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Abstract— We present an approach for asymptotically opti-
mal motion planning for kinodynamic systems with arbitrary
nonlinear dynamics amid obstacles. Optimal sampling-based
planners like RRT*, FMT*, and BIT* when applied to kino-
dynamic systems require solving a two-point boundary value
problem (BVP) to perform exact connections between nodes
in the tree. Two-point BVPs are non-trivial to solve, hence
the prevalence of alternative approaches that focus on specific
instances of kinodynamic systems, use approximate solutions
to the two-point BVP, or use random propagation of controls.
In this work, we explore the feasibility of exploiting recent
advances in numerical optimal control and optimization to
solve these two-point BVPs for arbitrary kinodynamic systems
and how they can be integrated with existing optimal planning
algorithms. We combine BIT* with a two-point BVP solver that
uses sequential quadratic programming (SQP). We consider the
problem of computing minimum-time trajectories. Since the
duration of trajectories is not known a-priori, we include the
time-step as part of the optimization to allow SQP to optimize
over the duration of the trajectory while keeping the number
of discrete steps fixed for every connection attempted. Our
experiments indicate that using a two-point BVP solver in the
inner-loop of BIT* is competitive with the state-of-the-art in
sampling-based optimal planning that explicitly avoids the use
of two-point BVP solvers.

I. INTRODUCTION

Kinodynamic motion planning has been extensively stud-
ied over the past two decades [5], [14]. Since the introduction
of RRT* by Karaman and Frazzoli in 2010 [11], techniques
for asymptotically optimal motion planning have been an
active area of study. RRT* allows finding asymptotically
optimal paths by combining the traditional RRT [13] ap-
proach, which is only probabilistically complete and does
not guarantee optimality, with a tree rewiring procedure.
For this rewiring, RRT* needs to solve two-point boundary
value problems [14], i.e., two points in the state space need
to be exactly and optimally connected by a feasible path.
RRT, on the other hand, only involves single-boundary value
problems, where the tree is grown by forward-integrating the
dynamics from the states in the tree.

Finding an optimal trajectory between two states for dif-
ferentially constrained systems is non-trivial in general. For
holonomic robots, the states can be connected by a straight
line in configuration space. Prior works on extending RRT*
for kinodynamic systems have focused on specific instances
of kinodynamic systems [10], [23], or have used approximate
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Fig. 1: A minimum-time collision-free trajectory for the cart-pole system
found using our approach. The evolution of the trajectory is color coded
according to time, with the start state shown in blue and the target state
shown in red.

solutions to the two-point boundary value problem [9]. How-
ever, solving the two-point boundary value problem (BVP),
for systems such as a cart-pole (Fig. 1) is challenging [1].

Therefore, there has been a particularly substantial re-
search effort in designing asymptotically optimal algorithms
that do not require solving two-point boundary value prob-
lems [17], [15]. These methods propagate the tree by shoot-
ing, i.e., randomly sampling controls and time durations. In
addition, these methods have to consider a region around
a goal state and cannot arrive at an exact goal state. A
common assumption made in this line of work is that solving
two-point boundary problems is impractical or not generally
applicable to all robotics systems.

In this paper, we explore the feasibility of exploiting recent
advances in numerical optimal control and optimization to
solve these two-point BVP problems and how they can
be integrated with existing asymptotically optimal planning
algorithms such as RRT* [11] and recently proposed variants
such as fast marching trees (FMT*) [8], and batch-informed
trees (BIT*) [7] to plan optimal trajectories for kinodynamic
systems with arbitrary, nonlinear dynamics. There has been
considerable interest in the use of trajectory optimization
for robotic motion planning [19], [22], [20], [25] but these
works have been limited to kinematic motion planning.
Recent work has explored the use of a nonlinear optimization
method to solve the two-point BVP problem within a RRT*
planner [21] but the proposed method requires additional tra-
jectory smoothing steps to compute locally optimal solutions.

We use a variant of Sequential Quadratic Programming
(SQP) to construct a two-point boundary value solver to
(locally-) optimally connect nodes in the state space. SQP
typically works on systems with discrete-time dynamics and
a finite horizon – that is, only a pre-specified number of steps
can be taken to solve the boundary-value problem. A key
challenge here is that we do not know in advance what the
duration of an optimal trajectory is. To this end, we keep the
number of steps fixed, but include the duration of the discrete
time steps to our optimization formulation. We consider the
objective of computing minimum time trajectories but our



formulation can also consider arbitrary state and control
dependent objectives.

We present preliminary results on three kinodynamic sys-
tems: (i) double integrator, (ii) cart-pole system, and (iii)
acrobot system. Our experiments indicate that our approach
offers improvements in solution quality, solves a larger
number of problems, and is comparable in performance as
compared to state-of-the-art shooting-based approaches for
asymptotically optimal kinodynamic planning [17], [15].

II. PROBLEM DEFINITION

Let X = Rn and U = Rm be the state space and control
input space, respectively, of the robot. The dynamics of the
robot is defined by the following continuous-time system:

ẋ(t) = f(x(t),u(t)), (1)

where x(t) ∈ X is the state of the robot, and u(t) ∈ U is
the control input of the robot.

A trajectory of the robot is defined by a tuple π =
(x( ),u( ), τ), where τ is the arrival time or duration of the
trajectory, u : [0, τ ]→ U defines the control input along the
trajectory, and x : [0, τ ] → X are the corresponding states
along the trajectory given x(0) with ẋ(t) = f(x(t),u(t)).

The cost c(π) of a trajectory π is defined by:

c(π) =

∫ τ

0

`(x(t),u(t)) dt, (2)

where ` is an arbitrary cost functional. In this work, we
compute the minimum-time trajectories, for which c(π) = τ .

Let Xfree ⊂ X define the free state space of the robot,
which consists of those states that are within user-defined
bounds and are collision-free with respect to obstacles in the
environment. Here, we model Xfree as the intersection of a
number of nonlinear constraints:

Xfree =
⋂
i

{x ∈ X | hi(x) > 0}. (3)

Similarly, let Ufree ⊂ U define the free control input space of
the robot, consisting of control inputs that are within bounds
placed on them. We assume this set is convex and modeled
as the intersection of a number of linear constraints:

Ufree =
⋂
i

{u ∈ U | a>i u + bi > 0}. (4)

The formal definition of the problem we discuss in this
paper is then as follows: given a start state xstart ∈ Xfree

and a goal state xgoal ∈ Xfree, find a collision-free trajectory
π∗free between xstart and xgoal with minimal cost:

π∗free = argmin{π |x(0) = xstart ∧ x(τ) = xgoal ∧
∀{t ∈ [0, τ ]} (x(t) ∈ Xfree ∧ u(t) ∈ Ufree)} c(π). (5)

Note that the arrival time τ is not given, and optimizing
it is part of the problem definition.

III. BIT*: ASYMPTOTICALLY OPTIMAL GLOBAL
PLANNING

We build on recent work by Gammell et al. [7] on effi-
cient asymptotically optimal motion planning for holonomic
robots. This work proposes the notion of Bellman Random
Trees, which describe a class of planners that search implicit
random geometric graphs (RGG) for explicit spanning trees.
Examples of these planners are RRT* [11] and FMT* [8].
RRT* is an iterative, anytime planner that maintains a
minimum cost tree over its samples and updates the tree
in an anytime fashion in order to preserve its shortest path
quality during its update. Fast marching trees (FMT*) is a
bulk planner that performs a ”lazy” dynamic programming
recursion that maintains an approximate minimum cost tree
over a set of probabilistically drawn samples.

Batch-informed trees (BIT*) [7] combines the anytime
nature of incremental RRT* and the efficiency of bulk
sampling methods such as FMT* with admissible heuristics
to focus the search. It is summarized as follows. An implicit
RGG Gi is constructed by sampling mi uniformly distributed
samples from Xfree, and choosing a radius ri such that it
defines a neighbor relation on the nodes and is chosen such
that it guarantees asymptotic optimality [11], [7]. Then a
heuristically guided search builds a spanning tree until the
entire graph has been searched. If a current solution exists,
the cost of this solution provides a heuristically informed
subset of Xfree denoted Xf̂ such that any solution that is
better than the current one lives in this subset. Then mi+1

new samples are added to construct a new RGG Gi+1, and
ri+1 is chosen to satisfy asymptotic optimality, and Gi+1 is
searched for an explicit spanning tree. This process repeats
until a stopping condition is satisfied.

BIT* requires connecting two states exactly in state space.
This leads to solving the two-point boundary value problem
under differential constraints. Typically, this problem is con-
sidered very difficult. We remedy this with a generic solution
to this problem which is applicable to any dynamics and cost
functional in the following section.

In order for BIT* to perform an intelligent search, ad-
missible heuristic functions must be provided. The examples
provided in [7] use a heuristic that is equal to the true edge
cost between two states. This is non-trivial for kinodynamic
systems, and in general, heuristics for these systems are
difficult to come up with. We used the Euclidean distance
divided by maximum speed as a conservative heuristic in our
implementation.

BIT* focuses its search using heuristics, which intelli-
gently explores the state space. As a result, the number of
calls to the true cost function that connects two states (i.e.
two-point BVP solver) is much lower than RRT* [7]. This
makes it preferable to use as a globally optimal planner as
opposed to RRT*, since our BVP solver incurs computational
overhead when invoked a large number of times.

IV. TWO-POINT BOUNDARY VALUE PROBLEM SOLVER

In this section we describe our two-point BVP solver
to exactly connect a given pair of states, which is a key



ingredient of BIT*. Typically, two-point BVP solvers are not
full motion planners, meaning that they do not account for
obstacles. The resulting trajectory is evaluated by the higher-
level planning algorithm and discarded in case the trajectory
is not collision-free.

We use a variant of sequential quadratic programming
(SQP) to compute local plans. It computes a locally optimal
solution to a full motion planning problem, but may fail if
the problem proves to be too difficult. SQP typically works
on systems with discrete-time dynamics and a finite horizon
– that is, only a pre-specified number of steps can be taken
to solve the planning problem. We do not know in advance
what the duration of an optimal trajectory is; to this end, we
keep the number of steps fixed, but make the time step that
each of these steps comprise a variable, and include it in the
optimization formulation.

A. Discretizing the Dynamics

Given an initial state x(t) and a constant control input u,
the evolution of the state over a given amount of time λ is
given by the solution to the differential equation of Eq. (1),
which we denote by a function f̃ :

x(t+ λ) = f̃(x(t),u, λ). (6)

We note that the function f̃ is in general difficult to compute
analytically, but it can be approximated closely with for
instance Runge-Kutta integration (see Appendix A). Also,
let the cost accumulated over an amount of time λ given
an initial state x and constant control input u be given by
function ˜̀:

˜̀(x,u, λ) =

∫ λ

0

`(f̃(x,u, t),u) dt. (7)

The above functions constitute the discrete-time dynamics
and the discrete-time cost function if we subdivide the time
axis into discrete steps of equal duration λ.

B. Optimization Problem

With the definitions of the discrete-time dynamics and the
discrete-time cost we can now reformulate the local motion
planning problem as a non-convex program. Let xk denote
the state at stage k, and let uk denote the constant control
input applied between stage k and stage k + 1, where λ is
the amount of time between stages. We then get:

find: λ,x0, . . . ,xs,u0, . . . ,us−1 (8)

that minimize:
s−1∑
k=0

˜̀(xk,uk, λ) (9)

such that: x0 = xstart, (10)
xs = xgoal, (11)

xk+1 = f̃(xk,uk, λ), ∀k ∈ 0 . . . s− 1
(12)

uk ∈ Ufree, ∀k ∈ 0 . . . s− 1 (13)
xk ∈ Xfree, ∀k ∈ 1 . . . s− 1 (14)
λ ≥ 0 (15)

The number of stages s comprising the motion plan is a pre-
set constant. The duration of the trajectory is variable given
that the duration λ of each step is part of the optimization.

We use sequential quadratic programming (SQP) to locally
optimize the non-convex, constrained optimization problem
that results from the two-point BVP formulation. SQP [24]
optimizes problems in parameter y of the form miny

˜̀(y)
subject to constraints. One repeatedly constructs a quadratic
program (quadratic objective and linear constraints) that
locally approximates the original problem around the cur-
rent solution y by linearizing the nonlinear constraints
and quadratizing the cost functional. Then one solves the
quadratic program to compute a step ∆y that make progress
on the original problem. Two necessary ingredients in a SQP
implementation are trust regions and merit functions. A trust
region constrains y in each subproblem to the region where
the approximation is valid. The trust region is adaptively
changed based on the merit function, which has the form
˜̀
µ(y) = ˜̀(y) + µ · ConstraintViolation(y). Here, µ is a

given penalty parameter that penalizes violations of nonlin-
ear constraints, and it ensures that the steps taken by the
algorithm make progress on both the cost function ˜̀(y) and
the constraints. The optimization algorithm solves a series
of problems miny

˜̀
µ0

(y),miny
˜̀
µ1

(y), . . . ,miny
˜̀
µn

(y) for
µ0 < µ1 < · · · < µn where the penalty parameter µ is
sequentially increased in an outer loop. We used sequential
quadratic programming (SQP) with `1 penalties, also used
by Schulman et al. [20] for kinematic motion planning.

At the core of the SQP method is a QP solver. We
efficiently solve the underlying QPs using a numerical op-
timization code generation framework called FORCES [4].
FORCES generates code for solving QPs that is based on
the interior-point method and is specialized for convex mul-
tistage problems such as trajectory optimization. Automatic
code generation for convex solvers has gained popularity
since it is able to exploit the fact that all problem dimensions
and the structure of the problem are known a priori. This
permits generation of highly customized and fast solver code
that solves instances of a particular problem. We use this
solver for all our experiments.

In order to make sure that each of the convex optimization
problems that are solved in sequence have a solution, we
must set the number of steps s sufficiently large. If we
assume that the linearized dynamics of each step and in each
iteration are controllable, then setting s > n (recall that n
is the dimension of the state space) guarantees the existence
of a solution in absence of any constraints. However, setting
s = n + 1 results in only one possible solution, that is in
general far from the optimum of the underlying continuous-
time problem definition. In order to approach such optimum,
we need λ → 0 and therefore set s → ∞, but that is not
practical. Therefore, we choose a value in between and set s
to be 3n in our implementation. Note that even with setting
s >> n, the SQP procedure may not result in a solution
because of the inequality constraints. In this case, we ignore
the connection, and treat it in the same way as a connection
that is not collision-free in traditional motion planners.



(a) RRT* with exact connector. (b) SST with goal radius .2. (c) BIT* with exact connector. (d) BIT* with our BVP solver.

(e) RRT* with exact connector. (f) SST with goal radius .2. (g) BIT* with exact connector. (h) BIT* with our BVP solver.

Fig. 2: Solution plots for double integrator model after running for 10 minutes. The top row has solutions from obstacle scene 1, and the bottom row has
solutions from obstacle scene 2. The blue indicates the tree found by the algorithm, and the green lines and arrows denote the solution found. Note that
for RRT* with the exact connector and SST, the trees are dense, while BIT* focuses its search.

V. EXPERIMENTAL RESULTS

We tested our method on three differential systems; a
simple double integrator system in 2D configuration space, a
cart-pole system with obstacles, and an acrobot system with
obstacles. All experiments were implemented to minimize
time to get from a start state to a goal state. We compared
SST [15], a state of the art shooting approach, with our
approach. We used the SST library provided by Kostas and
Littlefield [16]. Our implementation was in C++ and ran with
on a single 3.2 Ghz Intel processor. Our simulation results
are detailed in sections V-A to V-C.

A. Double Integrator

The double integrator model is a simple model described
by position in a nD space (our configuration space is n =
2D, our state space is 4D), and velocities for each coordinate
axis. The linear dynamics of the system is described by:

x =

[
p
ṗ

]
, ẋ =

[
0 In
0 0

]
x +

[
0
In

]
u.

Here, the control u = p̈ is acceleration, where p is a
vector that describes the position of the point robot and
ṗ is the velocity. We restricted our variables in this way:
p ∈ [−10, 10]2(m), ṗ ∈ [−1, 1]2(m/s),u ∈ [−1, 1]2(m/s

2
).

We ran our experiments with a point robot in two different
randomly generated obstacle scenarios as depicted in Fig. 2.
For each of these experiments, the start state was [0, 0, 0, 0]>

and the goal state was [9, 9, 0, 0]>.

We ran RRT* using the implementation provided by the
SMP library [12] which included the double integrator model
and an exact connector for this system under bounded
controls and states. We then took the exact connector and
plugged it into our implementation of BIT*. For BIT*, we
used a batch size of 150. SST requires a goal radius due to
its random propagation methods which we set to .2, below
which SST did not find a solution. For other SST parameters,
we set δv = .6, δs = .3 so that it is able to find a solution
through narrow passages in the scene. For this system, we
also compared to our implementation of Anytime RRTs [6],
using a goal radius of .2, εf = 0.05, δd = δc = 0.15. Each
experiment was run for 10 minutes each. Visual solutions
of these algorithms can be found in Fig. 2. Our heuristic
function for estimating edge cost in BIT* was difference in
position divided by max speed. The speed of the point robot
at time t is equal to the norm of the velocity vector ṗ(t).
We used the same heuristic function for Anytime RRTs.

In an effort to speed up our implementation, we pruned
calls to the BVP solver based on these criteria: the orientation
(direction of the velocity vector ṗ) of these two states
differed by more than π

2 , or the start state was in “front”
of the goal state (e.g., the projection of the goal state on
the line described by the position and orientation of the start
state is negative). We initialized states to be straight line
trajectories from start to goal, the controls to zero, and the
duration of the time step to be the distance between the two
states divided by the number of time steps.

The graphs in Fig. 3 show the best paths found by the



(a) Results for double integrator model in obstacle scene 1.

(b) Results for double integrator model in obstacle scene 2.

Fig. 3: Double integrator. The solid color coded lines indicate solution values
averaged over 10 runs. The dashed lines indicate the standard deviations.
The left graph corresponds to scene 1 and the right graph corresponds to
scene 2. The averages were computed only over the runs that had found
a solution at a given time, which explains the jumps and gaps in the best
cost.

algorithms versus computation time. These are averaged over
10 runs each. Note that BIT* with the exact connector
finds very similar values to RRT*. BIT* with our generic
BVP solver does not fall far behind, while SST computes a
trajectory that is approximately twice the cost of the others.
2 out of the 10 SST runs did not find a solution; they were
left out of these calculations. Note that SST uses a goal
radius of .2 while the other three algorithms connect the
start and goal states exactly. This gives a slight advantage
to SST in that the true optimum of the shortest path from
the start state to the goal region (in this case, the region
is a hypersphere) is less than or equal to the true optimum
for the other three problems. Anytime RRTs seems to find
a lower quality solution as compared to SST to begin with
but plateaus towards the end and it is not clear if the path
quality converges to the optimal value.

(a) BIT* with our BVP solver for obstacle scene 1.

(b) SST for obstacle scene 1. The final goal state found by this algorithm
is [−8.6× 10−3,−.106,−3.03, 3.99]>.

Fig. 4: Solution plots for cart-pole model after running for 10 minutes. The
poles are color coded according to time. The start state has a blue pole, and
evolves towards a red goal state.

Fig. 5: BIT* with our BVP solver for obstacle scene 2. Solution plots for
cart-pole model after running for 10 minutes. The poles are color coded
according to time. The start state has a blue pole, and evolves towards a
red goal state.

The main difference in running time between BIT* with
the exact connector and BIT* with the BVP solver is the
numerous calls to the BVP solver, which is the bottleneck
of the algorithm. On average, it takes 0.013s to run the BVP
solver with a standard deviation of 0.018s, and 2× 10−7s to
run the exact connector with a standard deviation of 4.8 ×
10−5s, which shows that our BVP solver is a factor of 105

times slower than the exact connector. This motivated the
need to speed up our implementation by pruning.

B. Cart-pole

The cart-pole system is a nonlinear system described by
the following dynamics [3]:

x = [θ̇ ṗ θ p]ᵀ,

ẋ =


−3m2lθ̇

2 sin θ cos θ−6(m1+m2)g sin θ−6(u−bṗ) cos θ
4l(m1+m2)−3m2l cos2 θ

2m2lθ̇
2 sin θ+3m2g sin θ cos θ+4u−4bṗ
4(m1+m2)−3m2l cos2 θ

θ̇
ṗ

 .
The state space is 4D and the control is 1D, which is the

external force applied to the cart. m1 denotes the mass of the
cart, m2 denotes the mass of the pole, l denotes the length
of the pole, θ denotes the angle of the pendulum, p denotes



(a) Results for cart-pole model in obstacle scene 1.

(b) Results for cart-pole model in obstacle scene 2.

Fig. 6: Results for cart-pole model. The solid color coded lines indicate
solution values averaged over 10 runs. The dashed lines indicate the standard
deviations. The left graph corresponds to scene 1 and the right graph
corresponds to scene 2. The averages were computed only over the runs
that had found a solution at a given time, which explains the jumps and
gaps in the best cost. Note that for scene 2, SST found no solutions for a
goal radius of 0.2, thus this graph only contains a plot for our method.

the position of the cart, b denotes the friction between the
cart and the ground, and g = 9.8 (m/s2) is acceleration due
to gravity. We chose m1 = .5 kg, m2 = .5 kg, l = .5 m,
and b = .1 N/m/s. For SST, we set δv = .8, δs = .4. A batch
size of 25 was chosen for BIT*.

For scene 1, we constrained the problem to p ∈ [−10, 10]
(m), ṗ ∈ [−10, 10] (m/s), θ̇ ∈ [−10, 10] (rad/s), u ∈
[−20, 20] (N). For each experiment, the start state was
[0, 0, 0,−4]> and the goal state was [0, 0, π, 4]>, e.g. the
goal state must be at position 4 with the pole propped up
and balanced. We set a goal radius of .4 for SST, below
which SST did not find a solution.

For scene 2, as proposed by [18], we constrained the
problem to p ∈ [−5, 5] (m), ṗ ∈ [−5, 5] (m/s), θ̇ ∈
[−10, 10] (rad/s), u ∈ [−10, 10] (N). For each experiment,

the start state was [0, 0, π,−.25]> and the goal state was
[0, 0, π, .25]>. To accommodate the smaller scale of this
problem, we had to set a goal radius of .2. Anything bigger
and SST would deem a state where the cart is on the other
side of the obstacle (with the pole propped up) a solution.
The obstacle layouts can be seen in Fig. 4. The heuristic
function we used for this system is very similar to the
heuristic function we used for the double integrator. We
take the difference in configurations and divide it by the
maximum speed.

Of the 10 runs, 5 of the SST runs found solutions which
are included in the averages in Fig. 6 for scene 1. BIT*
with our BVP solver found solutions for every run. We
re-initialized our duration of each time step if our BVP
solver did not make progress after the first iteration. Calling
this BVP solver took on average 0.0394s with a standard
deviation of 0.063s. For scene 2, SST found no solutions
over 10 runs for a goal radius of 0.2, while our method
found solutions for every run. Note that the goal radius for
scene 1 (.4) is quite large. This means that the goal state
found by SST does not have to be propped exactly upright, or
completely stopped (e.g. zero positional velocity) as shown
in Fig. 4 (b). Again, the true optimum of this problem is less
than or equal to the true optimum of the problem that BIT*
is trying to solve.

C. Acrobot

The acrobot system is two-link nonlinear system with two
joints. Let x = [θ θ̇]ᵀ, θ = [θ1 θ2]ᵀ be the 4D state of the
system. The system is described by dynamics given by [2]:

θ̈ = D−1(θ)
(
T−C(θ̇,θ)−Φ(θ)

)
,

where D(θ) is a 2× 2 matrix with elements

d11 = m1l
2
c1 +m2

(
l21 + l2c2 + 2lc2l1 cos(θ2)

)
+ I1 + I2,

d22 = m2l
2
c2 + I2,

d12 = d21 = m2

(
l2c2 + lc2l1 cos(θ2)

)
+ I2,

T is a 2× 1 matrix with elements

t1 = −Kθ̇1, t2 = τ −Kθ̇2,

C(θ̇,θ) is a 2× 1 matrix with elements

c1 = −m2l1lc2θ̇
2
2 sin(θ2)− 2m2l1lc2θ̇1θ̇2 sin(θ2),

c2 = m2l1lc2θ̇
2
1 sin(θ2),

and Φ(θ) is a 2× 1 matrix with elements

φ1 = (m1lc1 +m2l1) g cos(θ1) +m2lc2g cos(θ1 + θ2),

φ2 = m2lc2g cos(θ1 + θ2).

The control, τ is the external torque applied at the middle
joint. θ1 denotes the angle of the first link with the negative
y-axis, θ2 denotes the relative angle of the first link and the
second link, m1,m2 denotes the masses of the two links,
l1, l2 denotes the length of the two links, lc1, lc2 denotes the
length to the mass center of the two links, I1, I2 denotes the
link inertias, K is a damping coefficient, and g = 9.8 m/s2.



(a) BIT* with our BVP solver.

(b) SST with goal radius .2.

Fig. 7: Solution plots for the acrobot model after running for 10 minutes.
The links are color coded according to time. The start state has a blue pole,
and evolves towards a red goal state.

We chose m1 = m2 = 1 kg, l1 = l2 = 1 m, lc1 = lc2 = .5
m, I1 = .2 kg·m2, I2 = 1 kg·m2, and K = 1 Ns/m.

For our obstacle scene, we constrained the problem to
θ̇1, θ̇2 ∈ [−6, 6] (rad/s), τ ∈ [−8, 8] N·m. For each exper-
iment, the start state was [0, 0, 0, 0]ᵀ and the goal state was
[π, 0, 0, 0]ᵀ, e.g. both links must be standing straight up with
no angular velocity at the joints. We set a goal radius of .2
for SST. The obstacle layouts can be see in Fig. 7.

Our heuristic function to estimate the cost of an
edge between two states x1 and x2 for this system is
max{ |θ1(x1)−θ1(x2)|

vmax
, |θ2(x1)−θ2(x2)|

vmax
}, where θ1(x) denotes

the value of θ1 in state x, and vmax is the maximum angular
velocity in the problem.

Of the 10 runs for SST, each run found a solution. This
was the case as well for BIT* with our BVP solver. We
reinitialized our duration of each time step if our acrobot
BVP solver did not make progress after the first iteration.
Calling this solver took on average 0.24s with a standard
deviation of 0.347. In the SST implementation [16], a goal

Fig. 8: Results for acrobot model. The solid color coded lines indicate
solution values averaged over 10 runs. The dashed lines indicate the standard
deviations. The left graph corresponds to scene 1 and the right graph
corresponds to scene 2. The averages were computed only over the runs
that had found a solution at a given time, which explains the jumps and
gaps in the best cost.

radius was specified in terms of the distance between the end
effector positions at two acrobot states. In all cases of the
SST runs, the goal state was not upright because of the goal
radius (Fig. 7b).

VI. DISCUSSION, CONCLUSION, AND FURTHER WORK

In this work, we explore the feasibility of exploiting recent
advances in numerical optimal control and optimization to
solve two-point BVPs for arbitrary kinodynamic systems
and how they can be integrated with BIT* [7], a sampling-
based optimal planner. BIT* combines the anytime nature
of RRT* with the bulk efficiency of FMT* with heuristic
functions for intelligent search over a sequence of implicit
RGGs. We construct discretized versions of the dynamics
and cost by approximating solutions to differential equations
and integrals by numerical methods such as Runge-Kutta
integration. With this discretized form, we use sequential
quadratic programming (SQP), which iteratively construc-
tions quadratic program approximations to the original non-
convex problem in order to find a local optimum. Since the
duration of trajectories is not known a-priori, we include
the time-step as part of the optimization to allow SQP to
optimize over the duration of the trajectory while keeping
the number of discrete steps fixed.

Our preliminary results on the double integrator, cart-pole
system, and acrobot system are promising and indicate that
using a two-point BVP solver in the inner-loop of BIT* is
competitive with the state-of-the-art in sampling-based opti-
mal planning that explicitly avoids the use of BVP solvers.
With recent advances in optimization and optimal control, we
believe that using two-point BVP solvers for kinodynamic
motion planning will emerge as an active research area. We
intend to explore the notion of optimality of planners such as
RRT* and BIT* when using a discrete-time two-point BVP
solver to exactly connect states in the tree.
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APPENDIX

Discretizing Dynamics and Cost
We approximate the discretized dynamics f̃(x,u, λ) and

discretized cost ˜̀(x,u, λ) given a state x, a control input u,
and a time-step duration λ using Runge-Kutta-4 integration
of the continuous-time dynamics f and cost `. The values of
these functions are best computed simultaneously:

f̃(x,u, λ) = x + (k1 + 2k2 + 2k3 + k4)/6, (16)
˜̀(x,u, λ) = (k1 + 2k2 + 2k3 + k4)/6, (17)

where

k1 = λf(x,u), k1 = λ`(x,u), (18)
k2 = λf(x + k1/2,u), k2 = λ`(x + k1/2,u), (19)
k3 = λf(x + k2/2,u), k3 = λ`(x + k2/2,u), (20)
k4 = λf(x + k3,u), k4 = λ`(x + k3,u). (21)


