n  Probability provides a framework to fuse sensory 
information 

à  Result: probability distribution over possible states of 
robot and environment 

n  Dynamics is often stochastic, hence can’t optimize for a 
particular outcome, but only optimize to obtain a good 
distribution over outcomes   

n  Probability provides a framework to reason in this setting 

à  Result: ability to find good control policies for stochastic 
dynamics and environments 

 

Why probability in robotics? 



n  State: position, orientation, velocity, angular rate 

n  Sensors:  
n  GPS : noisy estimate of position (sometimes also velocity) 

n  Inertial sensing unit: noisy measurements from  
(i)  3-axis gyro [=angular rate sensor],  
(ii)  3-axis accelerometer [=measures acceleration + 

gravity; e.g., measures (0,0,0) in free-fall], 
(iii)  3-axis magnetometer 

n  Dynamics: 
n  Noise from: wind, unmodeled dynamics in engine, servos, 

blades 

Example 1: Helicopter 



n  State: position and heading 

n  Sensors: 
n  Odometry (=sensing motion of actuators): e.g., wheel 

encoders  

n  Laser range finder:  
n  Measures time of flight of a laser beam between 

departure and return  
n  Return is typically happening when hitting a surface 

that reflects the beam back to where it came from 

n  Dynamics: 

n  Noise from: wheel slippage, unmodeled variation in floor 

Example 2: Mobile robot inside building 
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Axioms of Probability Theory 

1)Pr(0 ≤≤ A

Pr(!) =1

Pr(A!B) = Pr(A)+Pr(B)"Pr(A#B)

Pr(!) = 0

Pr(A) denotes probability that the outcome ω is an 
element of the set of possible outcomes A. A is often 
called an event.  Same for B. 

Ω is the set of all possible outcomes. 
ϕ is the empty set. 
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A Closer Look at Axiom 3 

A!BA B

Pr(A!B) = Pr(A)+Pr(B)"Pr(A#B)

!
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Using the Axioms 

Pr(A! (" \ A)) = Pr(A)+Pr(" \ A)#Pr(A$ (" \ A))
Pr(") = Pr(A)+Pr(" \ A)#Pr(!)
1 = Pr(A)+Pr(" \ A)# 0

Pr(" \ A) = 1#Pr(A)
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Discrete Random Variables 

n  X denotes a random variable. 

n  X can take on a countable number of values in {x1, x2, 
…, xn}. 

n  P(X=xi), or P(xi), is the probability that the random 
variable X takes on value xi.  

n  P( ) is called probability mass function. 
 

n  E.g., X models the outcome of a coin flip, x1 = head, x2 = 
tail, P( x1 ) = 0.5 , P( x2 ) = 0.5  

. 

x1 

! x2 

x4 

x3 
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Continuous Random Variables 

n  X takes on values in the continuum. 

n  p(X=x), or p(x), is a probability density function. 
 

n  E.g. 

∫=∈
b

a

dxxpbax )()),(Pr(

x 

p(x) 
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Joint and Conditional Probability 

n  P(X=x and Y=y) = P(x,y) 

n  If X and Y are independent then  
  P(x,y) = P(x) P(y) 

n  P(x | y) is the probability of x given y 
  P(x | y) = P(x,y) / P(y) 
  P(x,y)   = P(x | y) P(y) 

n  If X and Y are independent then 
  P(x | y) = P(x) 

n  Same for probability densities, just P à p 
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Law of Total Probability, Marginals 
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Bayes Formula 
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Normalization 

)()|(
1)(

)()|(
)(

)()|()(

1

xPxyP
yP

xPxyP
yP

xPxyPyxP

x
∑

==

==

−η

η

yx

x
yx

yx

yxPx

xPxyPx

|

|

|

aux)|(:

aux
1

)()|(aux:

η

η

=∀

=

=∀

∑

Algorithm: 



14 

Conditioning 

n  Law of total probability: 
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Bayes Rule with Background Knowledge 
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Conditional Independence 
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Simple Example of State Estimation 

n  Suppose a robot obtains measurement z 

n  What is P(open|z)? 
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Causal vs. Diagnostic Reasoning 

n  P(open|z) is diagnostic. 

n  P(z|open) is causal. 

n  Often causal knowledge is easier to obtain. 

n  Bayes rule allows us to use causal knowledge: 

)(
)()|()|( zP

openPopenzPzopenP =

count frequencies! 
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Example 

n  P(z|open) = 0.6   P(z|¬open) = 0.3 

n  P(open) = P(¬open) = 0.5 
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•  z raises the probability that the door is open. 

P(open | z) = P(z | open)P(open)
P(z)
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Combining Evidence 

n  Suppose our robot obtains another observation z2. 

n  How can we integrate this new information? 

n  More generally, how can we estimate 
P(x| z1...zn )? 
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Recursive Bayesian Updating 
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Markov assumption: zn is independent of z1,...,zn-1 if we 
know x. 

P(x | z1,…, zn) = P(zn | x) P(x | z1,…, zn ! 1)
P(zn | z1,…, zn ! 1)
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Example: Second Measurement  

n  P(z2|open) = 0.5  P(z2|¬open) = 0.6 

n  P(open|z1)=2/3 
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•  z2 lowers the probability that the door is open. 
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A Typical Pitfall 

n  Two possible locations x1 and x2 

n  P(x1)=0.99  

n  P(z|x2)=0.09 P(z|x1)=0.07  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40 45 50

p(
 x

 | 
d)

Number of integrations

p(x2 | d)
p(x1 | d)


