Reinforcement Learning — Policy Optimization

Pieter Abbeel
UC Berkeley EECS

Policy Optimization

= Consider control policy parameterized by parameter vector

H
max E| E R(s¢)|mg]
t=0

s Often stochastic policy class (smooths out the problem):

= Ty (u‘s) probability of taking action u in state s

Learning to Trot/Run

" i

Before learning (hand-tuned) After learning

[Policy search was done through trials on the actual robot.] Kohl and Stone, ICRA2004

Learning to Trot/Run

m 12 parameters define the Aibo’s gait:

Z
= The front locus (3 parameters: height, x-pos., y-pos.) +
" (>
= The rear locus (3 parameters) \\ N
= Locus length '

= Locus skew multiplier in the x-y plane (for turning)

= The height of the front of the body

= The height of the rear of the body

= The time each foot takes to move through its locus
= The fraction of time each foot spends on the ground

Kohl and Stone, ICRA2004

[Policy search was done in simulation] [Ng + al, ISER 2004]

Learning to Hover

x,y,2: x points forward along the helicopter, y sideways to the right, z
downward.

Ng, Ny, N Totation vector that brings helicopter back to“level” position (ex-
pressed in the helicopter frame).

Ucollective = 01 * f1 (z* - z) + 605 - 2

Uelevator = 93) f2(x* — iD) + 04f4(x) + 05 ' q + 96 "Ny
Ugileron — 97 ’ fB(y* o y) + 08f5(y) + 09 'p+ 910 "Ny

Urudder — 011 T+ 012 Ny

Ball-In-A-Cup

Learning Ball-in-a-Cup

A hard benchmark for robot learning

[Kober and Peters, 2009]

Learning to Walk in 20 Minutes

[Tedrake, Zhang, Seung 2005]

Learning to Walk in 20 Minutes

[Tedrake, Zhang, Seung 2005]

passive hip joint [1DOF]

/ Arms: coupled to opposite leg to reduce yaw

moment

freely swinging load [1DOF]

2 x 2 (roll, pitch) position controlled servo
motors [4 DOF]

9DOFs:

* 6 internal DOFs

* 3 DOFs for the robot’s orientation (always
assumed in contact with ground at a single point,
absolute (x,y) ignored)

Natural gait down 0.03 radians ramp: 0.8Hz, 6.5cm steps

Learning to Walk in 20 Minutes

[Tedrake, Zhang, Seung 2005]

Gradient-Free Methods

H
max U(0) = max E;R st)|mol

s Cross-Entropy Method (CEM)

s Covariance Matrix Adaptation (CMA)

= Dynamics model: stochastic: OK; unknown: OK
= Policy class: stochastic: OK
= Downside: gradient-free methods slower than gradient-based methods

- in practice OK if low-dimensional 6 and willing to do do many runs

Gradient-Based Policy Optimization

max U(f) = max E[) R(s¢)|m)

Overview of Methods / Settings

Dynamics Policy
D+K D+U S+K+R S+K S+U S+R
PD + + +
LR + + + + + +

D: deterministic; S: stochastic; K: known; U: unknown; R: reparameterizable;
PD: path derivative (=perturbation analysis)
LR: likelihood ratio (=score function)

Questions

When more than one is applicable, which one is best?

When dynamics is only available as black-box, but derivatives
aren’t available — finite differences based derivatives?

= Vs. directly finite differences / gradient-free on the policy

= Note: finite difference tricky (impractical?) when can’t control random
seed

What if model is unknown, but estimate available

Gradient Computation — Unknown Model — Finite Differences

We can compute the gradient g using standard finite difference methods, as
follows:

8_U(0) U0+ ee;) — U0 — eey)
89j N 2€

(9

0

Where:

1 | < j'th entry

Noise Can Dominate

Finite Differences and Noise

m Solution 1: Average over many samples

= Solution 2: Fix the randomness (if possible)

= Intuition by example: wind influence on a helicopter is stochastic, but if
we assume the same wind pattern across trials, this will make the
different choices of 8 more readily comparable

= General instantiation: Fix the random seed; and the result is
deterministic system

= Ng & Jordan, 2000 provide theoretical analysis of gains from fixing
randomness

Path Derivative for Dynamics: D+K; Policy: D

= Reminder of optimization objective:

max U(f) = max E[) R(s¢)|m)

= Can compute gradient estimate along current roll-out:

H

ou 8_R()&st

06; ~= s " 06;

8875 . af c%’t_l 8f 8ut_1
90, _ Os (S¢—1,Ut—1) 20, + s (8¢—1,ut—1) 90,
Ou; Omg 07y 0sy

a0, ~ o0, 00T 5 e gy

Path Derivative for Dynamics: S+K+R; Policy: S+R

= Reminder of optimization objective:

max U(f) = max E[) R(s¢)|m)

= (draw reparameterized graph on board)

=+ average over multiple samples

Overview of Methods / Settings

Dynamics Policy
D+K D+U S+K+R S+K S+U S+R
PD + + +
LR + + + + + +

D: deterministic; S: stochastic; K: known; U: unknown; R: reparameterizable;
PD: path derivative (=perturbation analysis)
LR: likelihood ratio (=score function)

Gradient Computation — Unknown Model — Likelihood Ratio

We let 7 denote a state-action sequence sg,ug,...,Sg,ug. We overload
notation: R(7) = Zf:o R(s¢,us).

ZR st,ut 71'9 ZPT 0

In our new notation, our goal is to find 6:

max Uf) = max Z P(t;0)R(T)

Likelihood Ratio Gradient

= Z P(1;0)R(T)
Taking the gradient w.r.t. 0 gives

VoU(0) = Vg ¥ P(7;0)R(7)

= ZP 7;0)Vy logP(T;H)R('r)

[Note: Can also be

To: derived/generalized
through an importance

= (). (i) sampling derivation —

; Volog P(r; 6)R(1™) Tang and Abbeel, 2011]

Approximate with the empirical estimate for m sample paths under policy

VoU(0) ~ § =

Importance Sampling

= On board..

Likelihood Ratio Gradient Estimate

Vo log P(r®;6) = Vg log HPs&% s u®y g (ul?|s)

dynamlcs model policy

=V ZlogP(Sffﬁl s, ut) +Zlog7re 1st)
t=0

H
= Vg Z log 7o (ul? |s{?)
t=0

a¢

=Y Vylogm(u]s;”)

t:() WV .
no dynamics model required!!

Likelihood Ratio Gradient Estimate

The following expression provides us with an unbiased estimate of the gradient,
and we can compute it without access to a dynamics model:

== Vylog P(r;0)R(r)
m =1
Here:

Vo log P(();0) Z Vglogﬂ'g(u()|s(i))

no dynamics model required!!

Unbiased means:

E[g] = VoU(0)

Likelihood Ratio Gradient Estimate

= As formulated thus far: unbiased but very noisy

m Fixes that lead to real-world practicality

s Baseline

= Temporal structure

= Also: KL-divergence trust region / natural gradient (= general trick,
equally applicable to perturbation analysis and finite differences)

Likelihood Ratio with Baseline

Gradient estimate with baseline:

1 «— .
=—Z Vo log P(r'");)(R(r") —b)
m

Crudely, increasing log-likelihood of paths with higher than
baseline reward and decreasing log-likelihood of paths with
lower than baseline reward

Still unbiased? Yes! E 1 ZW log P(7(;0)b| =0
m

1=1

Likelihood Ratio and Temporal Structure

m Current estimate:

1 & . .
= —> Volog P(r'";0)(R(r") — b)
m “—

m H-1
1 (1) (1) (%)
= — Vol R(
;:1 <t§:0 g log g (u,]st) (g (s; 7, uy

m Future actions do not depend on past rewards, hence can
lower variance by instead using:

1 o
- V 1 R(
- 0 p 10g Ty Ut |S (Z Sk 7uk)

1=1 t=

Step-sizing and Trust Regions

= Naive step-sizing: Line search
= Step-sizing necessary as gradient is only first-order approximation

= Line search in the direction of gradient
= Simple, but expensive (evaluations along the line)
= Naive: ignores where the first-order approximation is good/poor

Step-sizing and Trust Regions

m Advanced step-sizing: Trust regions

m First-order approximation from gradient is a good
approximation within “trust region”

—> Solve for best point within trust region:

AT
50
e I

s.t. KL(P(7;0)||P(m;0+d0)) <c¢

KL Trust Region (a.k.a. natural gradient)

= Solve for best point within trust region:

AT
00
g 9

s.t. KL(P(1;0)||P(7;0+90)) <e¢
= KL can be approximated efficiently with 2" order expansion:

KL(P(7;0)||P(t;60 +66)) ~) P(r;6)60" Vglog P(r;0)Vglog P(r;0) 6

T

66" (Z P(7;60)Vglog P(r;0)Vg log P(t; 0)T) 56

59TG(9)50 G: Fisher Information Matrix

Experiments in Locomotion

Our algorithm was tested on
three locomotion problems
in a physics simulator

The following gaits were obtained

[Schulman, Levine, Abbeel, 2014]

Actor-Critic Variant

m Current estimate:

%Z Z Vglogm ut |S)

Sample based estimate of

Qsy”)

m Actor-critic algorithms in parallel run an estimator for the Q-
function, and substitute in the estimated Q value

Learning Locomotion

lteration O

[Schulman, Moritz, Levine, Jordan, Abbeel, 2015]

In Contrast: Darpa Robotics Challenge

IRPLEX FA.R I.€4' ‘ IRPI.GKu

-'——’-——'T't‘ —-——-—"—— =

e e |

- ‘
'
- .

Thank you

