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Problem Setting

Regression under covariate shift

Consider a regression setting, where we observe random variables {(X;, Y;)}",,
Yi = f*(Xl) + Ei, 1 = 1, eee , 1.

Above, f* denotes the conditional expectation E[Y | X = -]. We assume we have
n = np + ng covariates, drawn from source distribution P and target distribution Q:

: iid.
source covariates: Xiy o, Xy, ~° P

1.1.d.

target covarlates: Xipt1r - r Xnpan, ~ Q-

Overview
We study the relationship between the source-target pair (P,Q) and the
fundamental hardness of estimating the function f*. Specifically, we

- define a similarity measure py, based on probabilities of balls of radius 1 > 0

- relate the mapping i — pj, to certain covering numbers of the covariate space

- characterize minimax rates over families of covariate shifts based on pj,

A Similarity Measure for Covariate Shift

Similarity measure

Let P, Q be two probability measures on a common metric space (°,d). For any
radius i > 0, we define a similarity measure pj, as

0u(P, Q) = f% BT

where B(x, ) denotes the ball of radius /1 > 0 centered around x.

dQ(x),

Properties of similarity measure

We bound the similarity measure p,(P, Q) via the covering number N (h). This 1s the
minimal number of balls of radius / required to cover 2.

Proposition. If for some h > 0 thereis A > 0 such that
AP(B(x, h)) > Q(B(x, h)), forallx € 77,
then we have the upper bound p,(P, Q) < A N(h/2).

Some consequences of this result are given below.
« If 27 ¢ R*has diameter D, then pj,(P, Q) < (1 + %)k.

- Ifthe likelihood ratio dQ/d P is uniformly bounded by b, then p,,(P, Q) < b N(h/2).
See paper for additional examples, discussion, and the proof of this result.

Results: Minimax Upper & Lower Bounds

Assumptions

We assume 27 = [0,1]. We also assume the regression function f* is smooth, so
that some § € (0,1] and L > 0, it lies in the Holder class

F(B,L) := {f [0,1] - R : ‘f(x) —f(x’)‘ < Llx —x'|P, foranyx,x’ €[0,1] }

We assume Y; has conditional variance bounded by ¢ almost surely.

Families of covariate shifts

We define families of covariate shifts instances—which are pairs of probability
measures on [0,1]. These are determined by parametersa > 0,C > 1:

D (a,C) =1 (P,Q) | sup h¥p,(P,Q) < c} fora > 1
\ O<h<1

D'(a,C) = { (P,Q) | sup (p(Q Q) V hp,(P, Q) < c} for a € (0,1]

O<h<1

Intuitively, these are pairs of distributions (P, Q) where the growth of the similarity
measure 1s dominated as p,(P, Q) < h™*whenh — 0.

Main result: minimax upper & lower bounds

To estimate f* we consider the classical Nadaraya-Watson (NW) estimator. For a
parameter 1, > 0, it 1s given by

i Yi1{Xi € B(x, h,))
2?21 I{Xz S B(x/ hn)} |

f(x) =

Below, we state matching minimax upper and lower bounds for estimating f*.
Note that excess prediction error under Q1s given by the norm || gH%Z(Q) = EQ[gZ(X)].

Theorem. Suppose 0 > L. There are universal constants such that fornp V ng 2 1,
(@) fora > 1 and C > 1, we have
26+1 2p

: A Np n 2B+1
sup 11}f sup EHf—f*H%z(Q) = {(—2)2ﬁ+0‘ | ( Q)} P ., and
(P,QeZ(,C) f fr*eF(BL) 0

(b) fora € (0,1] and C > 1, we have

28 P

i 7 nP\2gra , (MQ
sup Iinf sup E|f —f*sz = { | o } :
(P,QEZ"(a,C) | f*eF(BL) L~(Q) (02) (02)

This result summarizes Theorems 1, 2, and Corollary 1 in our full paper.

Overview of Lower Bound Argument

Proof outline

The following steps outline our construction used to 0\ s !
prove the minimax lower bounds stated previously: ~

1. Selecting a hard covariate shift pair (P, Q): 6r M= £ intervls
We first pick a pair (P,Q) € Z(a,C) when a > N
1, or (P,Q) € Z2’'(a,C) when @« < 1. The 0 g
construction follows the figure on the right. The ~ Q
parameters S = 6Mr are chosen as a function of L P
(a,C,np,np, B,0,L) so as to vary the hardness of F ar( 537

the instance with the problem data. = (z)a1

2. Constructing hard regression functions:
We construct a family of hard regression
functions 7, which have a variable number  niustration of lower bound instance
of “spikes,” occurring exactly where P has low
mass and Q has high mass. These spikes are
constructed so as to satisfy the (5, L)-Holder condition so that /72" C . (B, L).

3. Demonstrating hardness of instance:

Intuitively, a good estimator f of f* must distinguish whether there is a spike
(in f*) on each of the M subintervals. These regions, however, are where
the likelithood ratio dQ/dP is large. Thus, under P, we are unlikely to observe
covariates there. Formally, we use a packing lower bound (Fano’s method).

Discussion

For some instances,

transfer exponent Hardest instances
is loose coincide

Comparison to transfer exponent

Kpotufe and Martinet propose an another
notion of similarity for a covariate shift pair
(P, Q), defined by two parameters: ¥ > 0 and
C, € (0,1].. The pair (P, Q) has (y, C, )-transfer
exponent if forall 7 > O and all x € 27,

P(B(x, 1)) = C,h"Q(B(x, h))

(y,C,)-transfer exponent

Using our proposition connecting the similarity
measure with packing numbers:

(P, Q) has (P, Q) liesin

(y, C,)-transter exponent — 9y +1,2/C)

I(y +1,2/C,) . . . . . .
Thisimplication s depicted by the figure on the

left. As a result, our results imply statistical
rates of convergence for our estimators when
applied to covariate shift instances with known transfer exponent.

Comparison of transfer exponent to
similarity measure
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