
Reinforcement	Learning	–	Policy	Op5miza5on	
	

Pieter	Abbeel	
UC	Berkeley	EECS	

	

n  Consider	control	policy	parameterized	by	parameter	vector	

n  O<en	stochas>c	policy	class	(smooths	out	the	problem):	
n  																											probability	of	taking	ac>on	u	in	state	s		

Policy	Op>miza>on	

max

✓
E[

HX

t=0

R(st)|⇡✓]

✓

⇡✓(u|s)

Learning	to	Trot/Run	

Before	learning	(hand-tuned)	 A<er	learning	

[Policy	search	was	done	through	trials	on	the	actual	robot.]	 Kohl	and	Stone,	ICRA2004	

n  12	parameters	define	the	Aibo’s	gait:	

n  The	front	locus	(3	parameters:	height,	x-pos.,	y-pos.)	

n  The	rear	locus	(3	parameters)	

n  Locus	length	

n  Locus	skew	mul>plier	in	the	x-y	plane	(for	turning)	

n  The	height	of	the	front	of	the	body	

n  The	height	of	the	rear	of	the	body	

n  The	>me	each	foot	takes	to	move	through	its	locus	

n  The	frac>on	of	>me	each	foot	spends	on	the	ground	

Learning	to	Trot/Run	

Kohl	and	Stone,	ICRA2004	

[Ng + al, ISER 2004] [Policy search was done in simulation]

Learning	to	Hover	

[Kober	and	Peters,	2009]	

Ball-In-A-Cup	

Learning	to	Walk	in	20	Minutes	

[Tedrake,	Zhang,	Seung	2005]	

Learning	to	Walk	in	20	Minutes	

[Tedrake,	Zhang,	Seung	2005]	

passive	hip	joint	[1DOF]	

2	x	2	(roll,	pitch)	posi>on	controlled	servo	
motors	[4	DOF]	

44	cm	

Natural	gait	down	0.03	radians	ramp:	0.8Hz,	6.5cm	steps	

Arms:	coupled	to	opposite	leg	to	reduce	yaw		
moment	

freely	swinging	load	[1DOF]	

9DOFs:	
*	6	internal	DOFs	
*	3	DOFs	for	the	robot’s	orienta>on	(always	
assumed	in	contact	with	ground	at	a	single	point,	
absolute	(x,y)	ignored)	

Learning	to	Walk	in	20	Minutes	

[Tedrake,	Zhang,	Seung	2005]	

n  Cross-Entropy	Method	(CEM)	

n  Covariance	Matrix	Adapta>on	(CMA)	

n  Dynamics	model:		 	stochas>c:	OK;		unknown:	OK	

n  Policy	class:		 	stochas>c:	OK	

n  Downside:	gradient-free	methods	slower	than	gradient-based	methods	

	à	in	prac>ce	OK	if	low-dimensional	θ	and	willing	to	do	do	many	runs	

Gradient-Free	Methods	

max

✓
U(✓) = max

✓
E[

HX

t=0

R(st)|⇡✓]

Gradient-Based	Policy	Op>miza>on	

max

✓
U(✓) = max

✓
E[

HX

t=0

R(st)|⇡✓]

s0	 s1	 s2	

u0	 u1	 u2	

r0 r1 r2

f f

R R R

⇡✓ ⇡✓ ⇡✓

Overview	of	Methods	/	Seings	

Dynamics Policy

D+K	 D+U	 S+K+R	 S+K	 S+U	 D	 S+R	 S	

PD	 + + + +

LR	 + + + + + + +

D:	determinis>c;	S:	stochas>c;		K:	known;	U:	unknown;	R:	reparameterizable;	
PD:	path	deriva>ve	(=perturba>on	analysis)	
LR:	likelihood	ra>o	(=score	func>on)	

n  When	more	than	one	is	applicable,	which	one	is	best?	

n  When	dynamics	is	only	available	as	black-box,	but	deriva>ves	
aren’t	available	–	finite	differences	based	deriva>ves?	
n  Vs.	directly	finite	differences	/	gradient-free	on	the	policy	

n  Note:	finite	difference	tricky	(imprac>cal?)	when	can’t	control	random	
seed	

n  What	if	model	is	unknown,	but	es>mate	available	
	

Ques>ons	

Gradient	Computa>on	–	Unknown	Model	–	Finite	Differences	

Noise	Can	Dominate	

n  Solu>on	1:		Average	over	many	samples	

n  Solu>on	2:	Fix	the	randomness	(if	possible)	
n  Intui>on	by	example:		wind	influence	on	a	helicopter	is	stochas>c,	but	if	

we	assume	the	same	wind	paqern	across	trials,	this	will	make	the	
different	choices	of	θ	more	readily	comparable	

n  General	instan>a>on:		Fix	the	random	seed;	and	the	result	is		
determinis>c	system	

n  Ng	&	Jordan,	2000	provide	theore>cal	analysis	of	gains	from	fixing	
randomness	

Finite	Differences	and	Noise	

n  Reminder	of	op>miza>on	objec>ve:	

n  Can	compute	gradient	es>mate	along	current	roll-out:	

Path	Deriva>ve	for			Dynamics:	D+K;			Policy:	D	

max

✓
U(✓) = max

✓
E[

HX

t=0

R(st)|⇡✓]

@U

@✓i
=

HX

t=0

@R

@s
(st)

@st
@✓i

@st
@✓i

=
@f

@s
(st�1, ut�1)

@st�1

@✓i
+

@f

@s
(st�1, ut�1)

@ut�1

@✓i
@ut

@✓i
=

@⇡✓

@✓i
(st, ✓) +

@⇡✓

@s
(st, ✓)

@st
@✓i

n  Reminder	of	op>miza>on	objec>ve:	

n  (draw	reparameterized	graph	on	board)	

n  +	average	over	mul>ple	samples	

Path	Deriva>ve	for			Dynamics:	S+K+R;			Policy:	S+R	

max

✓
U(✓) = max

✓
E[

HX

t=0

R(st)|⇡✓]

Overview	of	Methods	/	Seings	

Dynamics Policy

D+K	 D+U	 S+K+R	 S+K	 S+U	 D	 S+R	 S	

PD	 + + + +

LR	 + + + + + + +

D:	determinis>c;	S:	stochas>c;		K:	known;	U:	unknown;	R:	reparameterizable;	
PD:	path	deriva>ve	(=perturba>on	analysis)	
LR:	likelihood	ra>o	(=score	func>on)	

Gradient	Computa>on	–	Unknown	Model	–	Likelihood	Ra>o	

Likelihood	Ra>o	Gradient	

[Note:	Can	also	be	
derived/generalized	
through	an	importance	
sampling	deriva>on	–	
Tang	and	Abbeel,	2011]	

n  On	board..	

Importance	Sampling	

Likelihood	Ra>o	Gradient	Es>mate	

Likelihood	Ra>o	Gradient	Es>mate	

n  As	formulated	thus	far:	unbiased	but	very	noisy	

n  Fixes	that	lead	to	real-world	prac>cality	
n  Baseline	

n  Temporal	structure	

n  Also:	KL-divergence	trust	region	/	natural	gradient	(=	general	trick,	
equally	applicable	to	perturba>on	analysis	and	finite	differences)	

Likelihood	Ra>o	Gradient	Es>mate	

n  Gradient	es>mate	with	baseline:	

n  Crudely,	increasing	log-likelihood	of	paths	with	higher	than	
baseline	reward	and	decreasing	log-likelihood	of	paths	with	
lower	than	baseline	reward	

n  S>ll	unbiased?		Yes!	

Likelihood	Ra>o	with	Baseline	

ĝ =

1

m

mX

i=1

r✓ logP (⌧ (i); ✓)(R(⌧ (i))� b)

E

"
1

m

mX

i=1

r✓ logP (⌧ (i); ✓)b

#
= 0

n  	Current	es>mate:	

n  Future	ac>ons	do	not	depend	on	past	rewards,	hence	can	
lower	variance	by	instead	using:	

Likelihood	Ra>o	and	Temporal	Structure	

ĝ =

1

m

mX

i=1

r✓ logP (⌧ (i); ✓)(R(⌧ (i))� b)

=

1

m

mX

i=1

H�1X

t=0

r✓ log ⇡✓(u
(i)
t |s(i)t)

!
H�1X

t=0

R(s(i)t , u(i)
t)� b

!

1

m

mX

i=1

H�1X

t=0

r✓ log ⇡✓(u
(i)
t |s(i)t)

H�1X

k=t

R(s(i)k , u(i)
k)� b

!

n  Naïve	step-sizing:	Line	search	
n  Step-sizing	necessary	as	gradient	is	only	first-order	approxima>on	

n  Line	search	in	the	direc>on	of	gradient		
n  Simple,	but	expensive	(evalua>ons	along	the	line)	
n  Naïve:	ignores	where	the	first-order	approxima>on	is	good/poor	

Step-sizing	and	Trust	Regions	

n  Advanced	step-sizing:	Trust	regions	

n  First-order	approxima>on	from	gradient	is	a	good	
approxima>on	within	“trust	region”	

à	Solve	for	best	point	within	trust	region:	

Step-sizing	and	Trust	Regions	

max

�✓
ĝ>�✓

s.t. KL(P (⌧ ; ✓)||P (⌧ ; ✓ + �✓))  "

n  Solve	for	best	point	within	trust	region:	

n  KL	can	be	approximated	efficiently	with	2nd	order	expansion:	

KL	Trust	Region	(a.k.a.	natural	gradient)	

max

�✓
ĝ>�✓

s.t. KL(P (⌧ ; ✓)||P (⌧ ; ✓ + �✓))  "

G:	Fisher	Informa>on	Matrix	

[Schulman,	Levine,	Abbeel,	2014]	

Experiments	in	Locomo>on	

n  	Current	es>mate:	

n  Actor-cri>c	algorithms	in	parallel	run	an	es>mator	for	the	Q-
func>on,	and	subs>tute	in	the	es>mated	Q	value	

Actor-Cri>c	Variant	

1

m

mX

i=1

H�1X

t=0

r✓ log ⇡✓(u
(i)
t |s(i)t)

H�1X

k=t

R(s(i)k , u(i)
k)� b

!

Sample based estimate of

Q(s(i)k , u(i)
k)

Learning	Locomo>on	

[Schulman,	Moritz,	Levine,	Jordan,	Abbeel,	2015]	

In	Contrast:	Darpa	Robo>cs	Challenge	

Thank	you	

