
Predicting Initialization Effectiveness for Trajectory Optimization

Jia Pan Zhuo Chen Pieter Abbeel

Abstract— Trajectory optimization is a method for solving
motion planning problems by formulating them as non-convex
constrained optimization problems. The optimization process,
however, can get stuck in local optima that are in collision. As a
consequence, these methods typically require multiple initializa-
tions. This poses the problem of deciding which initializations
to use when given a limited computational budget. In this paper
we propose a machine learning approach to predict whether a
collision-free solution will be found from a given initialization.
We present a set of trajectory features that encode the obstacle
distribution locally around a robot. These features are designed
for generalization across different tasks. Our experiments on
various planning benchmarks demonstrate the performance of
our approach.

I. INTRODUCTION

Trajectory optimization algorithms are becoming attractive
options for robotic motion planning, especially for problems
with many degrees of freedom (DOF). Given an initial
trajectory that may contain collisions and violate constraints,
trajectory optimization methods can often quickly converge
to a high-quality, locally-optimal solution. These methods
are readily able to incorporate dynamics, smoothness and
obstacle avoidance.

Despite their success in various applications, trajectory
optimization techniques suffer from a critical limitation:
their performance heavily depends on the choice of initial
trajectories. Certain initializations passing through obstacles
in unfavorable ways may get stuck in infeasible solutions
and cannot resolve all collisions in the final outcome, as
illustrated in Figure 1. For instance, trajectories that pass
through the medial axis of an obstacle are prone to getting
stuck in a local optimum.

We propose a learning-based approach to predict the
quality of a trajectory as an initialization to the optimization-
based motion planning. Here, a trajectory’s quality is mea-
sured by whether the optimization problem converges to a
collision-free trajectory when using the given trajectory as
the initial guess. In other words, the quality is defined in
a qualitative manner, i.e. ‘good’ or ‘bad’. For the learn-
ing algorithm, we first design a set of trajectory features,
which are relevant to a trajectory’s effectiveness as an
initialization. These features are both task-independent and
scene-independent, and hence they are transferable among
different planning tasks. We use four types of features: (i)
spatial signed distance (SSD) vectors for each robot link;
(ii) difference between SSD vectors for the same robot link
in adjacent trajectory waypoints and for adjacent robot links
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Fig. 1. Illustration of typical reasons for trajectory optimization to get
stuck in local optima that are not collision-free. The gradient based on
penetration depth (a) or distance fields (b) may push waypoints in in-
consistent directions. When a robot collides simultaneously with multiple
obstacles (c), the robot may get stuck in an infeasible local optimum since
different obstacles push the robot in different directions. For a robot with
multiple links (d), the gradient may result in in-consistent directions for
different links. xi in these figures denote different trajectory waypoints.

in the same waypoint; (iii) spherical harmonics transform of
SSD vectors; and (iv) features measuring the non-convexity
of the constrained optimization problem in the trajectory
neighborhood. These features try to capture the obstacle
distribution locally around a robot trajectory and thus can be
expected to be useful for predicting a trajectory’s behavior
for a trajectory optimization algorithm. We calculate these
features for a set of randomly selected trajectories for differ-
ent tasks in various benchmarks. We then run optimization-
based motion planning using these trajectories as initial
guesses and obtain a labeled dataset. In the dataset, each
trajectory is augmented with a ‘good’ or ‘bad’ label accord-
ing to whether the optimization converges to a collision-free
trajectory. With this dataset as the training set, we learn a
prediction function for trajectory effectiveness. We evaluate
the accuracy of the learned prediction function by counting
the ratio of correct predictions for a set of new trajectories
on various benchmarks.

II. RELATED WORK

Trajectory optimization is an established method in
robotics to generate a high quality path from an initial trajec-
tory that may be in-collision or dynamically infeasible. It has
also been used as a post-processing phase to remove redun-



dant or jerky motion in trajectories generated by traditional
planning algorithms [1], [2]. Trajectory optimization works
by solving an optimization problem on trajectory space.
Many approaches use a spline-based or waypoint-based
representation for trajectory and use cost gradient informa-
tion for minimization, including CHOMP [3], STOMP [4]
and TrajOpt [5]. There is extensive, closely-related work
in optimal control, which focuses less on collisions and
more on systems with complicated dynamical properties.
Some of the most notable work includes differential dynamic
programming [6], [7], iterative LQR [8], approximate infer-
ence control [9] and optimization-based control involving
contacts [10], [11], [12], [13].

One main challenge of trajectory optimization is its sen-
sitivity to the choice of initial guesses and may get stuck in
infeasible local optima, since the collision-free constraint is
highly non-convex.

For general non-convex optimization problems, the de-
pendence on initialization is also a well-known challenge.
A simple and popular solution is using multiple random
initializations to help the algorithms escape from bad local
optima. In recent work [14] machine learning was used
to build the relationship between the starting point of an
optimization algorithm and the objective value of the final
outcome. The main difference is that our approach is for
trajectory optimization, where generating a feasible trajec-
tory is more important than decreasing the absolute cost
of the objective function. Moreover, trajectory optimization
can exploit workspace heuristics for selecting good initial
guesses, and such heuristics are not available in general
optimization problems. Another closely related line of work
is about trajectory prediction [15], where learning algorithms
are used to predict a good path in a new environment from
a database of demonstrated trajectories. The predicted result
may not be feasible and hence requires a second step to
resolve all violations.

Prior work has considered designing trajectory features for
various applications. For example, Bentivegna et al. [16] and
Stolle et al. [17] represented a library of trajectories by fea-
ture vectors for control policy transfer. Berenson et al. [18]
designed several criteria and features to evaluate whether a
trajectory from a path library is likely to be reused in a new
planning scene after suitable repair operations. Trajectory
features are also used to predict class labels of moving
objects based on their trajectories [19]. Moreover, features
have been designed to compress trajectory libraries [20].
However, all these features only capture properties of a
trajectory itself. In contrast, the features proposed in our
paper encode the interaction between the trajectory and the
surrounding environment, which is critical for predicting how
fast a trajectory can be pushed away from the obstacles by
a trajectory optimization algorithm.

III. PROBLEM DEFINITION

A. Background

Robotic motion planning problems can be formulated as
non-convex optimization problems, i.e., minimize an objec-

tive subject to inequality and equality constraints:

minimize
x

f(x) (1)

subject to gi(x) ≤ 0, i = 1, 2, . . . , nieq

hi(x) = 0, i = 1, 2, . . . , neq

where f , gi and hi are scalar functions. For planning
problems that involve only kinematics and represent the
trajectory as a sequence of T waypoints, the optimization
variable x is of the form x = θ1:T , where θt ∈ RK denotes
the configuration at the t-th waypoint for a system with
K degrees of freedom. For problems with dynamics, the
optimization variable x may also include velocities θ̇t and
torques τt.

Collision avoidance is one of the most important inequality
constraints in motion planning. But it is difficult to be
formulated in a closed form and hence is challenging for
optimization. Various approximations for collision avoid-
ance constraints have been proposed, including distance
fields [21], [3], penetration depth [22], and swept volume [5].
Besides collision avoidance, common inequality constraints
include kinematic constraints (e.g., joint limits), kinody-
namic constraints (e.g., bounded velocity or acceleration)
or dynamic constraints (e.g., dynamic stability constraints).
One example of equality constraints is the end-effector pose
constraint where the robot must reach a target pose.

The objective function f(x) is often chosen to be a
quadratic form of x. For example, a widely used objective
function for kinematic planning is f(θ1:T ) =

∑T
t=1 ‖θt+1−

θt‖2, which encourages minimum-length or smoothness in
the final outcome [5], [3].

(a) initial path (b) result path

(c) initial path (d) result path

Fig. 2. Failure cases when using the state-of-the-art trajectory optimization
method [5] for motion planning. (a) shows the initial path for a whole-body
planning, which passes through the medial axis of the desk obstacle. (b) is
the trajectory optimization outcome, which is stuck in an infeasible condition
and the trajectory is pulled apart by virtue of being on both sides of an
obstacle. (c) shows the initial path for the arm planning and the collision
cannot be resolved in the final trajectory shown in (d). The main difference
between trajectories in (c) and (d) is marked by dashed red boxes.

Trajectory optimization is a challenging non-convex prob-
lem, and many approaches have been presented to solve



it effectively. Among them are sequential convex opti-
mization [5], covariant Hamiltonian optimization [3], and
stochastic optimization [4]. However, given an initial tra-
jectory that contains collisions, none of these methods are
guaranteed to find a collision-free solution due to the non-
convex constraints in the optimization. Figure 1 shows some
scenarios illustrating how trajectory optimization tends to
get stuck in local optima that are not collision-free, and
Figure 2 provides failure cases when using the state-of-the-
art trajedctory optimization method [5] in these scenarios.

It is an on-going line of research to reshape the non-convex
optimization formulations to improve their performance.
In this paper we consider the following complimentary
problem: Given a trajectory optimization approach, how to
predict whether an initialization will result in a collision-
free solution or not. Such predictive capabilities would
enable selecting a good initial trajectory for motion planning
so that trajectory optimization is likely to converge to a
collision-free local optimum. Such information can also be
used to improve the performance of trajectory optimization
being run in parallel for multiple initializations: For each
solution sequence starting with a different initial guess, we
can stop bad solution sequences early enough and focus
computational budgets on solution sequences that potentially
can converge to good outcomes.

B. Outline of Proposed Approach

The problem to predict whether a given trajectory is a good
or bad initial guess for a trajectory optimization algorithm
can be formalized as a two-class classification problem. In
fact, a trajectory is good if and only if it locates in the basin
of attraction of a local optimum that is collision-free.

For the classification problem, we first design trajectory
features that are potentially useful to distinguish good and
bad initializations. The features extracted from a trajectory
θ1:T are denoted as a vector z = E(θ1:T ), where E(·) is
the extraction function. For each trajectory, we use a binary
variable y to denote whether the trajectory optimization
succeeds (y = 1, a good initial guess) or fails (y = 0, a
bad initial guess).

Given a set of N trajectories, we build a training set
{zi, yi}Ni=1. Based on the data set, we learn a classifier C(z),
which is the predictor for a trajectory’s effectiveness. Given
a new trajectory as input, C(·) will provide its qualitative
evaluation (good or bad) as output. The learned predictor
C(·) can depend on the planning methods, because different
optimization approaches may differ in for which initial
trajectories they end up finding feasible solutions. However,
our learning method is general and does not depend on the
type of trajectory optimization method.

IV. PREDICTING INITIALIZATION EFFECTIVENESS FOR
TRAJECTORY OPTIMIZATION

In this section, we design trajectory features to distinguish
good and bad initializations and use the extracted features for
predicting the effectiveness of a new trajectory.

Before extracting features from a trajectory, we first per-
form re-sampling on it so that waypoints are uniformly
distributed between two end-points. The re-sampling process
removes some the parameterization-dependent differences
between trajectories and hence makes it easier to compare
them. After re-sampling, each trajectory has T waypoints.
This also results in fixed-length feature vectors.

A. Background: Signed Distances

We design features to encode the obstacle distribution
locally around a trajectory, as such information is closely
related with a trajectory’s effectiveness. Intuitively speaking,
if a trajectory is deep inside the obstacles, it is less likely to
be pushed out of them; whereas if it is mostly outside the
obstacles, it should converge to a collision-free solution. To
quantify the obstacle distribution surrounding a trajectory, we
use signed distances and normals, which are used in previous
trajectory optimization algorithms such as [5]. Informally,
the signed distance between two objects is the length of the
smallest translation that puts them in contact; the signed
normal is the direction of such translation. The signed
distance can be efficiently computed for convex objects using
GJK algorithm [23] and EPA algorithm [24]. For use with
non-convex objects, these objects can be represented as a
set of convex objects together making up the original non-
convex object.

B. Feature I: Spatial Signed Distance Vectors

Based on the signed distances formulation, a natural
choice for designing trajectory feature vector is to collect
signed distances and normals between all pairs of robot
links and environment obstacles, for each waypoint in the
trajectory. More formally, given a robot with n links Ai in an
environment with m obstacles Bj , the feature vector would
be zsd = {sdi,j,t,ni,j,t}1≤i≤n,1≤j≤m,1≤t≤T , where sdi,j,t =
sd(Ai(t),Bj) is the signed distance value between Ai and Bj
at waypoint θt, and ni,j,t is the corresponding normal. This
feature vector is of dimension 4×m×n×T and provides a
complete description for the obstacle distribution around the
trajectory. However, the dimension of this feature depends on
m, the number of obstacles in the environment, which makes
this feature not transferable among different environments.
Moreover, in many real-world systems, there may be a large
number of obstacles (e.g., the obstacles from sensor data are
usually represented as thousands of boxes [25]). This would
result in a long feature vector and brings challenges for both
data storage and the following learning procedure. Thus we
propose to summarize this information in a more compact
manner that lends itself better to generalization.

Our solution is to re-organize the signed distances and
normals into a new form called the Spatial Signed Distance
(SSD) vectors. We illustrate the basic idea of SSD via a 2D
example in Figure 3(a). We first partition the space around
a robot link using a dictionary of direction vectors D =
{b1, ...,bM}. For the 3D case, we generate the direction
dictionary using the approach introduced in [26], which
computes a uniform deterministic sequence of samples over
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Fig. 3. Spatial signed distance vectors: (a) shows a 2D example about
SSD vector generation. The surrounding space around a robot link (the
cyan color part) is uniformly divided by a spatial vector dictionary with
12 directions {b1, ...,b12}. The signed distance value sdj between the
robot and the j-th obstacle (the grey part) is then accumulated toward a
direction bk , which has the smallest angle with the corresponding signed
distance normal nj , i.e., with the smallest |nj ·bk|. (b) In 3D case, we use
the approach introduced in [26] to generate dictionary vectors that make
equisurface partition on a sphere surface.

S2 (as shown in Figure 3(b)) using a specific multi-resolution
grid structure. This partitions the sphere surface into bins of
the same size.

Given the signed distances and normals between the robot
link and all the obstacles in the environment, we accumu-
late the signed distances along these discretized prototype
directions in dictionary D and the result is a M -dimensional
vector zssd. The k-th element of zssd is denoted as zssd[k],
which summarizes signed distances along direction bk. If
zssd[k] is positive, then the link still has some distance from
the obstacle and is safe; if zssd[k] is negative, then the link
will go deeper inside the obstacle when being pushed in this
direction and hence should be pushed in other directions.

The algorithm to compute zssd based on signed distance
information is shown in Figure 4. First, each element in zssd
is initialized by a default value R > 0, which defines the
size of the local neighborhood around the link. We set R
to be the robot link’s bounding radius; this implies that a
large object would have a larger local neighborhood. Next,
suppose the j-th obstacle’s signed distance to the robot link
is sdj and the corresponding normal is nj . We first find the
dictionary direction bk which has the smallest angle with
nj , i.e., quantizing nj to the prototype direction bk with the
smallest |nj ·bk|. Next, we merge sdj with the existing value
in zssd[k]. If both sdj and zssd[k] are negative, i.e., a new
penetration is detected in a direction where the penetration
was detected before, we add sdj onto zssd[k] to give a large
penalty for such in-collision case. For other cases, we update
zssd[k] by sdj if zssd[k]’s current value is larger than sdj . In
other words, zssd[k] is with the signed distance value of the
closest obstacle. If zssd[k] remains R after the computation,
this means that no penetration is detected within the given
link’s neighborhood along direction bk. In this way, we
summarize the obstacle distribution information around a
robot link into a length-M SSD vector.

After computing SSD vectors for all links belonging to
all trajectory waypoints, we concatenate them together into
the SSD feature vector for the entire trajectory, which is

Input: Signed distance values sdj and normals nj between
the robot link and the m obstacles in the environment; The
spatial vector dictionary of size M : D = {b1, ...,bM}
Output: Spatial signed distance vector zssd

1: Initialize zssd as a dimension-M vector with default
value R;

2: for j ← 1 to m do
3: Find bk in D where |bk · nj | is the smallest;
4: if sdj < 0 and zssd[k] < 0 then
5: zssd[k]← zssd[k] + sdj ;
6: else
7: zssd[k]← min(zssd[k], sdj);
8: end if
9: end for

Fig. 4. SSD vector generation for one robot link at a trajectory waypoint

of dimension n ×M × T and is also denoted as zssd. For
environments with many obstacles, M � m and therefore
zssd is more compact than zsd.

C. Feature II: Difference between Spatial Signed Distance
Vectors

The spatial signed distance vector provides a description
of the obstacle distribution around the trajectory on a per link
basis. However, as we mentioned in Section III, whether the
signed distance normal is consistent between adjacent links
or adjacent waypoints in an initial trajectory is also important
for the convergence of a trajectory optimization algorithm.
Thus, we include features to measure the consistency be-
tween two spatial signed distance feature vectors. Given two
vectors zssd

a and zssd
b, we evaluate their consistency using

their dot-product zssd
a · zssd

b. This dot-product has a larger
value when zssd

a[k] and zssd
b[k] are of the same sign for all k.

And it has a smaller value when some zssd
a[k] and zssd

b[k]
are of the opposite sign, i.e., the signed distance normals
are not consistent in direction bk. We compute dot-product
between SSD vectors of the same link in adjacent waypoints
and between adjacent links in the same waypoint. We collect
all these results relating to consistency in the signed distances
in a feature vector denoted by zcon.

D. Feature III: Spherical Harmonics Spatial Feature

The spatial signed distance feature is not rotation-invariant.
As a result when, for example, both the environment and the
trajectory are rotated by a given angle, the feature vector
will be completely different. This could affect its generaliza-
tion capability. Another example is when the environment
is symmetric (such as Figure 6(c)). Overall, the lack of
rotation-invariance in the feature may decrease the prediction
accuracy of the learning algorithm.

As shown in Figure 3(a), the spatial signed distance feature
is a function defined on a sphere around a robot link.
To represent the feature in a rotation-invariant manner, we
utilize spherical harmonics. The same idea has been used
in various applications, including computer vision [27] and
graphics [28].



The theory of spherical harmonics says that any spherical
function s(θ, φ) can be expressed as a sum of complex
spherical harmonic basis functions Y m

l :

s(θ, φ) =

∞∑
l=1

l∑
m=−l

aml Y
m
l (θ, φ). (2)

The amplitudes of the harmonic coefficients ‖aml ‖ are in-
variant to any rotation in the azimuthal direction. Moreover,
the amplitude of sl, the l-th frequency component of the
function s, is rotation-invariant under any rotations, where
sl =

∑l
m=−l a

m
l Y

m
l (θ, φ). The magnitude of sl can also

be computed based on aml : ‖sl‖2 =
∑l

m=−l ‖aml ‖2. We
use ‖sl‖ as features in 3D benchmarks. In 2D case, we use
‖aml ‖ as features since only azimuthal rotation is allowed
in 2D and ‖aml ‖ can provide richer information. Similar
to previous work [27], [28], we choose a bandwidth b and
store only b lowest-frequency components in our spherical
harmonics feature zsht. More formally, the feature is defined
as zsht = {‖sl‖} in 3D and zsht = {‖aml ‖} in 2D, where
m = 0, ..., l and l = 0, ..., b.

E. Feature IV: Convexity Features

As another category of features, we also measure the local
convexity of the trajectory optimization problem around the
initial trajectory. The optimization problem formalized in
Equation 1 usually involves a non-convex objective and non-
convex constraints. In trajectory optimization algorithms,
these non-convex terms are approximated by convex func-
tions in each iteration of the optimization. The convexity
features quantify how close the approximations are in such
‘convexify’ steps.

We first compute Hessian matrices of the objective and
constraint functions at the trajectory. Next, to measure the
local non-convexity of the optimization problem, we compute
the following features based on the eigenvalues of the
Hessian matrices: (i) the minimum eigenvalue; (ii) the sum
of negative eigenvalues; (iii) the maximum eigenvalue; (iv)
the sum of all eigenvalues. We compute these four statistics
for each objective and constraint function, and generate a
total of 4 × T × (1 + nieq + neq) convexity features, which
are collected in a feature vector denoted as zconv.

F. Trajectory Evaluation and Effectiveness Prediction

To evaluate whether a trajectory is ‘good’ or ‘bad’ as
the initial guess for the optimization, currently we use
two simple criteria: a trajectory is justified as a ‘good’
initialization if the optimization algorithm converges and the
final outcome does not violate any constraints.

Given a set of trajectories with their features and evalua-
tion results, we can use any two-class classification algorithm
to learn a classifier for the trajectory. As the dimension of
our trajectory feature is high (larger than 200), we choose
the linear support vector machine [29] as the classifier due
to its simplicity and efficiency.

V. EXPERIMENT AND EVALUATION

We experimentally evaluate the trajectory features that we
designed and demonstrate the accuracy of our effectiveness
prediction approach on various 2D and 3D benchmarks, as
shown in Figure 6, 7 and 8. The trajectory optimization
algorithm we used in the experiment is TrajOpt [5], which is
one of the state-of-the-art trajectory optimization algorithms.

A. Experimental Setting

For each benchmark, we have a pre-defined set of task
settings (the initial and goal configurations) as seed tasks.
For the PR2 benchmarks, we use the 198 arm planning
problems and 96 full-body problems used in TrajOpt [5].
For the Dubins car benchmarks, we manually select a set of
initial-goal configurations that should have feasible solutions.
Next, we perturb the initial and goal configurations around
these seed tasks to generate more random tasks. We filter out
the invalid tasks where the initial or goal configurations are
in-collision. We also remove the trivial cases where the linear
interpolation between initial and goal is collision-free. We
did not randomly select tasks in the entire configuration space
because this will incorrectly bias the classifier toward tasks
that will hardly happen in real world robotics applications.

Given one planning task, we first generate a trajectory
which is a simple linear interpolation between the initial and
goal configurations. Next, we perform random perturbation
of the trajectory waypoints and generate more random tra-
jectories. For each of these trajectories, we run the trajectory
optimization algorithm using it as the initial guess. When the
optimization stops, we will obtain a sequence of trajectories.
These intermediate trajectories can also be used as initializer
and they would all have the same effectiveness label as
the actual initial guess. As a result, if the optimization
converges and the final outcome is feasible, we evaluate
the given initial trajectory and all intermediate trajectories
as ‘good’ initializations. Otherwise we evaluate all of them
as ‘bad’. Finally, we extract features for all these labeled
trajectories and add them into the dataset. In this way, we
generate more than 10, 000 trajectories for each planning
benchmark. For each benchmark, we use half of the data
for training a classifier and the rest for testing experiments.
When splitting training and test sets, we make sure that
trajectories corresponding to the same task are assigned
into the same set, in order to guarantee that the test set is
independent of the training set. In Figure 5, we visualize
the features of two trajectories from different benchmarks.
Except zconv, all these features can be computed in less
than 10 milliseconds per trajectory. zconv is more expensive
(about 8 seconds) since it is time consuming to compute a
trajectory’s Hessian matrix numerically.

B. Effectiveness Prediction on Same Benchmarks

We first show the prediction accuracy when using a clas-
sifier learned on one benchmark to predict the effectiveness
of trajectories in the same benchmark but for different tasks.
The results are shown in Table III, where we compare the



baseline accuracy and the accuracy when different com-
binations of features are used to train a classifier. From
the results, we observe that the learned classifiers provide
accuracy significantly higher than the baseline (which simply
predicts according to the majority label in the training set).
However, the peak accuracy may be achieved by a different
combination of features on different benchmarks.

C. Effectiveness Prediction on Different Benchmarks

A more challenging test is to check whether a classifier
learned on one benchmark is able to correctly predict effec-
tiveness for trajectories from other benchmarks. For this test,
we only obtain partial success: We indeed observe several
successful transfers among different benchmarks as shown
in Table IV. However, in most cases, the prediction accuracy
is low when transferring between different benchmarks.

There are several reasons for the poor transfer performance
of the current prediction algorithm. First, our current feature
design only considers the spatial information locally around
the trajectory and does not take into account the global
description about the environment, which has been proved
to be helpful for trajectory transferring between different
environments [15]. For instance, the classifier learned on
squared-dubin in Figure 6(c) can be successfully transferred
to jagged-dubin in Figure 6(a) because the environments are
similar. The transfer to gap-dubin in Figure 6(b) is difficult
because the existence of the narrow gap, which does not exist
in the squared-dubin or jagged-dubin benchmark. Second, a
high-DOF robot may use different part of DOFs in different
scenarios; this results in different trajectory distributions on
different benchmarks. Hence, we need more trajectory data
from various scenarios and tasks, in order to completely
cover the trajectory space. Finally, the rotation-invariance
of features is also important for transferring. From the suc-
cessful case shown in Table IV, we observe that the feature
combination zcon + zsht behaves the best in transferring, and
both of them are rotation-invariant features.

VI. CONCLUSION

In this paper, we have introduced novel features for trajec-
tory effectiveness and described a learning-based approach to
predict whether an initialization will lead to a collision free
path. We evaluated the accuracy of our approach on different
planning tasks within various benchmarks. Additionally, we
showed initial results on transferring the learned classifier to
other benchmarks.

This work serves as a baseline of initial trajectory se-
lection for trajectory optimization based motion planning.
Future work could consider more combinations of trajectory
features and explore more criteria for trajectory evaluation,
including running time, objective value and cost for violated
constraints. Moreover, instead of the qualitative metric used
in this paper, it would be of interest to apply regression algo-
rithms to compute a quantitative evaluation for trajectory’s
effectiveness, which can be used for trajectory ranking during
the optimization. Finally, it would be of interest to integrate
our approach with trajectory optimization.
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Fig. 5. zssd, zcon and zsht features for two different trajectories in the bookshelf benchmark. Rough periods appears for all the three sub-features, because
these features are computed for each trajectory waypoint.

baseline zconv+zssd+
zcon + zsht

zssd +
zcon + zsht

zssd+zcon zcon +zsht zssd + zsht zssd zcon zsht

jagged-dubin 59.2 90.2 82.6 82.2 74.7 82.3 82.2 70.1 63.15
gap-dubin 56.4 90.5 88.6 87.9 77.3 86.2 87.1 76.2 76.0

squared-dubin 56.8 98.3 89.3 87.1 77.5 88.2 85.0 61.7 61.5

TABLE I
EFFECTIVENESS PREDICTION ACCURACY (IN %) FOR THE DUBINS CAR PLANNING: WE COMPARE THE PREDICTION ACCURACY OF THE BASELINE

(I.E., THE PERCENTAGE OF MAJORITY TRAJECTORY LABEL) WITH THE PREDICTION RESULTS WHEN USING ALL THE FEATURES WE DESIGNED

zCONV + zSSD + zCON + zSHT AND OTHER COMBINATIONS OF FEATURES.

baseline zconv+zssd+
zcon + zsht

zssd +
zcon + zsht

zssd+zcon zcon +zsht zssd + zsht zssd zcon zsht

bookshelf 63.0 100 77.7 77.5 73.9 77.5 76.3 68.7 70.0
skew-bookshelf 62.1 85.9 80.4 74.3 77.9 76.2 72.3 63.7 65.0

countertop 69 99.7 70.1 72.8 74.5 69.6 73.9 77.7 63.6
industrial 67.2 83.8 78.5 78.2 78.4 78.2 76.9 80.2 73.7
industrial2 50.3 96.2 61.1 62.1 64.1 61.2 62.3 64.5 58.2

TABLE II
EFFECTIVENESS PREDICTION ACCURACY (IN %) FOR PR2 ARM PLANNING: WE COMPARE THE PREDICTION ACCURACY OF THE BASELINE (I.E., THE

PERCENTAGE OF MAJORITY TRAJECTORY LABEL) WITH THE PREDICTION RESULTS WHEN USING ALL THE FEATURES WE DESIGNED

zCONV + zSSD + zCON + zSHT AND OTHER COMBINATIONS OF FEATURES.

baseline zssd +
zcon + zsht

zssd + zcon zcon +zsht zssd + zsht zssd zcon zsht

livingroom 61.0 85.5 88.4 83.6 84.7 87.4 82.8 81.6
livingroom2 53.7 80.3 80.5 76.7 78.6 77.9 71.5 66.6

kitchen 59.0 65 64.2 60.4 66.9 66.2 60.3 73.6
kitchen2 54.0 64.6 65.3 61.6 65.0 65.0 61.0 61.5

hotel 98 98.1 98.1 98.2 98.1 98.1 97 98.1

TABLE III
EFFECTIVENESS PREDICTION ACCURACY (IN %) FOR PR2 FULLBODY PLANNING: WE COMPARE THE PREDICTION ACCURACY OF THE BASELINE (I.E.,

THE PERCENTAGE OF MAJORITY TRAJECTORY LABEL) WITH THE PREDICTION RESULTS WHEN USING FEATURES zSSD + zCON + zSHT AND OTHER

COMBINATIONS OF FEATURES.
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