
CS287 Policy Search for 2D Locomotion Problem Set 1

CS 287, Fall 2015 Optional Extra Credit Problems
Policy Search for 2D Locomotion
Deliverable: pdf write-up by Wednesday December 16th, 11:59pm, submitted through Gradescope. Late
days cannot be used for this extra-credit assignment. Your pdf should be one page per subquestion,
for a total of three pages. Thanks!

Please refer to the class webpage for the homework policy. Various starter files are provided on the course
website: www.cs.berkeley.edu/~pabbeel/cs287-fa15/.

Introduction

In this assignment, you will be using the MuJoCo simulator. To install MuJoCo, first download and unzip
the starter files. On Linux, then

:::::
Then

:
add ‘/<path-to-folder>/mujoco_linux’ to your library path(this is

$LD_LIBRARY_PATH), and :
:

•
::::::
Linux:

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
export LD_LIBRARY_PATH=/<path-to-folder>/mujoco_linux:$LD_LIBRARY_PATH

:

•
:::::
Mac:

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
export DYLD_LIBRARY_PATH=/<path-to-folder>/mujoco_osx:$DYLD_LIBRARY_PATH

:

•
:::::::::
Windows:

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
set PATH=/<path-to-folder/mujoco_windows;%PATH%

:

::::
The

::::
last

:::::
step

::
is

::
to

:
run setup_mj.m.

The files hopper_policy.m and hopper_mdp.m contain the transition and reward functions for the MuJoCo
2D hopper. Similarly, the files cartpole_policy.m and cartpole_mdp.m contain the transition and reward
functions for the MuJoCo cartpole.
The policies you will be working with in this assignment are represented as neural networks, composed of
alternating affine (i.e., fully connected) and hyperbolic tangent layers. Thus, the parameters θ of the policy
are the (flattened and concatenated) weights of the affine layers of the neural network. The input to the
neural network is the current observation; i.e. a vector of size observation_dim x 1. The output of the
neural network is a potential action, a vector of size action_dim x 1. The policy is stochastic. The chosen
action is drawn from a Gaussian distribution centered at the output of the neural network, with covariance
diag(exp(log_σ2)). You can familiarize yourself with neural networks by doing Question 1 in the Guided
Policy Search problem set.
Call rollout_policy.m to perform a single rollout of a given policy, starting at the initial state specified by
the MDP. Use p.set_theta_log_sigma(new_theta, new_sigma) to change the parameters for policy p to
new_theta and new_sigma. Do not set the policy parameters directly with p.theta = new_theta, because
that does not update the parameters of the neural net appropriately.

Note: Make sure you leave enough time to run each of these algorithms before the deadline - for the hopper,
CEM and CMA may take an hour of training to achieve forward progress, and PPO may take up to several
hours.

Note: In order for the MuJoCo visualization to work on Linux, you have to run MATLAB without the
Desktop display. To do this, run the command matlab -nodesktop from the terminal. Otherwise, MATLAB
will crash when you run mj plot. Alternatively, you can comment out the mj plot line in loco_starter.m.
The MuJoCo simulator will still work; there just will not be visualization of the cartpole or hopper.

1. Cross Entropy Method (CEM) [10pt]

In this question you get to implement the cross entropy method (CEM) to learn a locomotion (hopping) policy
for the hopper. This is a popular gradient-free policy search algorithm, which you may have implemented
for Problem Set 2 to do policy search for Tetris. Details on the algorithm are in Thiery and Scherrer1.

1“Improvements on Learning Tetris with Cross Entropy.” https://hal.inria.fr/inria-00418930/document
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Depending on which reward function you use (there are many ways of measuring forward progress), you may
end up with different styles of locomotion.
Since it takes a while for CEM to learn a policy for the hopper, we recommend that you first test your
implementation on the cartpole. The interface is exactly the same (see loco_starter.m). Using the default
hyperparameters in cross_entropy_starter.m, the cartpole should be able to learn to balance the pole in
10 iterations of CEM, which takes 30 seconds on a typical desktop computer. This corresponds to a maximum
total discounted reward (across all sampled parameters) of 99.99. The average total discounted reward at
this point will be lower, around 5, but will keep increasing as CEM continues running. The upper bound for
total discounted reward is 99.996 – assuming a reward of 1 for each of the maximum number of timesteps
(1000) and a discount factor of 0.99.

Q. Fill in cross_entropy_starter.m – look for the YOUR CODE HERE sections.

Deliverable: For the hopper, provide plots of the average and maximum total discounted rewards for the
samples (ce_avg_reward_for_samples and ce_max_reward_for_samples in the code) over 100 iterations.

2. Covariance Matrix Adaptation (CMA) [10pt]

In this question you get to implement the covariance matrix adapatation (CMA) algorithm to learn a loco-
motion policy for the hopper. Like cross entropy, this is a gradient-free policy search algorithm.
The standard CMA algorithm is concisely described in Section 4.1 of Wampler and Popovic2. Note that
there is a small typo in their paper: in Equation 27, mj should be mi.
As for CEM, we recommend you first test your implementation of CMA on the cartpole. With a discount
factor of 0.99, and all other hyperparameters the same as in covariance_matrix_adaptation_starter.m,
CMA should be able to learn a policy for balancing the pole in 25 iterations, which takes 2 minutes on
a typical desktop computer. This corresponds to a maximum total discounted reward (across all sampled
parameters) of 99.99. The average total discounted reward will be around 10, and will continue increasing
with further iterations of CMA.

Q. Fill in covariance_matrix_adaptation_starter.m – look for the YOUR CODE HERE sections.

Deliverable: For the hopper, provide plots of the average and maximum total discounted rewards for the
samples, (ce_avg_reward_for_samples and ce_max_reward_for_samples in the code) over 100 iterations.

3. Policy Gradient - Proximal Policy Optimization (PPO) [10pt]

In this question, you get to implement policy gradients to learn a locomotion policy for the hopper.
We covered two types of policy gradient algorithms in class: path derivative and likelihood ratio. Since we
do not know the dynamics for the hopper, we cannot use the path derivative method, but we can use the
likelihood ratio method. We can improve upon the likelihood ratio method by also restricting the new policy
to be not too “far away” from the original policy. One way to quantify this distance is through measuring
the Kullbeck-Leibler divergence between the original and new policies.
In addition, the vanilla likelihood ratio policy gradient estimate also has high variance. We can compensate
for this by subtracting out a baseline that approximates the value function (as mentioned in lecture).
The method you will implement for this question is called Proximal Policy Optimization (PPO). This is a
variant of Trust Region Policy Optimization3. PPO is simpler because it solves an unconstrained optimization
problem.
We recommend you first test your implementation of PPO on the cartpole. Using the default hyperparameters
in policy_gradient_ppo_starter.m, PPO should be able to achieve an average total discounted reward of
over 3 by iteration 6, and over 4 by iteration 12. Each iteration of PPO takes less than 2 minutes on a typical
desktop computer

:
.
:

2“Optimal Gait and Form for Animal Locomotion”
http://grail.cs.washington.edu/projects/animal-morphology/s2009/Optimal_Gait_and_Form_for_Animal_Locomotion.pdf

3http://arxiv.org/abs/1502.05477
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::::::
Note:

::::
For

::::::
PPO,

::::
the

::::::::
average

:::::
over

:::::
total

:::::::::::
discounted

::::::::
rewards

:::
is

::::::
taken

:::::
over

::::
the

::::::::
number

::
of

:::::::::
rollouts,

::::
not

::::
the

:::::::
number

:::
of

::::::::::
timesteps.

:::::
The

:::::
total

:::::::::::
discounted

:::::::
reward

:::
for

:::::
each

:::::::
rollout

::
is
::::::::::
calculated

:::
as

::::::::::
expected:

:::::::::::::::

∑T
t=1 γ

t−1 ∗ rt,
::::::
where

::
γ

::
is

::::
the

::::::::
discount

:::::::
factor,

:::
rt::

is
::::
the

:::::::
reward

:::::::
gained

:::
at

:::::::::
timestep

::
t
::
in

::::
the

::::::::
rollout,

::::
and

::
T
:::
is

:::
the

:::::::::
number

::
of

:::::::::
timesteps

:::
in

:::
the

:::::::
rollout.

Q. Fill in policy_gradient_ppo_starter.m – look for the YOUR CODE HERE sections.

Deliverable: For the hopper, provide plots of the average total discounted reward of the policy
(policy_theta_avg_reward in the code) over 100 iterations.


