Autonomous Helicopter Flight

Pieter Abbeel UC Berkeley EECS

Challenges in Helicopter Control

- Unstable
- Nonlinear
- Complicated dynamics
 - Air flow
 - Coupling
 - Blade dynamics
- Noisy estimates of position, orientation, velocity, angular rate (and perhaps blade and engine speed)

Success Stories: Hover and Forward Flight

Just a few examples:

- Bagnell & Schneider, 2001;
- LaCivita, Papageorgiou, Messner & Kanade, 2002;
- Ng, Kim, Jordan & Sastry 2004a (2001); Ng et al., 2004b;
- Roberts, Corke & Buskey, 2003;
- Saripalli, Montgomery & Sukhatme, 2003;
- Shim, Chung, Kim & Sastry, 2003;
- Doherty et al., 2004;
- Gavrilets, Martinos, Mettler and Feron, 2002.
- Varying control techniques: inner/outer loop PID with hand or automatic tuning, H1, LQR, ...

Alan Szabo – Sunday at the Lake

One of our first attempts at autonomous flips [using similar methods to what worked for ihover]

Target trajectory: meticulously hand-engineered Model: from (commonly used) frequency sweeps data

Stationary vs. Aggressive Flight

- Hover / stationary flight regimes:
 - Restrict attention to specific flight regime
 - Extensive data collection = collect control inputs, position, orientation, velocity, angular rate
 - Build model + model-based controller
- → Successful autonomous flight.
- Aggressive flight maneuvers --- additional challenges:
 - **Task description**: What is the target trajectory?
 - **Dynamics model**: How to obtain accurate model?

Aggressive, Non-Stationary Regimes

- Gavrilets, Martinos, Mettler and Feron, 2002
 - 3 maneuvers: split-S, snap axial roll, stall-turn
 - Key: Expert engineering of controllers after human pilot demonstrations

Sunday in Open Loop

Aggressive, Non-Stationary Regimes

• Our work:

- Key: Automatic engineering of controllers after human pilot demonstrations through machine learning
- Wide range of aggressive maneuvers
- Maneuvers in rapid succession

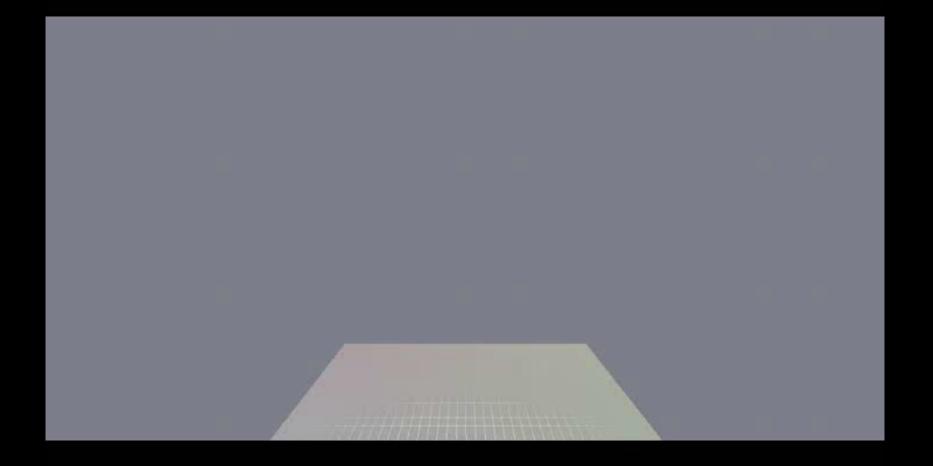
Learning Dynamic Maneuvers

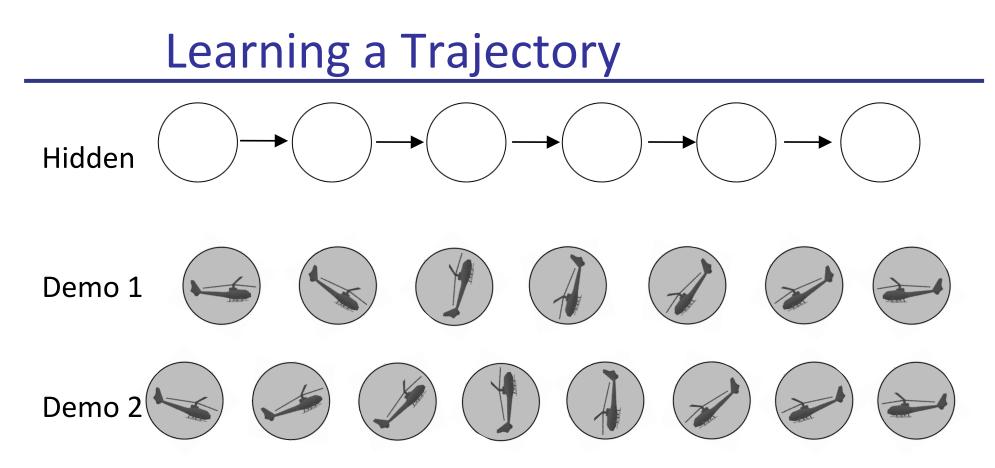
- Learning a target trajectory
- Learning a dynamics model
- Autonomous flight results

Target Trajectory

- Difficult to specify by hand:
 - Required format: position + orientation over time
 - Needs to satisfy helicopter dynamics
- Our solution:
 - Collect demonstrations of desired maneuvers
 - Challenge: extract a clean target trajectory from many suboptimal/ noisy demonstrations

Expert Demonstrations

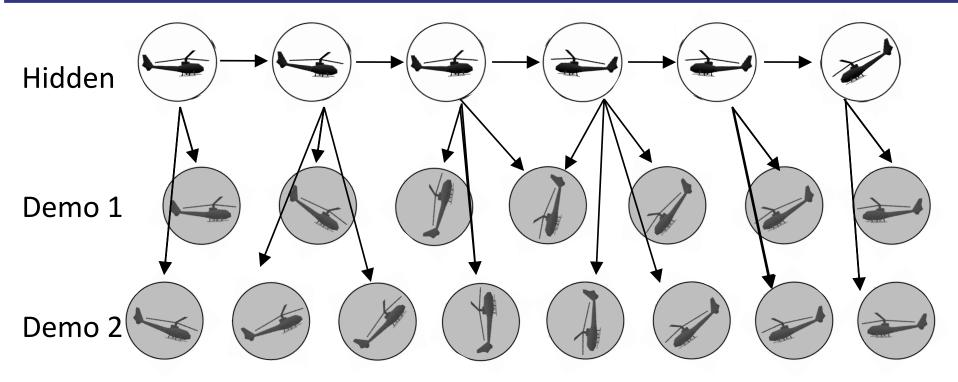




- HMM-like generative model
 - Dynamics model used as HMM transition model
 - Demos are observations of hidden trajectory
- Problem: how do we align observations to hidden trajectory?

Abbeel, Coates, Ng, IJRR 2010

Learning a Trajectory



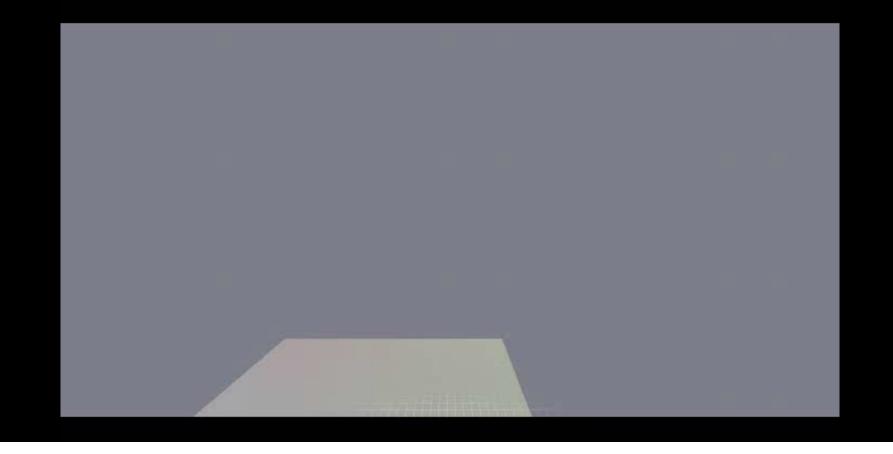
 Dynamic Time Warping (Needleman&Wunsch 1970 Sakoe&Chiba, 1978)

Extended Kalman filter / smoother

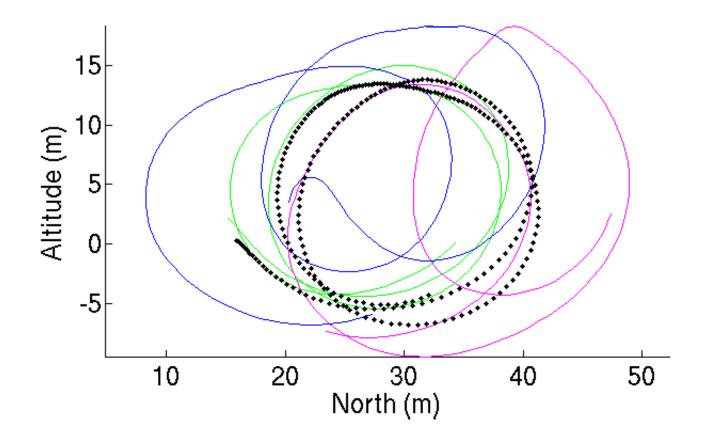
Abbeel, Coates, Ng, IJRR 2010

Results: Time-Aligned Demonstrations

White helicopter is inferred "intended" trajectory.



Results: Loops

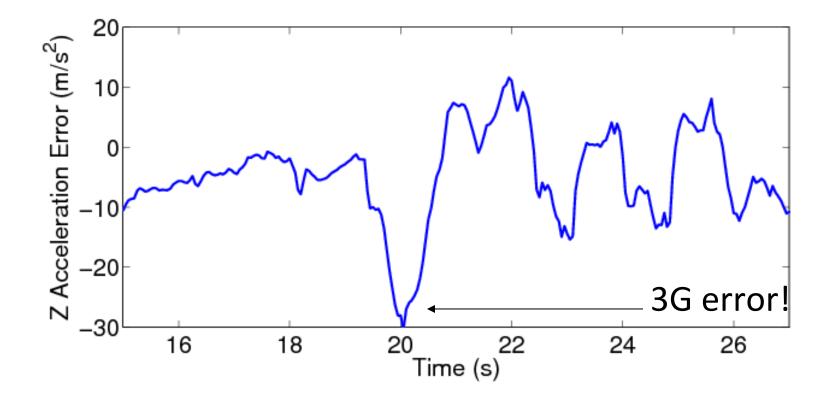


Even without prior knowledge, the inferred trajectory is much closer to an ideal loop.

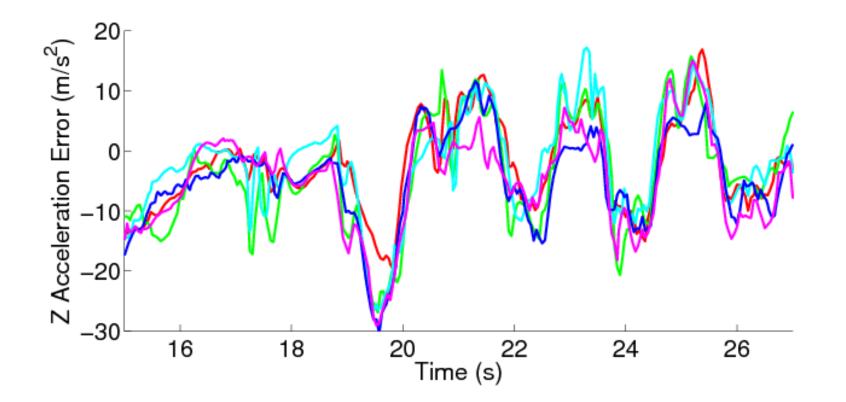
Abbeel, Coates, Ng, IJRR 2010

Learning Dynamic Maneuvers

- Learning a target trajectory
- Learning a dynamics model
- Autonomous flight results



Key Observation



Errors observed in the "baseline" model are clearly consistent after aligning demonstrations.

Abbeel, Coates, Ng, IJRR 2010

Key Observation

- If we fly the same trajectory repeatedly, errors are consistent over time once we align the data.
 - There are many unmodeled variables that we can't expect our model to capture accurately.
 - Air (!), actuator delays, etc.
 - If we fly the same trajectory repeatedly, the hidden variables tend to be the same each time.

~ muscle memory for human pilots

Trajectory-Specific Local Models

- Learn locally-weighted model from aligned demonstrations
 - Since data is aligned in time, we can weight by time to exploit repeatability of unmodeled variables.

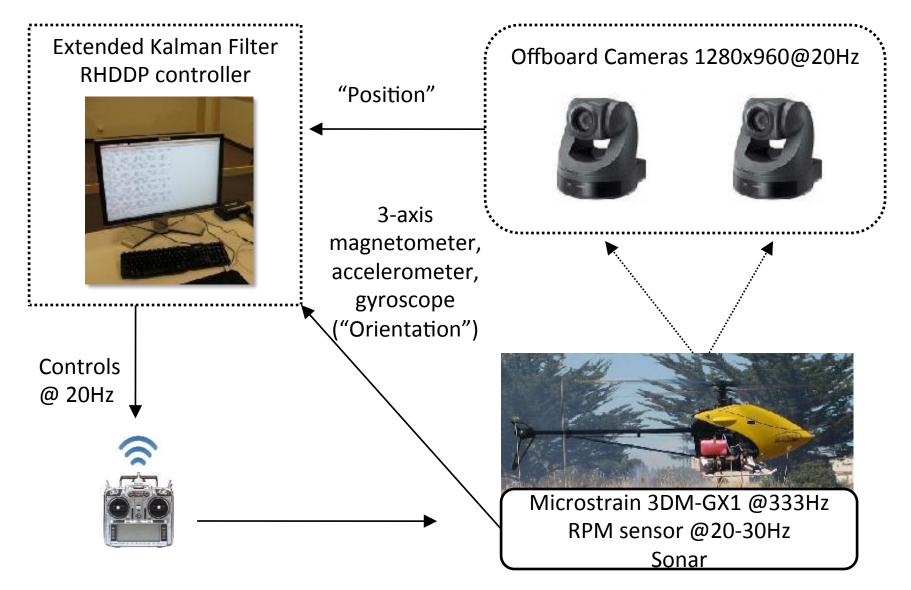
• For model at time t:
$$W(t') = e^{-\frac{(t-t')^2}{\sigma^2}}$$

 Obtain a model for each time t into the maneuver by running weighted regression for each time t

Learning Dynamic Maneuvers

- Learning a target trajectory
- Learning a dynamics model
- Autonomous flight results

Experimental Setup



Abbeel, Coates, Quigley, Ng, NIPS 2007

Experimental Procedure

- 1. Collect sweeps to build a baseline dynamics model
- 2. Our expert pilot demonstrates the airshow several times.

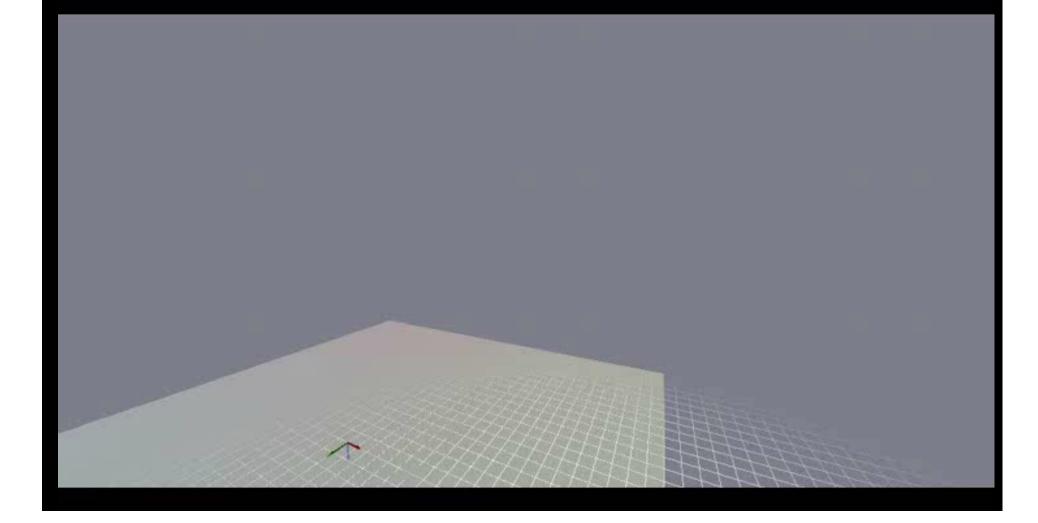
- 3. Learn a target trajectory.
- 4. Learn a dynamics model.
- 5. Find the optimal control policy for learned target and dynamics model.
- 6. Autonomously fly the airshow

- 7. Learn an improved dynamics model. Go back to step 4.
- \rightarrow Learn to fly new maneuvers in < 1hour.

Abbeel, Coates, Ng, IJRR 2010

Results: Autonomous Airshow

Results: Flight Accuracy



Autonomous Autorotation Flights

Abbeel, Coates, Hunter, Ng, ISER 2008

Chaos ["flip/roll" parameterized by yaw rate]

Thank You