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Review: Tomasulo

• Prevents Register as bottleneck
• Avoids WAR, WAW hazards of Scoreboard
• Allows loop unrolling in HW
• Not limited to basic blocks (provided branch 

prediction)
• Lasting Contributions

– Dynamic scheduling
– Register renaming
– Load/store disambiguation

• 360/91 descendants are PowerPC 604, 620; 
MIPS R10000; HP-PA 8000; Intel Pentium Pro
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Dynamic Branch Prediction

• Performance = ƒ(accuracy, cost of misprediction)
• Branch History Table is simplest

– Lower bits of PC address index table of 1-bit values
– Says whether or not branch taken last time
– No address check

• Problem: in a loop, 1-bit BHT will cause two 
mispredictions (avg is 9 iteratios before exit):

– End of loop case, when it exits instead of  looping as 
before

– First time through loop on next time through code, when it 
predicts exit instead of looping
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Dynamic Branch Prediction

• Solution: 2-bit scheme where change prediction 
only if get misprediction twice: (Figure 4.13, p. 264)

• Red: stop, not taken
• Green: go, taken
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BHT Accuracy

• Mispredict because either:
– Wrong guess for that branch
– Got branch history of wrong branch when index the 

table

• 4096 entry table  programs vary from 1% 
misprediction (nasa7, tomcatv) to 18% 
(eqntott), with spice at 9% and gcc at 12%

• 4096 about as good as infinite table
(in Alpha 211164)



DAP.F96  6

Correlating Branches

• Hypothesis: recent branches are correlated; that is, 
behavior of recently executed branches affects 
prediction of current branch; ie., they are correlated

• Idea: record m most recently executed branches as 
taken or not taken, and use that pattern to select the 
proper branch history table

• In general, (m,n) predictor means record last m 
branches to select between 2m history talbes each 
with n-bit counters

– Old 2-bit BHT is then a (0,2) predictor
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Correlating Branches

(2,2) predictor
– Then behavior of 

recent branches 
selects between, say, 
four predictions of next 
branch, updating just 
that prediction 

Branch address

2-bits per branch predictors

Prediction

2-bit global branch history
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Re-evaluating Correlation

• Several of the SPEC benchmarks have less 
than a dozen branches responsible for 90% of 
taken branches:
program % brances static # = 90% branches
compress 14% 236 13
eqntott 25% 494 5
gcc 15% 9531 2020
mpeg 10% 5598 532
real gcc 13% 17361 3214

• Real programs + OS more like gcc
• Small benefits beyond benchmarks for 

correlation? problems with branch aliases
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Need Address 
@ Same Time as Prediction

• Branch Target Buffer (BTB): Address of branch index 
to get prediction AND branch address (if taken)

– Note: must check for branch match now, since can’t use wrong 
branch address (Figure 4.22, p. 273)

• Return instruction addresses predicted with stack

Predicted PC
Branch Prediction:
Taken or not Taken
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Need Address 
@ Same Time as Prediction

• Branch Target Buffer (BTB): Address of branch index 
to get prediction AND branch address (if taken)

– Note: must check for branch match now, since can’t use wrong 
branch address (Figure 4.22, p. 273)

• Return instruction addresses predicted with stack

Predicted PC
Branch Prediction:
Taken or not Taken
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Dynamic Branch Prediction 
Summary

• Branch History Table: 2 bits for loop accuracy
• Correlation: Recently executed branches 

correlated with next branch
• Branch Target Buffer: include branch address 

& prediction
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Getting CPI < 1: Issuing
Multiple Instructions/Cycle

• Two variations
• Superscalar: varying no. instructions/cycle (1 to 

8), scheduled by compiler or by HW (Tomasulo)
– IBM PowerPC, Sun SuperSparc, DEC Alpha, HP 7100

• Very Long Instruction Words (VLIW): fixed 
number of instructions (16) scheduled by the 
compiler

– Joint HP/Intel agreement in 1998?
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Getting CPI < 1: Issuing
Multiple Instructions/Cycle

• Superscalar DLX: 2 instructions, 1 FP & 1 anything else
– Fetch 64-bits/clock cycle; Int on left, FP on right
– Can only issue 2nd instruction if 1st instruction issues
– More ports for FP registers to do FP load & FP op in a pair

Type PipeStages
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB

•  1 cycle load delay expands to 3 instructions in SS
– instruction in right half can’t use it, nor instructions in next slot
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Unrolled Loop that Minimizes 
Stalls for Scalar

1 Loop: LD F0,0(R1)
2 LD F6,-8(R1)
3 LD F10,-16(R1)
4 LD F14,-24(R1)
5 ADDD F4,F0,F2
6 ADDD F8,F6,F2
7 ADDD F12,F10,F2
8 ADDD F16,F14,F2
9 SD 0(R1),F4
10 SD -8(R1),F8
11 SD -16(R1),F12
12 SUBI R1,R1,#32
13 BNEZ R1,LOOP
14 SD 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

LD to ADDD: 1 Cycle
ADDD to SD: 2 Cycles
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Loop Unrolling in Superscalar
Integer instruction FP instruction Clock cycle

Loop: LD    F0,0(R1) 1
LD    F6,-8(R1) 2
LD    F10,-16(R1) ADDD F4,F0,F2 3
LD    F14,-24(R1) ADDD F8,F6,F2 4
LD    F18,-32(R1) ADDD F12,F10,F2 5
SD    0(R1),F4 ADDD F16,F14,F2 6
SD    -8(R1),F8 ADDD F20,F18,F2 7
SD    -16(R1),F12 8
SD    -24(R1),F16 9
SUBI   R1,R1,#40 10
BNEZ  R1,LOOP 11
SD    -32(R1),F20 12

• Unrolled 5 times to avoid delays (+1 due to SS)
• 12 clocks, or 2.4 clocks per iteration
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Limits of Superscalar

• While Integer/FP split is simple for the HW, get CPI of 
0.5 only for programs with:

– Exactly 50% FP operations
– No hazards

• If more instructions issue at same time, greater 
difficulty of decode and issue

– Even 2-scalar => examine 2 opcodes, 6 register specifiers, & 
decide if 1 or 2 instructions can issue

• VLIW: tradeoff instruction space for simple decoding
– The long instruction word has room for many operations
– By definition, all the operations the compiler puts in the long 

instruction word can execute in parallel
– E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch

» 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide

– Need compiling technique that schedules across several 
branches
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CS 252 Administrivia
• Reading Assignments for Lectures 3 to 6

– Chapter 4, Appendix B

• Exercises for Lectures 3 to 6
– 4.14 parts a - k, 4.25, B.3 parts a - g, B.15
– also look at
–  http://http.cs.berkeley.edu/~patterson/252F96/hw1.html
– Due Monday September 16 at 5PM homework box in 283 

Soda (building is locked at 6:45 PM)
– Done in pairs, but both need to understand whole 

assignment

• Video in 201 McLaughlin, starting day of lecture
Mon 9-11AM, 2 - 5 PM; Tue 9 AM - 5 PM; 
Wed 9-11AM, 2 - 10 PM; Thu 9 AM - 6 PM; 
Fri  9 - 5PM, 6 - 10 PM; 
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Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1  op. 2 branch
LD F0,0(R1) LD F6,-8(R1) 1
LD F10,-16(R1) LD F14,-24(R1) 2
LD F18,-32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2 3
LD F26,-48(R1) ADDD F12,F10,F2 ADDD F16,F14,F2 4

ADDD F20,F18,F2 ADDD F24,F22,F2 5

SD 0(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2 6
SD -16(R1),F12 SD -24(R1),F16 7
SD -32(R1),F20 SD -40(R1),F24 SUBI  R1,R1,#48 8
SD -0(R1),F28 BNEZ R1,LOOP 9

  Unrolled 7 times to avoid delays
  7 results in 9 clocks, or 1.3 clocks per iteration
  Need more registers in VLIW
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Trace Scheduling

• Parallelism across IF branches vs. LOOP branches
• Two steps:

– Trace Selection
» Find likely sequence of basic blocks (trace) of (statically 

predicted) long sequence of straight-line code

– Trace Compaction
» Squeeze trace into few VLIW instructions
» Need bookkeeping code in case prediction is wrong 
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Dynamic Scheduling in Superscalar

• Dependencies stop instruction issue
• Code compiler for scalar version will run poorly on SS

– May want code to vary depending on how superscalar

• Simple approach: separate Tomasulo Control for 
separate reservation stations for Integer FU/Reg and 
for FP FU/Reg
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Dynamic Scheduling in Superscalar

• How to do instruction issue with two instructions and 
keep in-order instruction issue for Tomasulo?

– Issue 2X Clock Rate, so that issue remains in order
– Only FP loads might cause dependency between integer and 

FP issue:
» Replace load reservation station with a load queue; 

operands must be read in the order they are fetched
» Load checks addresses in Store Queue to avoid RAW violation
» Store checks addresses in Load Queue to avoid WAR,WAW
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Performance of Dynamic SS
Iteration Instructions Issues Executes Writes result
no.                                    clock-cycle number
1 LD   F0,0(R1) 1 2 4
1 ADDD F4,F0,F2 1 5 8
1 SD   0(R1),F4 2 9
1 SUBI  R1,R1,#8 3 4 5
1 BNEZ R1,LOOP 4 5
2 LD   F0,0(R1) 5 6 8
2 ADDD F4,F0,F2 5 9 12
2 SD   0(R1),F4 6 13
2 SUBI  R1,R1,#8 7 8 9
2 BNEZ R1,LOOP 8 9

≈ 4 clocks per iteration
Branches, Decrements still take 1 clock cycle
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Software Pipelining
• Observation: if iterations from loops are independent, 

then can get ILP by taking instructions from different 
iterations

• Software pipelining: reorganizes loops so that each 
iteration is made from instructions chosen from different 
iterations of the original loop (≈ Tomasulo in SW)

Iteration
0 Iteration

1 Iteration
2 Iteration

3 Iteration
4

Software-
pipelined
iteration
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Software Pipelining Example
Before: Unrolled 3 times
 1 LD F0,0(R1)
 2 ADDD F4,F0,F2
 3 SD 0(R1),F4 
 4 LD F6,-8(R1)
 5 ADDD F8,F6,F2
 6 SD -8(R1),F8 
 7 LD F10,-16(R1)
 8 ADDD F12,F10,F2
 9 SD -16(R1),F12
 10 SUBI R1,R1,#24
 11 BNEZ R1,LOOP

After: Software Pipelined
 1 SD 0(R1),F4 ; Stores M[i]
 2 ADDD F4,F0,F2 ; Adds to M[i-1]
 3 LD F0,-16(R1);Loads M[i-2]
 4 SUBI R1,R1,#8
 5 BNEZ R1,LOOP

• Symbolic Loop Unrolling
–  Less code space
–  Fill & drain pipe only once
     vs. each iteration in loop unrolling
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Limits to Multi-Issue Machines

• Inherent limitations of ILP
– 1 branch in 5: How to keep a  5-way VLIW busy?
– Latencies of units: many operations must be scheduled
– Need about Pipeline Depth x No. Functional Units of 

independent operations to keep machines busy

• Difficulties in building HW
– Duplicate FUs to get parallel execution
– Increase ports to Register File 

» VLIW example needs 7 read and 3 write for Int. Reg. 
& 5 read and 3 write for FP reg

– Increase ports to memory
– Decoding SS and impact on clock rate, pipeline depth
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Limits to Multi-Issue Machines

• Limitations specific to either SS or VLIW 
implementation

– Decode issue in SS
– VLIW code size:  unroll loops + wasted fields in VLIW
– VLIW lock step => 1 hazard & all instructions stall
– VLIW & binary compatibility is practical weakness
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HW support for More ILP

• Avoid branch prediction by turning branches 
into conditionally executed instructions:

 if (x) then A = B op C else NOP
– If false, then neither store result nor cause 

exception
– Expanded ISA of Alpha, MIPS, PowerPC, SPARC 

have conditional move; PA-RISC can annul any 
following instr.

• Drawbacks to conditional instructions
– Still takes a clock even if “annulled”
– Stall if condition evaluated late
– Complex conditions reduce effectiveness; 

condition becomes known late in pipeline
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HW support for More ILP

• Speculation: allow an instruction to issue that is 
dependent on branch predicted to be taken without 
any consequences (including exceptions) if branch 
is not actually taken (“HW undo”)

• Often try to combine with dynamic scheduling
• Tomasulo: separate speculative bypassing of 

results from real bypassing of results
– When instruction no longer speculative, write results 

(instruction commit)
– execute out-of-order but commit in order
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HW support for More ILP

• Need HW buffer for results of 
uncommitted instructions: 
reorder buffer

– Reorder buffer can be operand 
source

– Once operand commits, result is 
found in register

– 3 fields: instr. type, destination, 
value

– Use reorder buffer number 
instead 
of reservation station

– Instructionscommit in order
– As a result, its easy to undo 

speculated instructions on 
mispredicted branches or on 

Reorder
Buffer

FP Regs

FP
Op

Queue

FP Adder FP Adder

Res Stations Res Stations

Figure 4.34, page 311
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Four Steps of Speculative 
Tomasulo Algorithm

1. Issue—get instruction from FP Op Queue
 If reservation station and reorder buffer slot free, issue 

instr & send operands & reorder buffer no. for 
destination.

2.Execution—operate on operands (EX)
 When both operands ready then execute; if not ready, 

watch CDB for result; when both in reservation station, 
execute

3.Write result—finish execution (WB)
 Write on Common Data Bus to all awaiting FUs & 

reorder buffer; mark reservation station available.

4.Commit—update register with reorder result
 When instr. at head of reorder buffer & result present, 

update register with result (or store to memory) and 
remove instr from reorder buffer.
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Limits to ILP
• Conflicting studies of amount of parallelism 

available in late 1980s and early 1990s. Different 
assumptions about:

– Benchmarks (vectorized Fortran FP vs. integer C 
programs)

– Hardware sophistication
– Compiler sophistication
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Limits to ILP

Initial HW Model here; MIPS compilers
1. Register renaming–infinite virtual registers and all 
WAW & WAR hazards are avoided
2. Branch prediction–perfect; no mispredictions 
3. Jump prediction–all jumps perfectly predicted => 
machine with perfect speculation & an unbounded 
buffer of instructions available
4. Memory-address alias analysis–addresses are 
known & a store can be moved before a load 
provided addresses not equal

1 cycle latency for all instructions
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Upper Limit to ILP
(Figure 4.38, page 319)
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Selective History Predictor
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Dynamic Scheduling in 
PowerPC 604 and Pentium Pro

• Both In-order Issue, Out-of-order execution, 
In-order Commit

PPro central reservation station for any 
functional units with one bus shared by a 
branch and an integer unit
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Dynamic Scheduling in 
PowerPC 604 and Pentium Pro

Parameter PPC PPro
Max. instructions issued/clock 4 3
Max. instr. complete exec./clock 6 5
Max. instr. commited/clock 6 3
Instructions in reorder buffer 16 40
Number of rename buffers 12 Int/8 FP 40
Number of reservations stations 12 20
No. integer functional units (FUs) 2 2
No. floating point FUs 1 1 
No. branch FUs 1 1 
No. complex integer FUs 1 0
No. memory FUs 1 1 load +1 store
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Dynamic Scheduling in Pentium Pro
• PPro doesn’t pipeline 80x86 instructions
• PPro decode unit translates the Intel instructions into 
72-bit micro-operations (≈ MIPS)
• Sends micro-operations to reorder buffer & 
reservation stations
• Takes 1 clock cycle to determine length of 80x86 
instructions + 2 more to create the micro-operations
• Most instructions translate to 1 to 4 micro-operations
• Complex 80x86 instructions are executed by a 
conventional microprogram (8K x 72 bits) that issues 
long sequences of micro-operations
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• 8-scalar IBM Power-2 @ 71.5 MHz (5 stage pipe) 
vs. 2-scalar Alpha @ 200 MHz (7 stage pipe)

Braniac vs. Speed Demon(1993)

Benchmark
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3 Recent Machines

Alpha 21164 PPro HP PA-8000
Year 1995 1995 1996
Clock 400 MHz 200 MHz 180 MHz
Cache 8K/8K/96K/2M 8K/8K/0.5M 0/0/2M
Issue rate 2int+2FP 3 instr (x86) 4 instr 
Pipe stages 7-9 12-14 7-9
Out-of-Order 6 loads 40 instr (µop) 56 instr
Rename regs none 40 56
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SPECint95base Performance
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5 minute Class Break

• Lecture Format: 
–   ≈ 1 minute: review last time & motivate this lecture
– ≈ 20 minute lecture
–  ≈ 3 minutes: discuss class manangement
– ≈ 25 minutes: lecture 
–     5 minutes: break
– ≈25 minutes: lecture
–   ≈1 minute: summary of today’s important topics
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Instructon Level Parallelism

• High speed execution based on instruction 
level parallelism (ilp): potential of short 
instruction sequences to execute in parallel

• High-speed microprocessors exploit ILP by:
1) pipelined execution: overlap instructions
2) superscalar execution: issue and execute 
multiple instructions per clock cycle
3) Out-of-order execution (commit in-order)

• Memory accesses for high-speed 
microprocessor?

– For cache hits
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Problems with conventional approach

• Limits to conventional exploitation of ILP:
1) pipelined clock rate: at some point, each 
increase in clock rate has corresponding CPI 
increase
2) instruction fetch and decode: at some 
point, its hard to fetch and decode more 
instructions per clock cycle
3) cache hit rate: some long-running 
(scientific) programs have very large data 
sets accessed with poor locality
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Vector Processors
• Vector processors have high-level operations that work 

on linear arrays of numbers: "vectors"
e.g., A = BxC, where A, B, C are 64-element vectors of 
64-bit floating point numbers

• Properties of vectors:
– Each result independent of previous result

=> long pipeline, compiler ensures no dependencies
– single vector instruction implies lots of work (≈ loop)

=> fewer instruction fetches
– vector instructions access memory with known pattern

=> highly interleaved memory
=> amortize memory latency of over ≈ 64 elements
=> no caches required!

– reduces branches and branch problems in pipelines
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Styles of Vector Architectures

• vector-register processors: all vector operations 
between vector registers (except load and store)

– Vector equivalent of load-store architectures
– Includes all vector machines since late 1980s: 

Cray, Convex, Fujitsu, Hitachi, NEC

• memory-memory vector processors: all  vector 
operations are memory to memory
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Components of Vector Processor
• Vector Register: fixed length bank holding a single 

vector
– has at least 2 read and 1 write ports
– typically 8-16 vector registers, each holding 64-128 64-bit 

elements 

• Vector Functional Units (FUs): fully pipelined, start new 
operation every clock

– typically 4 to 8: FP add, FP mult, FP reciprocal (1/X), integer 
add, logical, shift

• Vector Load-Store Units (LSUs): fully pipelined unit to 
load or store a vector

• Scalar registers: single element for FP scalar or 
address

• Cross-bar to connect FUs , LSUs, registers
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Example Vector Machines
• Machine Year Clock Regs Elements FUs LSUs
• Cray 1 1976 80 MHz 8 64 6 1
• Cray XMP 1983 120 MHz 8 64 6  3
• Cray YMP 1988 166 MHz 8 64 8 3
• Cray C-90 1991 240 MHz 8 128 8 4
• Cray T-90 1996 455 MHz 8 128 8 4
• Conv. C-1 1984 10 MHz 8 128 4 1
• Conv. C-4 1994 133 MHz 16 128 3 1
• Fuj. VP200 1982 133 MHz 8-256 32-1024 3 2
• Fuj. VP300 1996 100 MHz 8-256 32-1024 3 2
• NEC SX/2 1984 160 MHz 8+8K 256+var 16 8
• NEC SX/3 1995 400 MHz 8+8K 256+var 16 8
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Vector Linpack Performance
• Machine Year Clock 100x100 1kx1kPeak(Procs)
• Cray 1 1976 80 MHz 12 110 160(1)
• Cray XMP 1983 120 MHz 121 218 940(4)
• Cray YMP 1988 166 MHz 150 307 2,667(8)
• Cray C-90 1991 240 MHz 387 902 15,238(16)
• Cray T-90 1996 455 MHz 705 1603 57,600(32)
• Conv. C-1 1984 10 MHz 3 -- 20(1)
• Conv. C-4 1994 135 MHz 160 2531 3240(4)
• Fuj. VP200 1982 133 MHz 18 422 533(1)
• NEC SX/2 1984 166 MHz 43 885 1300(1)
• NEC SX/3 1995 400 MHz 368 2757 25,600(4)
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Vector Instructions
Instr. Operands Operation Comment

• ADDV V1,V2,V3 V1=V2+V3 vector + vector
• ADDS V1,F0,V2 V1=F0+V2 scalar + vector
• MULV V1,V2,V3 V1=V2xV3 vector x vector
• MULS V1,F0,V2 V1=F0xV2 scalar x vector
• LV V1,R1 V1=M[R1..R1+63] load, stride=1
• LVWS V1,R1,R2 V1=M[R1..R1+63*R2] load, stride=R2
• LVI V1,R1,V2 V1=M[R1+V2i,i=0..63] "gather"
• CeqV VM,V1,V2 VMASKi = (V1i=V2i)? comp. setmask
• MOV VLR,R1 Vec. Len. Reg. = R1 set vector length
• MOV VM,R1 Vec. Mask = R1 set vector mask
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DAXPY (Y = a x X + Y)

  LD F0,a
  ADDI R4,Rx,512 ;last address to load 

loop: LD F2,0(Rx)   ;load X(i)
  MULTD F2,F0,F2 ;a*X(i)
  LD F4,0(Ry) ;load Y(i)
  ADDD F4,F2,F4 ;a*X(i) + Y(i)
  SD F4,0(Ry) ;store into Y(i)
  ADDI Rx,Rx,#8 ;increment index to X
  ADDI Ry,Ry,#8 ;increment index to Y
  SUB R20,R4,Rx ;compute bound
  BNZ R20,loop ;check if done

LD     F0,a ;load scalar a

LV     V1,Rx ;load vector X

MULS V2,F0,V1 ;vector-scalar mult.

LV V3,Ry ;load vector Y

ADDV V4,V2,V3 ;add

SV Ry,V4 ;store the result

Assuming vectors X, Y 
are length 64

Scalar vs. Vector

 578 (2+9*64) vs.
 6 instructions:

64 operation vectors +
no loop overhead

also fewer pipeline 
hazards
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Vector Execution Time

• Time = f(vector length, data dependicies, hazards) 
• Initiation rate: rate that FU consumes vector elements 

(usually 1, 2 on T-90)
• Convoy: set of  vector instructions that can begin 

execution in same clock (no hazards)
• Chime: approx. time for a vector operation
• m convoys take m chimes; if each vector length is n, 

then they take approx. m x n clock cycles (ignores 
overhead)

4 conveys
=> 4 x 64 ≈ 256 clocks

1: LV     V1,Rx ;load vector X

2: MULS V2,F0,V1 ;vector-scalar mult.

LV V3,Ry ;load vector Y

3: ADDV V4,V2,V3 ;add

4: SV Ry,V4 ;store the result
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Start-up Time
• Start-up time: pipeline latency time (depth of FU 

pipeline)
• Operation Start-up penalty
• Vector load/store 12
• Vector multply   7
• Vector add   6

– Assumes convoys don't overlap; vector length = n

Convoy Start 1st result last result

1. LV     0 12 11+n

2. MULV, LV 12+n 12+n+12 24+2n

3. ADDV 25+2n 25+2n+6 31+3n

4. SV     32+3n 32+3n+12  42+4n
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Vector Load/Store Units & Memories
• Start-up overheads usually longer fo LSUs
• Memory system must sustain 1 word/clock cycle
• Many Vector Procs. use banks vs. simple interleaving:

1) support multiple loads/stores per cycle 
=> multiple banks & address banks independently
2) support non-sequential accesses

• Note: No. memory banks > memory latency to avoid 
stalls
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Summary

• Superscalar and VLIW
– CPI < 1
– Dynamic issue vs. Static issue
– More instructions issue at same time, larger the penalty of 

hazards

• SW Pipelining
– Symbolic Loop Unrolling to get most from pipeline with little 

code expansion, little overhead

• Vector
– Alternate model accomodates long memory latency
– Much easier for hardware: more powerful instructions, more 

predictable memory accesses, fewer branches, ...
– What % of computation is vectorizable? For new apps?


