Probability: Review

Pieter Abbeel
UC Berkeley EECS

Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

Why probability in robotics?

- Often state of robot and state of its environment are unknown and only noisy sensors available
- Probability provides a framework to fuse sensory information
\rightarrow Result: probability distribution over possible states of robot and environment
- Dynamics is often stochastic, hence can't optimize for a particular outcome, but only optimize to obtain a good distribution over outcomes
- Probability provides a framework to reason in this setting
\rightarrow Result: ability to find good control policies for stochastic dynamics and environments

Example 1: Helicopter

- State: position, orientation, velocity, angular rate
- Sensors:
- GPS : noisy estimate of position (sometimes also velocity)
- Inertial sensing unit: noisy measurements from
(i) 3-axis gyro [=angular rate sensor],
(ii) 3-axis accelerometer [=measures acceleration + gravity; e.g., measures $(0,0,0)$ in free-fall],
(ii) 3-axis magnetometer
- Dynamics:
- Noise from: wind, unmodeled dynamics in engine, servos, blades

Example 2: Mobile robot inside building

- State: position and heading
- Sensors:
- Odometry (=sensing motion of actuators): e.g., wheel encoders
- Laser range finder:
- Measures time of flight of a laser beam between departure and return
- Return is typically happening when hitting a surface that reflects the beam back to where it came from
- Dynamics:
- Noise from: wheel slippage, unmodeled variation in floor

Axioms of Probability Theory

- $0 \leq \operatorname{Pr}(A) \leq 1$
- $\operatorname{Pr}(\Omega)=1 \quad \operatorname{Pr}(\phi)=0$

$$
\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)
$$

$\operatorname{Pr}(A)$ denotes probability that the outcome ω is an element of the set of possible outcomes A. A is often called an event. Same for B.
Ω is the set of all possible outcomes.
ϕ is the empty set.

A Closer Look at Axiom 3

$$
\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)
$$

Using the Axioms

$$
\begin{array}{clc}
\operatorname{Pr}(A \cup(\Omega \backslash A)) & = & \operatorname{Pr}(A)+\operatorname{Pr}(\Omega \backslash A)-\operatorname{Pr}(A \cap(\Omega \backslash A)) \\
\operatorname{Pr}(\Omega) & = & \operatorname{Pr}(A)+\operatorname{Pr}(\Omega \backslash A)-\operatorname{Pr}(\phi) \\
1 & = & \operatorname{Pr}(A)+\operatorname{Pr}(\Omega \backslash A)-0 \\
\operatorname{Pr}(\Omega \backslash A) & = & 1-\operatorname{Pr}(A)
\end{array}
$$

Discrete Random Variables

- X denotes a random variable.

- X can take on a countable number of values in $\left\{x_{1}, x_{2}\right.$, $\left.\ldots, x_{n}\right\}$.
- $P\left(X=x_{i}\right)$, or $P\left(x_{i}\right)$, is the probability that the random variable X takes on value x_{i}.
- $P(\cdot)$ is called probability mass function.
- E.g., X models the outcome of a coin flip, $x_{1}=$ head, $x_{2}=$ tail, $\mathrm{P}\left(\mathrm{x}_{1}\right)=0.5, \mathrm{P}\left(\mathrm{x}_{2}\right)=0.5$

Continuous Random Variables

- X takes on values in the continuum.
- $p(X=x)$, or $p(x)$, is a probability density function.

$$
\operatorname{Pr}(x \in(a, b))=\int_{a}^{b} p(x) d x
$$

E.g.

Joint and Conditional Probability

- $P(X=x$ and $Y=y)=P(x, y)$
- If X and Y are independent then

$$
P(x, y)=P(x) P(y)
$$

- $P(x \mid y)$ is the probability of x given y

$$
\begin{aligned}
& P(x \mid y)=P(x, y) / P(y) \\
& P(x, y)=P(x \mid y) P(y)
\end{aligned}
$$

- If X and Y are independent then

$$
P(x \mid y)=P(x)
$$

- Same for probability densities, just $P \rightarrow p$

Law of Total Probability, Marginals

Discrete case

$$
\sum_{V}^{P(x)=1}
$$

$$
P(x)=\sum_{y} P(x, y)
$$

$$
P(x)=\sum_{y} P(x \mid y) P(y)
$$

$$
p(x)=\int p(x \mid y) p(y) d y
$$

Bayes Formula

$$
\begin{aligned}
P(x, y) & =P(x \mid y) P(y)=P(y \mid x) P(x) \\
& \Rightarrow
\end{aligned}
$$

$$
P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}=\frac{\text { likelihood } \cdot \text { prior }}{\text { evidence }}
$$

Normalization

$$
\begin{aligned}
P(x \mid y) & =\frac{P(y \mid x) P(x)}{P(y)}=\eta P(y \mid x) P(x) \\
\eta & =P(y)^{-1}=\frac{1}{\sum_{x} P(y \mid x) P(x)}
\end{aligned}
$$

Algorithm:

$$
\begin{aligned}
& \forall x: \operatorname{aux}_{x \mid y}=P(y \mid x) P(x) \\
& \eta=\frac{1}{\sum_{x} \mathrm{aux}_{x \mid y}} \\
& \forall x: P(x \mid y)=\eta \mathrm{aux}_{x \mid y}
\end{aligned}
$$

Conditioning

- Law of total probability:

$$
\begin{aligned}
P(x) & =\int P(x, z) d z \\
P(x) & =\int P(x \mid z) P(z) d z \\
P(x \mid y) & =\int P(x \mid y, z) P(z \mid y) d z
\end{aligned}
$$

Bayes Rule with Background Knowledge

$$
P(x \mid y, z)=\frac{P(y \mid x, z) P(x \mid z)}{P(y \mid z)}
$$

Conditional Independence

$$
P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

equivalent to

$$
\begin{aligned}
& P(x \mid z)=P(x \mid z, y) \\
& P(y \mid z)=P(y \mid z, x)
\end{aligned}
$$

Simple Example of State Estimation

- Suppose a robot obtains measurement z
- What is $P($ open|z)?

Causal vs. Diagnostic Reasoning

- $P(o p e n \mid z)$ is diagnostic.
- $P(z$ lopen $)$ is causal.
- Often causal knowtedge is easier to obtain.
- Bayes rule allows us to use ca count frequencies!

E×习円ค日？

$$
\begin{aligned}
& \because P(z \mid \text { open })=0.6 \quad P(z \mid \neg \text { open })=0.3 \\
& \simeq P(\text { open })=P(\neg \text { open })=0.5
\end{aligned}
$$

$$
P(\text { open } \mid z)=\frac{P(z \mid \text { open }) P(\text { open })}{P(z)}
$$

$$
P(\text { open } \mid z)=\frac{P(z \mid \text { open }) P(\text { open })}{P(z \mid \text { open }) p(\text { open })+P(z \mid \neg \text { open }) p(\neg \text { open })}
$$

$$
P(\text { open } \mid z)=\frac{0.6 \cdot 0.5}{0.6 \cdot 0.5+0.3 \cdot 0.5}=\frac{2}{3}=0.67
$$

－z raises the probability that the door is open．

Combining Evidence

- Suppose our robot obtains another observation z_{2}.
- How can we integrate this new information?
- More generally, how can we estimate $P\left(x \mid z_{1} \ldots z_{n}\right)$?

Recursive Bayesian Updating

$$
P\left(x \mid z_{1}, \ldots, z_{n}\right)=\frac{P\left(z_{n} \mid x, z_{1}, \ldots, z_{n-1}\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right)}{P\left(z_{n} \mid z_{1}, \ldots, z_{n-1}\right)}
$$

Markov assumption: z_{n} is independent of z_{1}, \ldots, z_{n-1} if we know x.

$$
\begin{aligned}
P\left(x \mid z_{1}, \ldots, z_{n}\right) & =\frac{P\left(z_{n} \mid x\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right)}{P\left(z_{n} \mid z_{1}, \ldots, z_{n-1}\right)} \\
& =\eta P\left(z_{n} \mid x\right) P\left(x \mid z_{\left.1, \ldots, z_{n-1}\right)}\right. \\
& =\eta_{1 \ldots n}\left(\prod_{i=1 \ldots n} P\left(z_{i} \mid x\right)\right) P(x)
\end{aligned}
$$

Example: Second Measurement

- $P\left(z_{2} \mid\right.$ open $)=0.5 \quad P\left(z_{2} \mid \neg\right.$ open $)=0.6$
- $P\left(\right.$ open $\left.\mid z_{J}\right)=2 / 3$

$$
\begin{aligned}
P\left(\text { open } \mid z_{2}, z_{1}\right) & =\frac{P\left(z_{2} \mid \text { open }\right) P\left(\text { open } \mid z_{1}\right)}{P\left(z_{2} \mid \text { open }\right) P\left(\text { open } \mid z_{1}\right)+P\left(z_{2} \mid \neg \text { open }\right) P\left(\neg \text { open } \mid z_{1}\right)} \\
& =\frac{\frac{1}{2} \cdot \frac{2}{3}}{\frac{1}{2} \cdot \frac{2}{3}+\frac{3}{5} \cdot \frac{1}{3}}=\frac{5}{8}=0.625
\end{aligned}
$$

- z_{2} lowers the probability that the door is open.

A Typical Pitfall

- Two possible locations x_{1} and x_{2}
- $P\left(x_{1}\right)=0.99$
- $\mathrm{P}\left(\mathrm{z} \mid x_{2}\right)=0.09 \mathrm{P}\left(\mathrm{z} \mid x_{1}\right)=0.07$

