A New Similarity Measure for Covariate Shift

Reese Pathak ${ }^{1}$ [pathakr@berkeley.edu], Cong Ma ${ }^{2}$, and Martin J. Wainwright ${ }^{1,3}$
${ }^{1}$ UC Berkeley Dept. of EECS, ${ }^{2}$ University of Chicago Dept. of Statistics, ${ }^{3}$ UC Berkeley Dept. of Statistics

Problem Setting

Regression under covariate shift

Consider a regression setting, where we observe random variables $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}$,

$$
Y_{i}=f^{\star}\left(X_{i}\right)+\xi_{i}, \quad i=1, \ldots, n .
$$

Above, f^{\star} denotes the conditional expectation $\mathbf{E}[Y \mid X=\cdot]$. We assume we have $n=n_{P}+n_{Q}$ covariates, drawn from source distribution P and target distribution Q :

$$
\begin{array}{ll}
\text { source covariates: } & X_{1}, \ldots, X_{n_{P}} \stackrel{\text { i.i.d. }}{\sim} P \\
\text { target covariates: } & X_{n_{p}+1}, \ldots, X_{n_{p}+n_{Q}} \stackrel{\text { i.i.d. }}{\sim} Q .
\end{array}
$$

Overview

We study the relationship between the source-target pair (P, Q) and the fundamental hardness of estimating the function f^{\star}. Specifically, we
define a similarity measure ρ_{h}, based on probabilities of balls of radius $h>0$ - relate the mapping $h \mapsto \rho_{h}$ to certain covering numbers of the covariate space - characterize minimax rates over families of covariate shifts based on ρ_{h}

A Similarity Measure for Covariate Shift

Similarity measure

Let P, Q be two probability measures on a common metric space (\mathscr{X}, d). For any radius $h>0$, we define a similarity measure ρ_{h} as

$$
\rho_{h}(P, Q):=\int_{\mathscr{X}} \frac{1}{P(\mathrm{~B}(x, h))} \mathrm{d} Q(x),
$$

where $\mathrm{B}(x, h)$ denotes the ball of radius $h>0$ centered around x.

Properties of similarity measure

We bound the similarity measure $\rho_{h}(P, Q)$ via the covering number $N(h)$. This is the minimal number of balls of radius h required to cover \mathscr{X}.
Proposition. Iffor some $h>0$ there is $\lambda>0$ such that

$$
\lambda P(\mathrm{~B}(x, h)) \geq Q(\mathrm{~B}(x, h)), \quad \text { for all } x \in \mathscr{X},
$$

then we have the upper bound $\rho_{h}(P, Q) \leq \lambda N(h / 2)$.
Some consequences of this result are given below.

- If $\mathscr{X} \subset \mathbf{R}^{k}$ has diameter D, then $\rho_{h}(P, Q) \leq\left(1+\frac{2 D}{h}\right)^{k}$.
- If the likelihood ratio $\mathrm{d} Q / \mathrm{d} P$ is uniformly bounded by b, then $\rho_{h}(P, Q) \leq b N(h / 2)$. See paper for additional examples, discussion, and the proof of this result.

Results: Minimax Upper \& Lower Bounds

Assumptions

We assume $\mathscr{X}=[0,1]$. We also assume the regression function $f \star$ is smooth, so that some $\beta \in(0,1]$ and $L>0$, it lies in the Hölder class

$$
\mathscr{F}(\beta, L):=\left\{f:[0,1] \rightarrow \mathbf{R}:\left|f(x)-f\left(x^{\prime}\right)\right| \leq L\left|x-x^{\prime}\right|^{\beta}, \text { for any } x, x^{\prime} \in[0,1]\right\} .
$$

We assume Y_{i} has conditional variance bounded by σ^{2} almost surely.

Families of covariate shifts

We define families of covariate shifts instances-which are pairs of probability measures on $[0,1]$. These are determined by parameters $\alpha>0, C \geq 1$

$$
\begin{aligned}
& \mathscr{D}(\alpha, C):=\left\{(P, Q) \mid \sup _{0<h \leq 1} h^{\alpha} \rho_{h}(P, Q) \leq C\right\} \quad \text { for } \alpha \geq 1 \\
& \mathscr{D}^{\prime}(\alpha, C):=\left\{(P, Q) \mid \sup _{0<h \leq 1}\left(\rho_{h}(Q, Q) \vee h^{\alpha} \rho_{h}(P, Q)\right) \leq C\right\} \quad \text { for } \alpha \in(0,1]
\end{aligned}
$$

Intuitively, these are pairs of distributions (P, Q) where the growth of the similarity measure is dominated as $\rho_{h}(P, Q) \lesssim h^{-\alpha}$ when $h \rightarrow 0^{+}$.

Main result: minimax upper \& lower bounds

To estimate f^{\star} we consider the classical Nadaraya-Watson (NW) estimator. For a parameter $h_{n}>0$, it is given by

$$
\hat{f}(x):=\frac{\sum_{i=1}^{n} Y_{i} \mathbf{1}\left\{X_{i} \in \mathrm{~B}\left(x, h_{n}\right)\right\}}{\sum_{i=1}^{n} \mathbf{1}\left\{X_{i} \in \mathrm{~B}\left(x, h_{n}\right)\right\}}
$$

Below, we state matching minimax upper and lower bounds for estimating f^{\star}. Below, we state matching minimax upper and lower bounds for estimating f^{\star}
Note that excess prediction error under Q is given by the norm $\|g\|_{L^{2}(O)}^{2}:=\mathbf{E}_{Q}\left[g^{2}(X)\right]$

Theorem. Suppose $\sigma \geq L$. There are universal constants such that for $n_{P} \vee n_{Q} \gtrsim 1$, (a) for $\alpha \geq 1$ and $C \geq 1$, we have

$$
\sup _{(P, Q) \in \mathscr{\mathscr { P }}(\alpha, C)} \inf _{\hat{f})} \sup _{f^{\star} \in \mathscr{F}(\beta, L)} \mathbf{E}\left\|\hat{f}-f^{\star}\right\|_{L^{2}(Q)}^{2}=\left\{\left(\frac{n_{P}}{\sigma^{2}}\right)^{\frac{2 \beta+1}{2 \beta+\alpha}}+\left(\frac{n_{Q}}{\sigma^{2}}\right)\right\}^{-\frac{2 \beta}{2 \beta+1}}, \quad \text { and }
$$

(b) for $\alpha \in(0,1]$ and $C \geq 1$, we have

$$
\sup _{(P, Q) \in \mathscr{Q}^{\prime}(\alpha, C)} \inf _{\hat{f}} \sup _{f^{\star} \in \mathscr{\mathscr { F }}(\beta, L)} \mathbf{E}\left\|\hat{f}-f^{\star}\right\|_{L^{2}(Q)}^{2}=\left\{\left(\frac{n_{P}}{\sigma^{2}}\right)^{\frac{2 \beta}{2 \beta+\alpha}}+\left(\frac{n_{Q}}{\sigma^{2}}\right)\right\}^{-1} .
$$

This result summarizes Theorems 1, 2, and Corollary 1 in our full paper.

Overview of Lower Bound Argument

Proof outline

The following steps outline our construction used to prove the minimax lower bounds stated previously: 1. Selecting a hard covariate shift pair (P, Q) :

We first pick a pair $(P, Q) \in \mathscr{D}(\alpha, C)$ when $\alpha \geq$ 1 , or $(P, Q) \in \mathscr{D}^{\prime}(\alpha, C)$ when $\alpha<1$. The construction follows the figure on the right. The parameters $S=6 M r$ are chosen as a function of the instance with the problem data the instance with the problem data.
2. Constructing hard regression functions: We construct a family of hard regression functions $\not{\mathscr{L}}$, which have a variable number mass and Q has high mass. These spikes are
3. Demonstrating hardness of instance:

Intuitively, a good estimator \hat{f} of f^{\star} must distinguish whether there is a spike (in f^{\star}) on each of the M subintervals. These regions, however, are where covariates there. Formally, we use a packing lower bound (Fan's method).

Discussion

Comparison to transfer exponent

Kpotufe and Martinet propose an another notion of similarity for a covariate shift pair (P, Q), defined by two parameters: $\gamma \geq 0$ and $C_{\gamma} \in(0,1]$. The pair (P, Q) has $\left(\gamma, C_{\gamma}\right)$-transfer exponent if for all $h>0$ and all $x \in \mathscr{X}$,

$$
P(\mathrm{~B}(x, h)) \geq \mathrm{C}_{\gamma} h^{\gamma} Q(\mathrm{~B}(x, h))
$$

Using our proposition connecting the similarity measure with packing numbers:
(P, Q) has
$\Longrightarrow \quad(P, Q)$ lies in $\left(\gamma, C_{\gamma}\right)$-transfer exponent $\quad \mathscr{D}\left(\gamma+1,2 / C_{\gamma}\right)$ This implication is depicted by the figure on the left. As a result, our results imply statistical rates of convergence for our estimators when with known transfer exponent.

References \& related work: Please see full paper (at QR code above).

