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n  Unstable	

n  Nonlinear	

n  Complicated	dynamics	
n  Air	flow	

n  Coupling	

n  Blade	dynamics	

n  Noisy	es>mates	of	posi>on,	orienta>on,	velocity,	angular	rate	
(and	perhaps	blade	and	engine	speed)	

Challenges	in	Helicopter	Control	



n  Just	a	few	examples:		
n  Bagnell	&	Schneider,	2001;		

n  LaCivita,	Papageorgiou,	Messner	&	Kanade,	2002;	

n  Ng,	Kim,	Jordan	&	Sastry	2004a	(2001);	Ng	et	al.,	2004b;	

n  Roberts,	Corke	&	Buskey,	2003;		

n  Saripalli,	Montgomery	&	Sukhatme,	2003;		

n  Shim,	Chung,	Kim	&	Sastry,	2003;		

n  Doherty	et	al.,	2004;		

n  Gavrilets,	Mar>nos,	MeWler	and	Feron,	2002.	

n  Varying	control	techniques:	inner/outer	loop	PID	with	hand	or	
automa>c	tuning,	H1,	LQR,	…	

Success	Stories:	Hover	and	Forward	Flight	



[Ng,	Coates,	Tse,	et	al,	2004]	



Alan	Szabo	–	Sunday	at	the	Lake	



One	of	our	first	aWempts	at	autonomous	flips	
[using	similar	methods	to	what	worked	for	ihover]	

Target	trajectory:	me>culously	hand-engineered	
Model:	from	(commonly	used)	frequency	sweeps	data	



n  Hover	/	sta>onary	flight	regimes:	

n  Restrict	aWen>on	to	specific	flight	regime	

n  Extensive	data	collec>on	=	collect	control	inputs,	posi>on,	orienta>on,	
velocity,	angular	rate	

n  Build	model	+	model-based	controller	

à  Successful	autonomous	flight.	

n  Aggressive	flight	maneuvers	---	addi>onal	challenges:	

n  Task	descrip7on:	What	is	the	target	trajectory?	

n  Dynamics	model:	How	to	obtain	accurate	model?	

Sta>onary	vs.	Aggressive	Flight	



n  Gavrilets,	Mar>nos,	MeWler	and	Feron,	2002	
n  3	maneuvers:	split-S,	snap	axial	roll,	stall-turn	

n  Key:	Expert	engineering	of	controllers	aler	human	pilot	demonstra>ons	

Aggressive,	Non-Sta>onary	Regimes	



Sunday	in	Open	Loop	



n  Our	work:	
n  Key:	Automa>c	engineering	of	controllers	aler	human	pilot	

demonstra>ons	through	machine	learning	

n  Wide	range	of	aggressive	maneuvers	

n  Maneuvers	in	rapid	succession	

	

Aggressive,	Non-Sta>onary	Regimes	



n  Learning	a	target	trajectory	

n  Learning	a	dynamics	model	

n  Autonomous	flight	results	

Learning	Dynamic	Maneuvers	



n  Difficult	to	specify	by	hand:	
n  Required	format:	posi>on	+	orienta>on	over	>me		

n  Needs	to	sa>sfy	helicopter	dynamics	

n  Our	solu>on:	
n  Collect	demonstra>ons	of	desired	maneuvers	

n  Challenge:	extract	a	clean	target	trajectory	from	many	subop>mal/
noisy	demonstra>ons	

Target	Trajectory	

Abbeel,	Coates,	Ng,	IJRR	2010	



Expert	Demonstra>ons	



•  HMM-like	genera>ve	model	
–  Dynamics	model	used	as	HMM	transi>on	model	

–  Demos	are	observa>ons	of	hidden	trajectory	

•  Problem:	how	do	we	align	observa>ons	to	hidden	trajectory?	

Learning	a	Trajectory	

Demo	1	

Demo	2	

Hidden	

Abbeel,	Coates,	Ng,	IJRR	2010	



n  Dynamic	Time	Warping	(Needleman&Wunsch	1970,	
Sakoe&Chiba,	1978)	

n  Extended	Kalman	filter	/	smoother	

Learning	a	Trajectory	

Demo	1	

Demo	2	

Hidden	

Abbeel,	Coates,	Ng,	IJRR	2010	



Results:		Time-Aligned	Demonstra>ons	
§ 		White	helicopter	is	inferred	“intended”	trajectory.	



Results:	Loops	

Even	without	prior	knowledge,	the	inferred	trajectory	is	
much	closer	to	an	ideal	loop.	

Abbeel,	Coates,	Ng,	IJRR	2010	



n  Learning	a	target	trajectory	

n  Learning	a	dynamics	model	

n  Autonomous	flight	results	

Learning	Dynamic	Maneuvers	



Standard	Modeling	Approach	

Abbeel,	Coates,	Ng,	IJRR	2010	

3G	error!	



Key	Observa>on	

Errors	observed	in	the	“baseline”	model	are	clearly	
consistent	aler	aligning	demonstra>ons.	

Abbeel,	Coates,	Ng,	IJRR	2010	



n  If	we	fly	the	same	trajectory	repeatedly,	errors	are	consistent	
over	>me	once	we	align	the	data.	

n  There	are	many	unmodeled	variables	that	we	can’t	expect	our	model	to	
capture	accurately.	

n  Air	(!),	actuator	delays,	etc.	

n  If	we	fly	the	same	trajectory	repeatedly,	the	hidden	variables	tend	to	be	
the	same	each	>me.	

~	muscle	memory	for	human	pilots	

Key	Observa>on	

Abbeel,	Coates,	Ng,	IJRR	2010	



n  Learn	locally-weighted	model	from	aligned	demonstra>ons	

n  Since	data	is	aligned	in	>me,	we	can	weight	by	!me	to	
exploit	repeatability	of	unmodeled	variables.	

n  For	model	at	>me	t:	

n  Obtain	a	model	for	each	>me	t	into	the	maneuver	by	running	weighted	
regression	for	each	>me	t	

	

Trajectory-Specific	Local	Models	

Abbeel,	Coates,	Ng,	IJRR	2010	



n  Learning	a	target	trajectory	

n  Learning	a	dynamics	model	

n  Autonomous	flight	results	

Learning	Dynamic	Maneuvers	

Abbeel,	Coates,	Ng,	IJRR	2010	



Experimental	Setup	

Microstrain	3DM-GX1	@333Hz	
RPM	sensor	@20-30Hz	

Sonar		

Oxoard	Cameras	1280x960@20Hz	Extended	Kalman	Filter	
RHDDP	controller	

Controls		
@	20Hz	

“Posi>on”	

3-axis	
magnetometer,		
accelerometer,		
gyroscope		

(“Orienta>on”)	

Abbeel,	Coates,	Quigley,	Ng,	NIPS	2007	



1.  Collect	sweeps	to	build	a	baseline	dynamics	model	

2.  Our	expert	pilot	demonstrates	the	airshow	several	>mes.	

3.  Learn	a	target	trajectory.	

4.  Learn	a	dynamics	model.	

5.  Find	the	op>mal	control	policy	for	learned	target	and	
dynamics	model.	

6.  Autonomously	fly	the	airshow	

7.  Learn	an	improved	dynamics	model.		Go	back	to	step	4.	

à	Learn	to	fly	new	maneuvers	in	<	1hour.	

Experimental	Procedure		

Abbeel,	Coates,	Ng,	IJRR	2010	



Results:		Autonomous	Airshow	



Results:		Flight	Accuracy	



Autonomous	Autorota>on	Flights	

Abbeel,	Coates,	Hunter,	Ng,	ISER	2008	



Chaos	[“flip/roll”	parameterized	by	yaw	rate]	





Thank	You	


