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Regression under covariate shift

our work focuses on regression under covariate shift

observational model
we observe a dataset {(𝑋𝑖, 𝑌𝑖)}𝑛𝑖=1, where

𝑌𝑖 = 𝑓⋆(𝑋𝑖) + 𝜉𝑖, 𝑖 = 1, … , 𝑛,

where 𝑓⋆ = E[𝑌 ∣ 𝑋 = ⋅]
covariate distribution
covariates are sampled from source distribution 𝑃 and target distribution𝑄:

source covariates: 𝑋1, … , 𝑋𝑛𝑃
i.i.d.∼ 𝑃,

target covariates: 𝑋𝑛𝑃+1, … , 𝑋𝑛𝑃+𝑛𝑄
i.i.d.∼ 𝑄,

(𝑛 = 𝑛𝑃 + 𝑛𝑄)
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Similarity measure

we define a measure between two distributions 𝑃,𝑄 on metric space (𝒳 , 𝑑)

similarity measure
for radius ℎ > 0, we define

𝜌ℎ(𝑃,𝑄) ∶= 
𝒳

1
𝑃(B(𝑥, ℎ)) d𝑄(𝑥) = E𝑋∼𝑄

1
𝑃(B(𝑋, ℎ)) 

above, B(𝑥, ℎ) is closed ball of radius ℎ centered at 𝑥

▶ at fixed ℎ > 0, absolute continuity is not required for finite similarity measure
▶ measure generalizes existing notions of “similarity” for pair (𝑃,𝑄)
▶ our results use scaling of mapping ℎ ↦ 𝜌ℎ(𝑃,𝑄) in limit ℎ → 0+
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Bounds on similarity measure

we bound the similarity measure using covering numbers

ℎ

𝒳

covering number 𝑁(ℎ) ∶= minimal number of balls of radius ℎ required to cover𝒳 5



Bounds on similarity measure

can bound similarity measure by approximating the integral over minimal covers

Proposition
Suppose that for some ℎ > 0 there is 𝜆 > 0 such that the mass comparison condition

𝜆 𝑃(B(𝑥, ℎ)) ≥ 𝑄(B(𝑥, ℎ))

holds for all 𝑥 ∈ 𝒳 . Then, the similarity measure satisfies

𝜌ℎ(𝑃,𝑄) ≤ 𝜆𝑁(ℎ/2).

(note 𝜆 can depend on ℎ in claim above)
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Consequences of general bound

using previous claim, can bound similarity measure in some situations

examples

▶ bounded likelihood ratio: if𝑄 ≪ 𝑃 and d𝑄
d𝑃 (𝑥) ≤ 𝑏 for all 𝑥, have 𝜌ℎ(𝑃,𝑄) ≤ 𝑏 𝑁

ℎ
2 

▶ transfer exponent (Kpotufe & Martinet, 2018; 2021):
– pair (𝑃,𝑄) has (𝛾, 𝐶𝛾)-transfer exponent if

𝑃(B(𝑥, ℎ)) ≥ 𝐶𝛾ℎ𝛾𝑄(B(𝑥, ℎ)) for all 𝑥 ∈ 𝒳 , all ℎ > 0. (𝛾, 𝐶𝛾) ∈ R+ × (0, 1]

– implies similarity measure bound, 𝜌ℎ(𝑃,𝑄) ≤ (ℎ𝛾𝐶𝛾)−1 𝑁(ℎ/2),

(note that𝑁(ℎ) ≲ ℎ−𝑘 as ℎ → 0+ for compact domains𝒳 ⊂ R𝑘)
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Assumptions on regression setup

recall our regression setup,

𝑌𝑖 = 𝑓⋆(𝑋𝑖) + 𝜉𝑖, for 𝑖 = 1, … , 𝑛

smoothness condition
assume𝒳 = [0, 1] and assume that 𝑓⋆ is 𝐿-Lipschitz,

𝑓⋆ ∈ ℱ (𝐿) ∶= 𝑓 ∶ [0, 1] → R ∣ |𝑓(𝑥) − 𝑓(𝑥′)| ≤ 𝐿|𝑥 − 𝑥′| for any 𝑥, 𝑥′ ∈ [0, 1]

noise condition
assume the noise variables satisfy (almost surely)

E 𝜉2𝑖 ∣ 𝑋𝑖 ≤ 𝜎2, for 𝑖 = 1, … , 𝑛
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Classes of covariate shifts

below are families of covariate shift instances based on the map ℎ ↦ 𝜌ℎ(𝑃,𝑄)

families of covariate shifts
▶ we consider pairs (𝑃,𝑄) for which (roughly) 𝜌ℎ(𝑃,𝑄) ≲ ℎ−𝛼 as ℎ → 0+:

𝒟(𝛼,𝐶) ∶=  (𝑃,𝑄) ∣ sup
0<ℎ≤1

ℎ𝛼𝜌ℎ(𝑃,𝑄) ≤ 𝐶  (𝛼 ≥ 1 and𝐶 ≥ 1)

▶ note that𝒟(𝛼,𝐶) ⊂ 𝒟(𝛼′, 𝐶′) if 𝛼 ≤ 𝛼′ and𝐶 ≤ 𝐶′

(some additional discussion and extensions in our full paper)
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Main result: minimax upper and lower bounds

our minimax results are stated for excess prediction error under𝑄,

 ̂𝑓 − 𝑓⋆
2
𝐿2(𝑄) = E𝑋′∼𝑄  ̂𝑓(𝑋′) − 𝑓⋆(𝑋′)

2
.

Theorem
Suppose 𝜎 ≥ 𝐿. Let 𝛼 ≥ 1, 𝐶 ≥ 1. For a sufficiently large sample size, we have

sup
(𝑃,𝑄)∈𝒟 (𝛼,𝐶)

inf
̂𝑓

sup
𝑓⋆∈ℱ (𝐿)

E‖ ̂𝑓 − 𝑓⋆‖2𝐿2(𝑄) ≍ 
𝑛𝑃
𝜎2


3
2+𝛼 + 

𝑛𝑄
𝜎2

−
2
3 .

▶ when 𝛼 > 1, the worst-case rate (with no access to samples under𝑄) is 𝑛−
2
2+𝛼 ≫ 𝑛−

2
3

▶ upper bound is achieved by analyzing Nadaraya-Watson estimator under covariate shift
▶ lower bound is achieved by pair (𝑃𝛼,𝐶, 𝑄𝛼,𝐶) ∈ 𝒟 (𝛼, 𝐶) that we construct 10



Achievable result

achievable result based on classical Nadaraya-Watson estimator

Nadaraya-Watson (NW) estimator
defined pointwise by the local average,

̂𝑓(𝑥) ∶=
∑𝑛
𝑖=1 𝑌𝑖 1{𝑋𝑖 ∈ B(𝑥, ℎ𝑛)}
∑𝑛
𝑖=1 1{𝑋𝑖 ∈ B(𝑥, ℎ𝑛)}

(above, ℎ𝑛 > 0 is a bandwidth parameter)

▶ the estimator is defined to be zero when denominator is zero
▶ we establish minimax upper bounds by selecting ℎ𝑛 as a function of (𝑛𝑃, 𝑛𝑄, 𝜎2, 𝐿, 𝛼, 𝐶)
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Lower bound instance

D(� + 1, 2
C )

�(�, C)

Worst-case instances coincide
(

pairs (P,Q) for which transfer exponent is loose

0

1

1
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Proposition 2. Let ↵ > 1 and C > 1. Define P and Q as in Table 1, with the following choice of

parameters ", S:

(a) if C > 6, set " = 6/C, and S = 1/4;

(b) if 1 6 C 6 6, set " = 1, and S = 1
4(C/6)1/↵.

Then for any choice of M, r > 0 satisfying S = 6Mr, the pair (P,Q) lies in D(↵, C).

See section 5.2.1 for a proof of this claim.

Construction of hard regression functions. Now we move on to construct a packing set of
F(�, L). Let  : [�1, 1] ! R be such that  (�1) =  (1) = 0 and

�� (x)� (y)
�� 6 |x� y|� , for all x, y 2 [�1, 1], and, (10a)

Z 1

�1
 2(x) dx =·· C

2
 > 0. (10b)

Many choices of  are possible above [22, see chap. 2]; we require C2
 6 1/6, which is possible by

taking  (x) = e�1/(1�x2)1{|x| 6 1}. For a sequence b = (b1, . . . , bM ) 2 {0, 1}M , we define

fb(x) ··=
MX

j=1

bj�j(x), where �j(x) ··= Lr� 
⇣x� zj

r

⌘
.

We will take
H ··=

n
fb | b 2 B

o
.

Above, B is a packing set of the discrete cube {0, 1}M , originally constructed by Gilbert [7] and
Varshamov [23]. The following result records the main property of this set.

Lemma 2 (Gilbert-Varshamov [22, Lemma 2.9]). Let M > 8. There is a subset B ⇢ {0, 1}M such

that kb� b0k1 > M/8 for all distinct b, b0 2 B, and |B| > 2M/8
.

The next result summarizes the important properties of the hard set of regression functions, H.

Lemma 3. The set H has the following properties:

(a) it is contained within the Hölder class, H ⇢ F(�, L);

(b) it has the following separation: for each distinct f, g 2 H, kf � gk2L2(Q) >
C2
 

16 L
2r2� ;

(c) it satisifes the following L2(P ) and L2(Q) bounds:

kfk2L2(Q) 6
C2
 M

2S
L2r2�+1

and kfk2L2(P ) 6
"C2
 M

6S↵
L2r2�+↵,

for all f 2 H.
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This implies that

�
f(x)� f?(x)

�2
1{x 2 Gn} =

⇣Pn
i=1(f

?(x)� f?(Xi))1{Xi 2 B(x, hn)}Pn
i=1 1{Xi 2 B(x, hn)}

⌘2
1{x 2 Gn}

(i)
6

Pn
i=1(f

?(x)� f?(Xi))21{Xi 2 B(x, hn)}Pn
i=1 1{Xi 2 B(x, hn)}

1{x 2 Gn}

(ii)
6 L2h2�n 1{x 2 Gn}.

Bound (a) now follows immediately. Above, (i) follows from Jensen’s inequality and (ii) makes use
of Assumption 1. For bound (b), note that by independence among {(Xi, ⌫i)}ni=1,

E[(f(x)� bf(x))2 | X1, . . . , Xn] =
nX

i=1

E[⌫2i | Xi]
� 1{Xi2B(x,hn)}Pn

i=1 1{Xi2B(x,hn)}

�2
1{x 2 Gn}

(iii)
6 �2

nX

i=1

� 1{Xi2B(x,hn)}Pn
i=1 1{Xi2B(x,hn)}

�2
1{x 2 Gn}

=
�2

Pn
i=1 1{Xi 2 B(x, hn)}

1{x 2 Gn},

which proves the claim. Above, (iii) follows from Assumption 3.

5.2 Proof of Part (a) of Theorem 2

Before giving the complete proof, we outline the main steps involved.

1. We first construct a hard instance (P,Q) 2 D(↵, C). This instance is designed such that the
integral quantity ⇢h(P,Q) must scale as Ch�↵.

2. Then we select a family of hard regression functions contained within F(�, L) that guarantees
the worst-case expected error for our pair of distributions, (P,Q).

3. Finally, we apply Fano’s method over this set of regression functions to show that the expected
error must scale as the righthand side of inequality (2).

Construction of hard pair of distributions. Let S, r 2 (0, 1] Let M = S
6r . Define the intervals

Ij ··= (zj � 3r, zj + 3r], where zj ··= 6jr � 3r, j = 1, . . . ,M.

We specify P and Q on each interval Ij as follows: RP — would be nice to put a picture here.

subinterval density of P density of Q

(zj � 3r, zj � r] 1
4Mr (1�

"
3(

r
S )

↵�1) 0

(zj � r, zj + r] "
6Mr (

r
S )

↵�1 1
2Mr

(zj + r, zj + 3r] 1
4Mr (1�

"
3(

r
S )

↵�1) 0

Table 1. Specification of densities for lower bound pair of distributions (P,Q) on the interval Ij .

By construction, both P and Q assign probability 1/M to the entire interval Ij . The following
proposition verifies that (P,Q) lies in D(↵, C) for proper choices of the " and S.
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of Assumption 1. For bound (b), note that by independence among {(Xi, ⌫i)}ni=1,

E[(f(x)� bf(x))2 | X1, . . . , Xn] =
nX

i=1

E[⌫2i | Xi]
� 1{Xi2B(x,hn)}Pn

i=1 1{Xi2B(x,hn)}

�2
1{x 2 Gn}

(iii)
6 �2

nX

i=1

� 1{Xi2B(x,hn)}Pn
i=1 1{Xi2B(x,hn)}

�2
1{x 2 Gn}

=
�2

Pn
i=1 1{Xi 2 B(x, hn)}

1{x 2 Gn},

which proves the claim. Above, (iii) follows from Assumption 3.

5.2 Proof of Part (a) of Theorem 2

Before giving the complete proof, we outline the main steps involved.

1. We first construct a hard instance (P,Q) 2 D(↵, C). This instance is designed such that the
integral quantity ⇢h(P,Q) must scale as Ch�↵.

2. Then we select a family of hard regression functions contained within F(�, L) that guarantees
the worst-case expected error for our pair of distributions, (P,Q).

3. Finally, we apply Fano’s method over this set of regression functions to show that the expected
error must scale as the righthand side of inequality (2).

Construction of hard pair of distributions. Let S, r 2 (0, 1] Let M = S
6r . Define the intervals

Ij ··= (zj � 3r, zj + 3r], where zj ··= 6jr � 3r, j = 1, . . . ,M.

We specify P and Q on each interval Ij as follows: RP — would be nice to put a picture here.

subinterval density of P density of Q

(zj � 3r, zj � r] 1
4Mr (1�

"
3(

r
S )

↵�1) 0

(zj � r, zj + r] "
6Mr (

r
S )

↵�1 1
2Mr

(zj + r, zj + 3r] 1
4Mr (1�

"
3(

r
S )

↵�1) 0

Table 1. Specification of densities for lower bound pair of distributions (P,Q) on the interval Ij .

By construction, both P and Q assign probability 1/M to the entire interval Ij . The following
proposition verifies that (P,Q) lies in D(↵, C) for proper choices of the " and S.
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D(� + 1, 2
C )

�(�, C)

Worst-case instances coincide
(

pairs (P,Q) for which transfer exponent is loose

0

1

M intervals
z1 = 3r

P

Q

1

D(� + 1, 2
C )

�(�, C)

Worst-case instances coincide
(

pairs (P,Q) for which transfer exponent is loose

0

1

M intervals
z1 = 3r

P

Q

1

D(� + 1, 2
C )

�(�, C)

Worst-case instances coincide
(

pairs (P,Q) for which transfer exponent is loose

0

1

M = S
6r intervals

z1 = 3r

P

Q

1

Illustration of lower bound instance

high-level overview

▶ we construct a hard pair (𝑃,𝑄) ∈ 𝒟 (𝛼, 𝐶)
▶ we construct a hard family of regression functions

withinℱ (𝐿)
▶ we establish our minimax lower bound by

combining these two pieces with Fano’s inequality
and packing-based arguments
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Comparison to transfer exponent
introduced by Kpotufe and Martinet, 2018; 2021

Hardest instances
coincide

For some instances,
transfer exponent

is loose

(𝛾, 𝐶𝛾)-transfer exponent

𝒟(𝛾 + 1, 2/𝐶𝛾)

our results have consequences for previously
proposed notion of transfer exponent

▶ (𝑃,𝑄) have (𝛾, 𝐶𝛾)-transfer exponent when for
all 𝑥, ℎ

𝑃(B(𝑥, ℎ)) ≥ 𝐶𝛾ℎ𝛾𝑄(B(𝑥, ℎ))

▶ can show if (𝑃,𝑄) have (𝛾, 𝐶𝛾)-transfer
exponent, then (𝑃,𝑄) ∈ 𝒟 (𝛾 + 1, 2/𝐶𝛾)

▶ consequently, can obtain upper bounds for
instances with known transfer exponent
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Conclusions

summary
▶ we introduce a similarity measure between two probability measures on the same space
▶ we show that this measure can be bounded easily under natural conditions
▶ we derive matching minimax upper and lower bounds for nonparametric regression

under classes of covariate shifts that are parameterized by the scaling of this measure

additional results (not discussed)
▶ bounds under more general Hölder-smoothness conditions and additional classes of

covariate shifts
▶ consequences of achievability results for bounded likelihood ratio and transfer exponent
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