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Problem Setting
Regression under covariate shift
Consider a regression setting, where we observe random variables {(𝑋𝑖, 𝑌𝑖)}𝑛𝑖=1,

𝑌𝑖 = 𝑓⋆(𝑋𝑖) + 𝜉𝑖, 𝑖 = 1, … , 𝑛.
Above, 𝑓⋆ denotes the conditional expectation E[𝑌 ∣ 𝑋 = ⋅]. We assume we have
𝑛 = 𝑛𝑃+𝑛𝑄 covariates, drawn from source distribution𝑃 and target distribution𝑄:

source covariates: 𝑋1, … , 𝑋𝑛𝑃
i.i.d.∼ 𝑃

target covariates: 𝑋𝑛𝑃+1, … , 𝑋𝑛𝑃+𝑛𝑄
i.i.d.∼ 𝑄.

Overview
We study the relationship between the source-target pair (𝑃,𝑄) and the
fundamental hardness of estimating the function 𝑓⋆. Specifically, we
• define a similarity measure 𝜌ℎ, based on probabilities of balls of radius ℎ > 0
• relate the mapping ℎ ↦ 𝜌ℎ to certain covering numbers of the covariate space
• characterize minimax rates over families of covariate shifts based on 𝜌ℎ

A Similarity Measure for Covariate Shift
Similarity measure
Let 𝑃,𝑄 be two probability measures on a common metric space (𝒳 , 𝑑). For any
radius ℎ > 0, we define a similarity measure 𝜌ℎ as

𝜌ℎ(𝑃,𝑄) ∶= 􏾙
𝒳

1
𝑃(B(𝑥, ℎ)) d𝑄(𝑥),

where B(𝑥, ℎ) denotes the ball of radius ℎ > 0 centered around 𝑥.

Properties of similarity measure
We bound the similarity measure 𝜌ℎ(𝑃,𝑄) via the covering number𝑁(ℎ). This is the
minimal number of balls of radius ℎ required to cover𝒳 .

Proposition. If for some ℎ > 0 there is 𝜆 > 0 such that
𝜆𝑃(B(𝑥, ℎ)) ≥ 𝑄(B(𝑥, ℎ)), for all 𝑥 ∈ 𝒳 ,

then we have the upper bound 𝜌ℎ(𝑃,𝑄) ≤ 𝜆𝑁(ℎ/2).

Some consequences of this result are given below.
• If𝒳 ⊂ R𝑘 has diameter𝐷, then 𝜌ℎ(𝑃,𝑄) ≤ (1 +

2𝐷
ℎ )

𝑘.
• If the likelihood ratio d𝑄/d𝑃 is uniformly bounded by𝑏, then𝜌ℎ(𝑃,𝑄) ≤ 𝑏𝑁(ℎ/2).

See paper for additional examples, discussion, and the proof of this result.

Results: Minimax Upper & Lower Bounds
Assumptions
We assume 𝒳 = [0, 1]. We also assume the regression function 𝑓⋆ is smooth, so
that some 𝛽 ∈ (0, 1] and 𝐿 > 0, it lies in the Hölder class

ℱ (𝛽, 𝐿) ∶= 􏿻 𝑓 ∶ [0, 1] → R ∶ |𝑓(𝑥) − 𝑓(𝑥′)| ≤ 𝐿|𝑥 − 𝑥′|𝛽, for any 𝑥, 𝑥′ ∈ [0, 1] 􏿾.

We assume𝑌𝑖 has conditional variance bounded by 𝜎2 almost surely.

Families of covariate shifts
We define families of covariate shifts instances—which are pairs of probability
measures on [0, 1]. These are determined by parameters 𝛼 > 0, 𝐶 ≥ 1:

𝒟(𝛼,𝐶) ∶= 􏿻 (𝑃,𝑄) ∣ sup
0<ℎ≤1

ℎ𝛼𝜌ℎ(𝑃,𝑄) ≤ 𝐶 􏿾 for 𝛼 ≥ 1

𝒟 ′(𝛼, 𝐶) ∶= 􏿻 (𝑃,𝑄) ∣ sup
0<ℎ≤1

􏿴𝜌ℎ(𝑄,𝑄) ∨ ℎ𝛼𝜌ℎ(𝑃,𝑄)􏿷 ≤ 𝐶 􏿾 for 𝛼 ∈ (0, 1]

Intuitively, these are pairs of distributions (𝑃,𝑄)where the growth of the similarity
measure is dominated as 𝜌ℎ(𝑃,𝑄) ≲ ℎ−𝛼 when ℎ → 0+.

Main result: minimax upper & lower bounds
To estimate 𝑓⋆ we consider the classical Nadaraya-Watson (NW) estimator. For a
parameter ℎ𝑛 > 0, it is given by

̂𝑓(𝑥) ∶=
∑𝑛
𝑖=1𝑌𝑖 1{𝑋𝑖 ∈ B(𝑥, ℎ𝑛)}
∑𝑛
𝑖=1 1{𝑋𝑖 ∈ B(𝑥, ℎ𝑛)}

.

Below, we state matching minimax upper and lower bounds for estimating 𝑓⋆.
Note that excess prediction error under𝑄 is given by the norm ‖𝑔‖2𝐿2(𝑄) ∶= E𝑄[𝑔2(𝑋)].

Theorem.Suppose 𝜎 ≥ 𝐿. There are universal constants such that for 𝑛𝑃 ∨ 𝑛𝑄 ≳ 1,
(a) for 𝛼 ≥ 1 and𝐶 ≥ 1, we have

sup
(𝑃,𝑄)∈𝒟(𝛼,𝐶)

inf
̂𝑓

sup
𝑓⋆∈ℱ (𝛽,𝐿)

E‖ ̂𝑓 − 𝑓⋆‖2𝐿2(𝑄) ≍ 􏿻􏿴
𝑛𝑃
𝜎2
􏿷
2𝛽+1
2𝛽+𝛼 + 􏿴

𝑛𝑄
𝜎2
􏿷􏿾
−
2𝛽
2𝛽+1, and

(b) for 𝛼 ∈ (0, 1] and𝐶 ≥ 1, we have

sup
(𝑃,𝑄)∈𝒟 ′(𝛼,𝐶)

inf
̂𝑓

sup
𝑓⋆∈ℱ (𝛽,𝐿)

E‖ ̂𝑓 − 𝑓⋆‖2𝐿2(𝑄) ≍ 􏿻􏿴
𝑛𝑃
𝜎2
􏿷
2𝛽
2𝛽+𝛼 + 􏿴

𝑛𝑄
𝜎2
􏿷􏿾
−1
.

This result summarizes Theorems 1, 2, and Corollary 1 in our full paper.

Overview of Lower Bound Argument
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Proposition 2. Let ↵ > 1 and C > 1. Define P and Q as in Table 1, with the following choice of

parameters ", S:

(a) if C > 6, set " = 6/C, and S = 1/4;

(b) if 1 6 C 6 6, set " = 1, and S = 1
4(C/6)1/↵.

Then for any choice of M, r > 0 satisfying S = 6Mr, the pair (P,Q) lies in D(↵, C).

See section 5.2.1 for a proof of this claim.

Construction of hard regression functions. Now we move on to construct a packing set of
F(�, L). Let  : [�1, 1] ! R be such that  (�1) =  (1) = 0 and

�� (x)� (y)
�� 6 |x� y|� , for all x, y 2 [�1, 1], and, (10a)

Z 1

�1
 2(x) dx =·· C

2
 > 0. (10b)

Many choices of  are possible above [22, see chap. 2]; we require C2
 6 1/6, which is possible by

taking  (x) = e�1/(1�x2)1{|x| 6 1}. For a sequence b = (b1, . . . , bM ) 2 {0, 1}M , we define

fb(x) ··=
MX

j=1

bj�j(x), where �j(x) ··= Lr� 
⇣x� zj

r

⌘
.

We will take
H ··=

n
fb | b 2 B

o
.

Above, B is a packing set of the discrete cube {0, 1}M , originally constructed by Gilbert [7] and
Varshamov [23]. The following result records the main property of this set.

Lemma 2 (Gilbert-Varshamov [22, Lemma 2.9]). Let M > 8. There is a subset B ⇢ {0, 1}M such

that kb� b0k1 > M/8 for all distinct b, b0 2 B, and |B| > 2M/8
.

The next result summarizes the important properties of the hard set of regression functions, H.

Lemma 3. The set H has the following properties:

(a) it is contained within the Hölder class, H ⇢ F(�, L);

(b) it has the following separation: for each distinct f, g 2 H, kf � gk2L2(Q) >
C2
 

16 L
2r2� ;

(c) it satisifes the following L2(P ) and L2(Q) bounds:

kfk2L2(Q) 6
C2
 M

2S
L2r2�+1

and kfk2L2(P ) 6
"C2
 M

6S↵
L2r2�+↵,

for all f 2 H.
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6

Pn
i=1(f

?(x)� f?(Xi))21{Xi 2 B(x, hn)}Pn
i=1 1{Xi 2 B(x, hn)}

1{x 2 Gn}

(ii)
6 L2h2�n 1{x 2 Gn}.

Bound (a) now follows immediately. Above, (i) follows from Jensen’s inequality and (ii) makes use
of Assumption 1. For bound (b), note that by independence among {(Xi, ⌫i)}ni=1,

E[(f(x)� bf(x))2 | X1, . . . , Xn] =
nX

i=1

E[⌫2i | Xi]
� 1{Xi2B(x,hn)}Pn

i=1 1{Xi2B(x,hn)}

�2
1{x 2 Gn}

(iii)
6 �2

nX

i=1

� 1{Xi2B(x,hn)}Pn
i=1 1{Xi2B(x,hn)}

�2
1{x 2 Gn}

=
�2

Pn
i=1 1{Xi 2 B(x, hn)}

1{x 2 Gn},

which proves the claim. Above, (iii) follows from Assumption 3.

5.2 Proof of Part (a) of Theorem 2

Before giving the complete proof, we outline the main steps involved.

1. We first construct a hard instance (P,Q) 2 D(↵, C). This instance is designed such that the
integral quantity ⇢h(P,Q) must scale as Ch�↵.

2. Then we select a family of hard regression functions contained within F(�, L) that guarantees
the worst-case expected error for our pair of distributions, (P,Q).

3. Finally, we apply Fano’s method over this set of regression functions to show that the expected
error must scale as the righthand side of inequality (2).

Construction of hard pair of distributions. Let S, r 2 (0, 1] Let M = S
6r . Define the intervals

Ij ··= (zj � 3r, zj + 3r], where zj ··= 6jr � 3r, j = 1, . . . ,M.

We specify P and Q on each interval Ij as follows: RP — would be nice to put a picture here.

subinterval density of P density of Q

(zj � 3r, zj � r] 1
4Mr (1�

"
3(

r
S )

↵�1) 0

(zj � r, zj + r] "
6Mr (

r
S )

↵�1 1
2Mr

(zj + r, zj + 3r] 1
4Mr (1�

"
3(

r
S )

↵�1) 0

Table 1. Specification of densities for lower bound pair of distributions (P,Q) on the interval Ij .

By construction, both P and Q assign probability 1/M to the entire interval Ij . The following
proposition verifies that (P,Q) lies in D(↵, C) for proper choices of the " and S.
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integral quantity ⇢h(P,Q) must scale as Ch�↵.

2. Then we select a family of hard regression functions contained within F(�, L) that guarantees
the worst-case expected error for our pair of distributions, (P,Q).

3. Finally, we apply Fano’s method over this set of regression functions to show that the expected
error must scale as the righthand side of inequality (2).

Construction of hard pair of distributions. Let S, r 2 (0, 1] Let M = S
6r . Define the intervals

Ij ··= (zj � 3r, zj + 3r], where zj ··= 6jr � 3r, j = 1, . . . ,M.

We specify P and Q on each interval Ij as follows: RP — would be nice to put a picture here.

subinterval density of P density of Q

(zj � 3r, zj � r] 1
4Mr (1�

"
3(

r
S )

↵�1) 0

(zj � r, zj + r] "
6Mr (

r
S )

↵�1 1
2Mr

(zj + r, zj + 3r] 1
4Mr (1�

"
3(

r
S )

↵�1) 0

Table 1. Specification of densities for lower bound pair of distributions (P,Q) on the interval Ij .

By construction, both P and Q assign probability 1/M to the entire interval Ij . The following
proposition verifies that (P,Q) lies in D(↵, C) for proper choices of the " and S.
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D(� + 1, 2
C )

�(�, C)

Worst-case instances coincide
(

pairs (P,Q) for which transfer exponent is loose

0

1

M intervals
z1 = 3r

P

Q

1

D(� + 1, 2
C )

�(�, C)

Worst-case instances coincide
(

pairs (P,Q) for which transfer exponent is loose

0

1

M intervals
z1 = 3r

P

Q

1

D(� + 1, 2
C )

�(�, C)

Worst-case instances coincide
(

pairs (P,Q) for which transfer exponent is loose

0

1

M = S
6r intervals

z1 = 3r

P

Q

1

Illustration of lower bound instance

Proof outline
The following steps outline our construction used to
prove the minimax lower bounds stated previously:
1. Selecting a hard covariate shift pair (𝑃,𝑄):

We first pick a pair (𝑃,𝑄) ∈ 𝒟 (𝛼, 𝐶) when 𝛼 ≥
1, or (𝑃,𝑄) ∈ 𝒟 ′(𝛼, 𝐶) when 𝛼 < 1. The
construction follows the figure on the right. The
parameters 𝑆 = 6𝑀𝑟 are chosen as a function of
(𝛼, 𝐶, 𝑛𝑃, 𝑛𝑄, 𝛽, 𝜎, 𝐿) so as to vary the hardness of
the instance with the problem data.

2. Constructing hard regression functions:
We construct a family of hard regression
functions ℋ , which have a variable number
of “spikes,” occurring exactly where 𝑃 has low
mass and 𝑄 has high mass. These spikes are
constructed so as to satisfy the (𝛽, 𝐿)-Hölder condition so thatℋ ⊂ ℱ (𝛽, 𝐿).

3. Demonstrating hardness of instance:
Intuitively, a good estimator ̂𝑓 of 𝑓⋆ must distinguish whether there is a spike
(in 𝑓⋆) on each of the 𝑀 subintervals. These regions, however, are where
the likelihood ratio d𝑄/d𝑃 is large. Thus, under 𝑃, we are unlikely to observe
covariates there. Formally, we use a packing lower bound (Fano’s method).

Discussion
Hardest instances

coincide

For some instances,
transfer exponent

is loose

(𝛾, 𝐶𝛾)-transfer exponent

𝒟(𝛾 + 1, 2/𝐶𝛾)

Comparison of transfer exponent to
similarity measure

Comparison to transfer exponent
Kpotufe and Martinet propose an another
notion of similarity for a covariate shift pair
(𝑃,𝑄), defined by two parameters: 𝛾 ≥ 0 and
𝐶𝛾 ∈ (0, 1]. The pair (𝑃,𝑄) has (𝛾, 𝐶𝛾)-transfer
exponent if for all ℎ > 0 and all 𝑥 ∈ 𝒳 ,

𝑃(B(𝑥, ℎ)) ≥ 𝐶𝛾ℎ𝛾𝑄(B(𝑥, ℎ))
Using our proposition connecting the similarity
measure with packing numbers:

(𝑃,𝑄) has
(𝛾, 𝐶𝛾)-transfer exponent ⟹ (𝑃,𝑄) lies in

𝒟(𝛾 + 1, 2/𝐶𝛾)

This implication is depicted by the figure on the
left. As a result, our results imply statistical
rates of convergence for our estimators when

applied to covariate shift instances with known transfer exponent.

References & related work: Please see full paper (at QR code above).


