Reinforcement Learning – Policy Optimization

Pieter Abbeel UC Berkeley EECS

Policy Optimization

Consider control policy parameterized by parameter vector θ

$$\max_{\theta} \quad \mathbf{E}[\sum_{t=0}^{H} R(s_t) | \pi_{\theta}]$$

- Often stochastic policy class (smooths out the problem):
 - $\pi_{ heta}(u|s)$ probability of taking action u in state s

Learning to Trot/Run

After learning

Before learning (hand-tuned)

[Policy search was done through trials on the actual robot.]

Kohl and Stone, ICRA2004

Learning to Trot/Run

- 12 parameters define the Aibo's gait:
 - The front locus (3 parameters: height, x-pos., y-pos.)
 - The rear locus (3 parameters)
 - Locus length
 - Locus skew multiplier in the x-y plane (for turning)
 - The height of the front of the body
 - The height of the rear of the body
 - The time each foot takes to move through its locus
 - The fraction of time each foot spends on the ground

Kohl and Stone, ICRA2004

[Policy search was done in simulation] [Ng + al, ISER 2004]

Learning to Hover

x, y, z: x points forward along the helicopter, y sideways to the right, z downward.

 n_x, n_y, n_z : rotation vector that brings helicopter back to "level" position (expressed in the helicopter frame).

$$egin{aligned} u_{collective} &= heta_1 \cdot f_1(z^*-z) + heta_2 \cdot \dot{z} \ u_{elevator} &= heta_3 \cdot f_2(x^*-x) + heta_4 f_4(\dot{x}) + heta_5 \cdot q + heta_6 \cdot n_y \ u_{aileron} &= heta_7 \cdot f_3(y^*-y) + heta_8 f_5(\dot{y}) + heta_9 \cdot p + heta_{10} \cdot n_x \ u_{rudder} &= heta_{11} \cdot r + heta_{12} \cdot n_z \end{aligned}$$

Ball-In-A-Cup

Learning Ball-in-a-Cup

A hard benchmark for robot learning

[Kober and Peters, 2009]

Learning to Walk in 20 Minutes

[Tedrake, Zhang, Seung 2005]

Learning to Walk in 20 Minutes

[Tedrake, Zhang, Seung 2005]

Natural gait down 0.03 radians ramp: 0.8Hz, 6.5cm steps

44 cm

Learning to Walk in 20 Minutes

[Tedrake, Zhang, Seung 2005]

Gradient-Free Methods

$$\max_{\theta} U(\theta) = \max_{\theta} \operatorname{E}\left[\sum_{t=0}^{H} R(s_t) | \pi_{\theta}\right]$$

- Cross-Entropy Method (CEM)
- Covariance Matrix Adaptation (CMA)
 - Dynamics model: stochastic: OK; unknown: OK
 - Policy class: stochastic: OK
 - Downside: gradient-free methods slower than gradient-based methods
 - \rightarrow in practice OK if low-dimensional θ and willing to do do many runs

Gradient-Based Policy Optimization

Overview of Methods / Settings

			Dynamic	Policy				
	D+K	D+U	S+K+R	S+K	S+U	D	S+R	S
PD	+		+			+	+	
LR	+	+	+	+	+		+	+

D: deterministic; S: stochastic; K: known; U: unknown; R: reparameterizable;

PD: path derivative (=perturbation analysis)

LR: likelihood ratio (=score function)

Questions

- When more than one is applicable, which one is best?
- When dynamics is only available as black-box, but derivatives aren't available – finite differences based derivatives?
 - Vs. directly finite differences / gradient-free on the policy
 - Note: finite difference tricky (impractical?) when can't control random seed
- What if model is unknown, but estimate available

Gradient Computation – Unknown Model – Finite Differences

We can compute the gradient g using standard finite difference methods, as follows:

$$\frac{\partial U}{\partial \theta_j}(\theta) = \frac{U(\theta + \epsilon e_j) - U(\theta - \epsilon e_j)}{2\epsilon}$$

Where:

$$e_j = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \leftarrow j' \text{th entry}$$

Noise Can Dominate

Finite Differences and Noise

Solution 1: Average over many samples

- Solution 2: Fix the randomness (if possible)
 - Intuition by example: wind influence on a helicopter is stochastic, but if we assume the same wind pattern across trials, this will make the different choices of θ more readily comparable
 - General instantiation: Fix the random seed; and the result is deterministic system
 - Ng & Jordan, 2000 provide theoretical analysis of gains from fixing randomness

Path Derivative for Dynamics: D+K; Policy: D

• Reminder of optimization objective: $\max_{\theta} U(\theta) = \max_{\theta} E[\sum_{t=0}^{H} R(s_t) | \pi_{\theta}]$

Can compute gradient estimate along current roll-out:

$$\frac{\partial U}{\partial \theta_i} = \sum_{t=0}^{H} \frac{\partial R}{\partial s} (s_t) \frac{\partial s_t}{\partial \theta_i}$$
$$\frac{\partial s_t}{\partial \theta_i} = \frac{\partial f}{\partial s} (s_{t-1}, u_{t-1}) \frac{\partial s_{t-1}}{\partial \theta_i} + \frac{\partial f}{\partial s} (s_{t-1}, u_{t-1}) \frac{\partial u_{t-1}}{\partial \theta_i}$$
$$\frac{\partial u_t}{\partial \theta_i} = \frac{\partial \pi_{\theta}}{\partial \theta_i} (s_t, \theta) + \frac{\partial \pi_{\theta}}{\partial s} (s_t, \theta) \frac{\partial s_t}{\partial \theta_i}$$

Path Derivative for Dynamics: S+K+R; Policy: S+R

• Reminder of optimization objective: $\max_{\theta} U(\theta) = \max_{\theta} E[\sum_{t=0}^{H} R(s_t) | \pi_{\theta}]$

- (draw reparameterized graph on board)
- + average over multiple samples

Overview of Methods / Settings

			Dynamic	Policy				
	D+K	D+U	S+K+R	S+K	S+U	D	S+R	S
PD	+		+			+	+	
LR	+	+	+	+	+		+	+

D: deterministic; S: stochastic; K: known; U: unknown; R: reparameterizable;

PD: path derivative (=perturbation analysis)

LR: likelihood ratio (=score function)

Gradient Computation – Unknown Model – Likelihood Ratio

We let τ denote a state-action sequence $s_0, u_0, \ldots, s_H, u_H$. We overload notation: $R(\tau) = \sum_{t=0}^{H} R(s_t, u_t)$.

$$U(\theta) = \mathbf{E}[\sum_{t=0}^{H} R(s_t, u_t); \pi_{\theta}] = \sum_{\tau} P(\tau; \theta) R(\tau)$$

In our new notation, our goal is to find θ :

$$\max_{\theta} U(\theta) = \max_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau)$$

Likelihood Ratio Gradient

$$U(heta) = \sum_{ au} P(au; heta) R(au)$$

Taking the gradient w.r.t. θ gives

$$\begin{aligned} \nabla_{\theta} U(\theta) &= \nabla_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau) \\ &= \sum_{\tau} \nabla_{\theta} P(\tau; \theta) R(\tau) \\ &= \sum_{\tau} \frac{P(\tau; \theta)}{P(\tau; \theta)} \nabla_{\theta} P(\tau; \theta) R(\tau) \\ &= \sum_{\tau} P(\tau; \theta) \frac{\nabla_{\theta} P(\tau; \theta)}{P(\tau; \theta)} R(\tau) \\ &= \sum_{\tau} P(\tau; \theta) \nabla_{\theta} \log P(\tau; \theta) R(\tau) \end{aligned}$$

Approximate with the empirical estimate for m sample paths under policy π_{θ} :

$$abla_{ heta} U(heta) pprox \hat{g} = rac{1}{m} \sum_{i=1}^m
abla_{ heta} \log P(au^{(i)}; heta) R(au^{(i)})$$

[Note: Can also be derived/generalized through an importance sampling derivation – Tang and Abbeel, 2011]

Importance Sampling

• On board..

Likelihood Ratio Gradient Estimate

$$\begin{aligned} \nabla_{\theta} \log P(\tau^{(i)}; \theta) &= \nabla_{\theta} \log \left[\prod_{t=0}^{H} \underbrace{P(s_{t+1}^{(i)} | s_{t}^{(i)}, u_{t}^{(i)})}_{\text{dynamics model}} \cdot \underbrace{\pi_{\theta}(u_{t}^{(i)} | s_{t}^{(i)})}_{\text{policy}} \right] \\ &= \nabla_{\theta} \left[\sum_{t=0}^{H} \log P(s_{t+1}^{(i)} | s_{t}^{(i)}, u_{t}^{(i)}) + \sum_{t=0}^{H} \log \pi_{\theta}(u_{t}^{(i)} | s_{t}^{(i)}) \right] \\ &= \nabla_{\theta} \sum_{t=0}^{H} \log \pi_{\theta}(u_{t}^{(i)} | s_{t}^{(i)}) \\ &= \sum_{t=0}^{H} \underbrace{\sum_{t=0}^{H} \log \pi_{\theta}(u_{t}^{(i)} | s_{t}^{(i)})}_{\text{no dynamics model required!!}} \end{aligned}$$

Likelihood Ratio Gradient Estimate

The following expression provides us with an unbiased estimate of the gradient, and we can compute it without access to a dynamics model:

$$\hat{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} \log P(\tau^{(i)}; \theta) R(\tau^{(i)})$$

Here:

$$abla_{ heta} \log P(au^{(i)}; heta) = \sum_{t=0}^{H} \sum_{\text{no dynamics model required!!}} \nabla_{ heta} \log \pi_{ heta}(u_t^{(i)} | s_t^{(i)})$$

Unbiased means:

$$\mathrm{E}[\hat{g}] = \nabla_{\theta} U(\theta)$$

Likelihood Ratio Gradient Estimate

- As formulated thus far: unbiased but very noisy
- Fixes that lead to real-world practicality
 - Baseline
 - Temporal structure
 - Also: KL-divergence trust region / natural gradient (= general trick, equally applicable to perturbation analysis and finite differences)

Likelihood Ratio with Baseline

Gradient estimate with baseline:

$$\hat{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} \log P(\tau^{(i)}; \theta) (R(\tau^{(i)}) - b)$$

 Crudely, increasing log-likelihood of paths with higher than baseline reward and decreasing log-likelihood of paths with lower than baseline reward

• Still unbiased? Yes!
$$\operatorname{E}\left[\frac{1}{m}\sum_{i=1}^{m}\nabla_{\theta}\log P(\tau^{(i)};\theta)b\right] = 0$$

Likelihood Ratio and Temporal Structure

Current estimate:

$$\hat{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} \log P(\tau^{(i)}; \theta) (R(\tau^{(i)}) - b)$$
$$= \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta}(u_t^{(i)} | s_t^{(i)}) \right) \left(\sum_{t=0}^{H-1} R(s_t^{(i)}, u_t^{(i)}) - b \right)$$

 Future actions do not depend on past rewards, hence can lower variance by instead using:

$$\frac{1}{m} \sum_{i=1}^{m} \sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta}(u_t^{(i)} | s_t^{(i)}) \left(\sum_{k=t}^{H-1} R(s_k^{(i)}, u_k^{(i)}) - b \right)$$

Step-sizing and Trust Regions

- Naïve step-sizing: Line search
 - Step-sizing necessary as gradient is only first-order approximation
 - Line search in the direction of gradient
 - Simple, but expensive (evaluations along the line)
 - Naïve: ignores where the first-order approximation is good/poor

Step-sizing and Trust Regions

- Advanced step-sizing: Trust regions
- First-order approximation from gradient is a good approximation within "trust region"
- \rightarrow Solve for best point within trust region:

$$\max_{\delta \theta} \ \hat{g}^{\top} \delta \theta$$

s.t. $KL(P(\tau; \theta) || P(\tau; \theta + \delta \theta)) \leq \varepsilon$

KL Trust Region (a.k.a. natural gradient)

• Solve for best point within trust region:

$$\max_{\delta\theta} \ \hat{g}^{\top} \delta\theta$$

s.t. $KL(P(\tau;\theta) || P(\tau;\theta+\delta\theta)) \leq \varepsilon$

• KL can be approximated efficiently with 2nd order expansion:

$$\begin{split} KL(P(\tau;\theta)||P(\tau;\theta+\delta\theta)) &\approx \sum_{\tau} P(\tau;\theta)\delta\theta^{\top}\nabla_{\theta}\log P(\tau;\theta)\nabla_{\theta}\log P(\tau;\theta)^{\top}\delta\theta \\ &= \delta\theta^{\top}\left(\sum_{\tau} P(\tau;\theta)\nabla_{\theta}\log P(\tau;\theta)\nabla_{\theta}\log P(\tau;\theta)^{\top}\right)\delta\theta \\ &= \delta\theta^{\top}G(\theta)\delta\theta \end{split}$$
 G: Fisher Information Matrix

Experiments in Locomotion

Our algorithm was tested on three locomotion problems in a physics simulator

The following gaits were obtained

[Schulman, Levine, Abbeel, 2014]

Actor-Critic Variant

Current estimate:

$$\frac{1}{m} \sum_{i=1}^{m} \sum_{t=0}^{H-1} \nabla_{\theta} \log \pi_{\theta}(u_t^{(i)} | s_t^{(i)}) \left(\sum_{k=t}^{H-1} R(s_k^{(i)}, u_k^{(i)}) - b \right)$$
Sample based estimate of $Q(s_k^{(i)}, u_k^{(i)})$

 Actor-critic algorithms in parallel run an estimator for the Qfunction, and substitute in the estimated Q value

Learning Locomotion

Iteration 0

[Schulman, Moritz, Levine, Jordan, Abbeel, 2015]

In Contrast: Darpa Robotics Challenge

Thank you