
DAP.F96 1

Lecture 5:
 VLIW, Software Pipelining,

and Limits to ILP

Professor David A. Patterson
Computer Science 252

Fall 1996

DAP.F96 2

Review: Tomasulo

• Prevents Register as bottleneck
• Avoids WAR, WAW hazards of Scoreboard
• Allows loop unrolling in HW
• Not limited to basic blocks (provided branch

prediction)
• Lasting Contributions

– Dynamic scheduling
– Register renaming
– Load/store disambiguation

• 360/91 descendants are PowerPC 604, 620;
MIPS R10000; HP-PA 8000; Intel Pentium Pro

DAP.F96 3

Dynamic Branch Prediction

• Performance = ƒ(accuracy, cost of misprediction)
• Branch History Table is simplest

– Lower bits of PC address index table of 1-bit values
– Says whether or not branch taken last time
– No address check

• Problem: in a loop, 1-bit BHT will cause two
mispredictions (avg is 9 iteratios before exit):

– End of loop case, when it exits instead of looping as
before

– First time through loop on next time through code, when it
predicts exit instead of looping

DAP.F96 4

Dynamic Branch Prediction

• Solution: 2-bit scheme where change prediction
only if get misprediction twice: (Figure 4.13, p. 264)

• Red: stop, not taken
• Green: go, taken

T

T

T

T

NT

NT

NT

NT

Predict Taken

Predict Not
Taken

Predict Taken

Predict Not
Taken

DAP.F96 5

BHT Accuracy

• Mispredict because either:
– Wrong guess for that branch
– Got branch history of wrong branch when index the

table

• 4096 entry table programs vary from 1%
misprediction (nasa7, tomcatv) to 18%
(eqntott), with spice at 9% and gcc at 12%

• 4096 about as good as infinite table
(in Alpha 211164)

DAP.F96 6

Correlating Branches

• Hypothesis: recent branches are correlated; that is,
behavior of recently executed branches affects
prediction of current branch; ie., they are correlated

• Idea: record m most recently executed branches as
taken or not taken, and use that pattern to select the
proper branch history table

• In general, (m,n) predictor means record last m
branches to select between 2m history talbes each
with n-bit counters

– Old 2-bit BHT is then a (0,2) predictor

DAP.F96 7

Correlating Branches

(2,2) predictor
– Then behavior of

recent branches
selects between, say,
four predictions of next
branch, updating just
that prediction

Branch address

2-bits per branch predictors

Prediction

2-bit global branch history

DAP.F96 8

F
re

q
u
e
n
c
y
 o

f
M

is
p
re

d
ic

ti
o
n
s

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

na
sa

7

m
a
tr

ix
3

0
0

to
m

ca
tv

do
du

cd

sp
ic

e

fp
p
p
p

gc
c

es
p
re

ss
o

eq
nt

ot
t li

0%

1%

5%

6% 6%

11%

4%

6%

5%

1%

4,096 entries: 2-bits per entry Unlimited entries: 2-bits/entry 1,024 entries (2,2)

Accuracy of Different Schemes
(Figure 4.21, p. 272)

4096 Entries 2-bit BHT
Unlimited Entries 2-bit BHT
1024 Entries (2,2) BHT

0%

18%

F
re

q
u

en
cy

 o
f

M
is

p
re

d
ic

ti
o

n
s

DAP.F96 9

Re-evaluating Correlation

• Several of the SPEC benchmarks have less
than a dozen branches responsible for 90% of
taken branches:
program % brances static # = 90% branches
compress 14% 236 13
eqntott 25% 494 5
gcc 15% 9531 2020
mpeg 10% 5598 532
real gcc 13% 17361 3214

• Real programs + OS more like gcc
• Small benefits beyond benchmarks for

correlation? problems with branch aliases

DAP.F96 10

Need Address
@ Same Time as Prediction

• Branch Target Buffer (BTB): Address of branch index
to get prediction AND branch address (if taken)

– Note: must check for branch match now, since can’t use wrong
branch address (Figure 4.22, p. 273)

• Return instruction addresses predicted with stack

Predicted PC
Branch Prediction:
Taken or not Taken

DAP.F96 11

Need Address
@ Same Time as Prediction

• Branch Target Buffer (BTB): Address of branch index
to get prediction AND branch address (if taken)

– Note: must check for branch match now, since can’t use wrong
branch address (Figure 4.22, p. 273)

• Return instruction addresses predicted with stack

Predicted PC
Branch Prediction:
Taken or not Taken

DAP.F96 12

Dynamic Branch Prediction
Summary

• Branch History Table: 2 bits for loop accuracy
• Correlation: Recently executed branches

correlated with next branch
• Branch Target Buffer: include branch address

& prediction

DAP.F96 13

Getting CPI < 1: Issuing
Multiple Instructions/Cycle

• Two variations
• Superscalar: varying no. instructions/cycle (1 to

8), scheduled by compiler or by HW (Tomasulo)
– IBM PowerPC, Sun SuperSparc, DEC Alpha, HP 7100

• Very Long Instruction Words (VLIW): fixed
number of instructions (16) scheduled by the
compiler

– Joint HP/Intel agreement in 1998?

DAP.F96 14

Getting CPI < 1: Issuing
Multiple Instructions/Cycle

• Superscalar DLX: 2 instructions, 1 FP & 1 anything else
– Fetch 64-bits/clock cycle; Int on left, FP on right
– Can only issue 2nd instruction if 1st instruction issues
– More ports for FP registers to do FP load & FP op in a pair

Type PipeStages
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB

• 1 cycle load delay expands to 3 instructions in SS
– instruction in right half can’t use it, nor instructions in next slot

DAP.F96 15

Unrolled Loop that Minimizes
Stalls for Scalar

1 Loop: LD F0,0(R1)
2 LD F6,-8(R1)
3 LD F10,-16(R1)
4 LD F14,-24(R1)
5 ADDD F4,F0,F2
6 ADDD F8,F6,F2
7 ADDD F12,F10,F2
8 ADDD F16,F14,F2
9 SD 0(R1),F4
10 SD -8(R1),F8
11 SD -16(R1),F12
12 SUBI R1,R1,#32
13 BNEZ R1,LOOP
14 SD 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

LD to ADDD: 1 Cycle
ADDD to SD: 2 Cycles

DAP.F96 16

Loop Unrolling in Superscalar
Integer instruction FP instruction Clock cycle

Loop: LD F0,0(R1) 1
LD F6,-8(R1) 2
LD F10,-16(R1) ADDD F4,F0,F2 3
LD F14,-24(R1) ADDD F8,F6,F2 4
LD F18,-32(R1) ADDD F12,F10,F2 5
SD 0(R1),F4 ADDD F16,F14,F2 6
SD -8(R1),F8 ADDD F20,F18,F2 7
SD -16(R1),F12 8
SD -24(R1),F16 9
SUBI R1,R1,#40 10
BNEZ R1,LOOP 11
SD -32(R1),F20 12

• Unrolled 5 times to avoid delays (+1 due to SS)
• 12 clocks, or 2.4 clocks per iteration

DAP.F96 17

Limits of Superscalar

• While Integer/FP split is simple for the HW, get CPI of
0.5 only for programs with:

– Exactly 50% FP operations
– No hazards

• If more instructions issue at same time, greater
difficulty of decode and issue

– Even 2-scalar => examine 2 opcodes, 6 register specifiers, &
decide if 1 or 2 instructions can issue

• VLIW: tradeoff instruction space for simple decoding
– The long instruction word has room for many operations
– By definition, all the operations the compiler puts in the long

instruction word can execute in parallel
– E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch

» 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide

– Need compiling technique that schedules across several
branches

DAP.F96 18

CS 252 Administrivia
• Reading Assignments for Lectures 3 to 6

– Chapter 4, Appendix B

• Exercises for Lectures 3 to 6
– 4.14 parts a - k, 4.25, B.3 parts a - g, B.15
– also look at
– http://http.cs.berkeley.edu/~patterson/252F96/hw1.html
– Due Monday September 16 at 5PM homework box in 283

Soda (building is locked at 6:45 PM)
– Done in pairs, but both need to understand whole

assignment

• Video in 201 McLaughlin, starting day of lecture
Mon 9-11AM, 2 - 5 PM; Tue 9 AM - 5 PM;
Wed 9-11AM, 2 - 10 PM; Thu 9 AM - 6 PM;
Fri 9 - 5PM, 6 - 10 PM;

DAP.F96 19

Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch
LD F0,0(R1) LD F6,-8(R1) 1
LD F10,-16(R1) LD F14,-24(R1) 2
LD F18,-32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2 3
LD F26,-48(R1) ADDD F12,F10,F2 ADDD F16,F14,F2 4

ADDD F20,F18,F2 ADDD F24,F22,F2 5

SD 0(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2 6
SD -16(R1),F12 SD -24(R1),F16 7
SD -32(R1),F20 SD -40(R1),F24 SUBI R1,R1,#48 8
SD -0(R1),F28 BNEZ R1,LOOP 9

 Unrolled 7 times to avoid delays
 7 results in 9 clocks, or 1.3 clocks per iteration
 Need more registers in VLIW

DAP.F96 20

Trace Scheduling

• Parallelism across IF branches vs. LOOP branches
• Two steps:

– Trace Selection
» Find likely sequence of basic blocks (trace) of (statically

predicted) long sequence of straight-line code

– Trace Compaction
» Squeeze trace into few VLIW instructions
» Need bookkeeping code in case prediction is wrong

DAP.F96 21

Dynamic Scheduling in Superscalar

• Dependencies stop instruction issue
• Code compiler for scalar version will run poorly on SS

– May want code to vary depending on how superscalar

• Simple approach: separate Tomasulo Control for
separate reservation stations for Integer FU/Reg and
for FP FU/Reg

DAP.F96 22

Dynamic Scheduling in Superscalar

• How to do instruction issue with two instructions and
keep in-order instruction issue for Tomasulo?

– Issue 2X Clock Rate, so that issue remains in order
– Only FP loads might cause dependency between integer and

FP issue:
» Replace load reservation station with a load queue;

operands must be read in the order they are fetched
» Load checks addresses in Store Queue to avoid RAW violation
» Store checks addresses in Load Queue to avoid WAR,WAW

DAP.F96 23

Performance of Dynamic SS
Iteration Instructions Issues Executes Writes result
no. clock-cycle number
1 LD F0,0(R1) 1 2 4
1 ADDD F4,F0,F2 1 5 8
1 SD 0(R1),F4 2 9
1 SUBI R1,R1,#8 3 4 5
1 BNEZ R1,LOOP 4 5
2 LD F0,0(R1) 5 6 8
2 ADDD F4,F0,F2 5 9 12
2 SD 0(R1),F4 6 13
2 SUBI R1,R1,#8 7 8 9
2 BNEZ R1,LOOP 8 9

≈ 4 clocks per iteration
Branches, Decrements still take 1 clock cycle

DAP.F96 24

Software Pipelining
• Observation: if iterations from loops are independent,

then can get ILP by taking instructions from different
iterations

• Software pipelining: reorganizes loops so that each
iteration is made from instructions chosen from different
iterations of the original loop (≈ Tomasulo in SW)

Iteration
0 Iteration

1 Iteration
2 Iteration

3 Iteration
4

Software-
pipelined
iteration

DAP.F96 25

Software Pipelining Example
Before: Unrolled 3 times
 1 LD F0,0(R1)
 2 ADDD F4,F0,F2
 3 SD 0(R1),F4
 4 LD F6,-8(R1)
 5 ADDD F8,F6,F2
 6 SD -8(R1),F8
 7 LD F10,-16(R1)
 8 ADDD F12,F10,F2
 9 SD -16(R1),F12
 10 SUBI R1,R1,#24
 11 BNEZ R1,LOOP

After: Software Pipelined
 1 SD 0(R1),F4 ; Stores M[i]
 2 ADDD F4,F0,F2 ; Adds to M[i-1]
 3 LD F0,-16(R1);Loads M[i-2]
 4 SUBI R1,R1,#8
 5 BNEZ R1,LOOP

• Symbolic Loop Unrolling
– Less code space
– Fill & drain pipe only once
 vs. each iteration in loop unrolling

DAP.F96 26

Limits to Multi-Issue Machines

• Inherent limitations of ILP
– 1 branch in 5: How to keep a 5-way VLIW busy?
– Latencies of units: many operations must be scheduled
– Need about Pipeline Depth x No. Functional Units of

independent operations to keep machines busy

• Difficulties in building HW
– Duplicate FUs to get parallel execution
– Increase ports to Register File

» VLIW example needs 7 read and 3 write for Int. Reg.
& 5 read and 3 write for FP reg

– Increase ports to memory
– Decoding SS and impact on clock rate, pipeline depth

DAP.F96 27

Limits to Multi-Issue Machines

• Limitations specific to either SS or VLIW
implementation

– Decode issue in SS
– VLIW code size: unroll loops + wasted fields in VLIW
– VLIW lock step => 1 hazard & all instructions stall
– VLIW & binary compatibility is practical weakness

DAP.F96 28

HW support for More ILP

• Avoid branch prediction by turning branches
into conditionally executed instructions:

 if (x) then A = B op C else NOP
– If false, then neither store result nor cause

exception
– Expanded ISA of Alpha, MIPS, PowerPC, SPARC

have conditional move; PA-RISC can annul any
following instr.

• Drawbacks to conditional instructions
– Still takes a clock even if “annulled”
– Stall if condition evaluated late
– Complex conditions reduce effectiveness;

condition becomes known late in pipeline

DAP.F96 29

HW support for More ILP

• Speculation: allow an instruction to issue that is
dependent on branch predicted to be taken without
any consequences (including exceptions) if branch
is not actually taken (“HW undo”)

• Often try to combine with dynamic scheduling
• Tomasulo: separate speculative bypassing of

results from real bypassing of results
– When instruction no longer speculative, write results

(instruction commit)
– execute out-of-order but commit in order

DAP.F96 30

HW support for More ILP

• Need HW buffer for results of
uncommitted instructions:
reorder buffer

– Reorder buffer can be operand
source

– Once operand commits, result is
found in register

– 3 fields: instr. type, destination,
value

– Use reorder buffer number
instead
of reservation station

– Instructionscommit in order
– As a result, its easy to undo

speculated instructions on
mispredicted branches or on

Reorder
Buffer

FP Regs

FP
Op

Queue

FP Adder FP Adder

Res Stations Res Stations

Figure 4.34, page 311

DAP.F96 31

Four Steps of Speculative
Tomasulo Algorithm

1. Issue—get instruction from FP Op Queue
 If reservation station and reorder buffer slot free, issue

instr & send operands & reorder buffer no. for
destination.

2.Execution—operate on operands (EX)
 When both operands ready then execute; if not ready,

watch CDB for result; when both in reservation station,
execute

3.Write result—finish execution (WB)
 Write on Common Data Bus to all awaiting FUs &

reorder buffer; mark reservation station available.

4.Commit—update register with reorder result
 When instr. at head of reorder buffer & result present,

update register with result (or store to memory) and
remove instr from reorder buffer.

DAP.F96 32

Limits to ILP
• Conflicting studies of amount of parallelism

available in late 1980s and early 1990s. Different
assumptions about:

– Benchmarks (vectorized Fortran FP vs. integer C
programs)

– Hardware sophistication
– Compiler sophistication

DAP.F96 33

Limits to ILP

Initial HW Model here; MIPS compilers
1. Register renaming–infinite virtual registers and all
WAW & WAR hazards are avoided
2. Branch prediction–perfect; no mispredictions
3. Jump prediction–all jumps perfectly predicted =>
machine with perfect speculation & an unbounded
buffer of instructions available
4. Memory-address alias analysis–addresses are
known & a store can be moved before a load
provided addresses not equal

1 cycle latency for all instructions

DAP.F96 34

Upper Limit to ILP
(Figure 4.38, page 319)

Programs

In
s
tr

u
c
ti

o
n
 I

s
s
u
e
s
 p

e
r

c
y
c
le

0

20

40

60

80

100

120

140

160

gcc espresso li fpppp doducd tomcatv

54.8
62.6

17.9

75.2

118.7

150.1

DAP.F96 35

Program

In
s
tr

u
c
ti

o
n
 i
s
s
u
e
s
 p

e
r

c
y
c
le

0

10

20

30

40

50

60

gcc espresso l i fpppp doducd tomcatv

35

41

16

61

58
60

9

12
10

48

15

6
7 6

46

13

45

6 6 7

45

14

45

2 2 2

29

4

19

46

Perfect Selective predictor Standard 2-bit Static None

More Realistic HW: Branch Impact
Figure 4.40, Page 323

Change from Infinite
window to examine to
2000 and maximum
issue of 64 instructions
per clock cycle

ProfileBHT (512)Pick Cor. or BHTPerfect

DAP.F96 36

Selective History Predictor
8096 x 2 bits

2048 x 4 x 2 bits

Branch Addr

Global
History

2

00
01
10
11

Taken/Not Taken

8K x 2 bit
Selector

11
10
01
00

Choose Non-correlator

Choose Correlator

1
0

11 Taken
10
01 Not Taken
00

DAP.F96 37

Program

In
s
tr

u
c
ti

o
n
 i
s
s
u
e
s
 p

e
r

c
y
c
le

0

10

20

30

40

50

60

gcc espresso l i fpppp doducd tomcatv

11

15

12

29

54

10

15

12

49

16

10

13
12

35

15

44

9 10 11

20

11

28

5 5 6 5 5
7

4 4
5

4
5 5

59

45

Infinite 256 128 64 32 None

More Realistic HW: Register Impact
Figure 4.44, Page 328

Change 2000 instr
window, 64 instr
issue, 8K 2 level
Prediction

64 None256Infinite 32128

DAP.F96 38

Program

In
s
tr

u
c
ti

o
n
 i
s
s
u
e
s
 p

e
r

c
y
c
le

0

5

10

15

20

25

30

35

40

45

50

gcc espresso l i fpppp doducd tomcatv

10

15

12

49

16

45

7 7
9

49

16

4
5 4 4

6 5
3

5
3 3 4 4

45

Perfect Global/stack Perfect Inspection None

More Realistic HW: Alias Impact
Figure 4.46, Page 330

Change 2000 instr
window, 64 instr
issue, 8K 2 level
Prediction, 256
renaming registers

NoneGlobal/Stack perf;
heap conflicts

Perfect Inspec.
Assem.

DAP.F96 39

Program

In
s
tr

u
c
ti

o
n
 i
s
s
u
e
s
 p

e
r

c
y
c
le

0

10

20

30

40

50

60

gcc expresso l i fpppp doducd tomcatv

10

15

12

52

17

56

10

15

12

47

16

10

13
11

35

15

34

9
10 11

22

12

8 8 9

14

9

14

6 6 6
8

7
9

4 4 4 5 4
6

3 2 3 3 3 3

45

22

Infinite 256 128 64 32 16 8 4

Realistic HW for ‘9X: Window Impact
(Figure 4.48, Page 332)

Perfect disambiguation
(HW), 1K Selective
Prediction, 16 entry
return, 64 registers,
issue as many as
window

64 16256Infinite 32128 8 4

DAP.F96 40

Dynamic Scheduling in
PowerPC 604 and Pentium Pro

• Both In-order Issue, Out-of-order execution,
In-order Commit

PPro central reservation station for any
functional units with one bus shared by a
branch and an integer unit

DAP.F96 41

Dynamic Scheduling in
PowerPC 604 and Pentium Pro

Parameter PPC PPro
Max. instructions issued/clock 4 3
Max. instr. complete exec./clock 6 5
Max. instr. commited/clock 6 3
Instructions in reorder buffer 16 40
Number of rename buffers 12 Int/8 FP 40
Number of reservations stations 12 20
No. integer functional units (FUs) 2 2
No. floating point FUs 1 1
No. branch FUs 1 1
No. complex integer FUs 1 0
No. memory FUs 1 1 load +1 store

DAP.F96 42

Dynamic Scheduling in Pentium Pro
• PPro doesn’t pipeline 80x86 instructions
• PPro decode unit translates the Intel instructions into
72-bit micro-operations (≈ MIPS)
• Sends micro-operations to reorder buffer &
reservation stations
• Takes 1 clock cycle to determine length of 80x86
instructions + 2 more to create the micro-operations
• Most instructions translate to 1 to 4 micro-operations
• Complex 80x86 instructions are executed by a
conventional microprogram (8K x 72 bits) that issues
long sequences of micro-operations

DAP.F96 43

• 8-scalar IBM Power-2 @ 71.5 MHz (5 stage pipe)
vs. 2-scalar Alpha @ 200 MHz (7 stage pipe)

Braniac vs. Speed Demon(1993)

Benchmark

S
P
E
C
M

a
rk

s

0

100

200

300

400

500

600

700

800

900

es
p
re

ss
o li

eq
nt

ot
t

co
m

p
re

ss sc gc
c

sp
ic

e

do
du

c

m
d
ljd

p
2

w
av

e5

to
m

ca
tv

o
ra

a
lv

in
n

ea
r

m
d
lj
sp

2

sw
m

2
5

6

su
2

co
r

hy
d
ro

2
d

na
sa

fp
p
p
p

DAP.F96 44

3 Recent Machines

Alpha 21164 PPro HP PA-8000
Year 1995 1995 1996
Clock 400 MHz 200 MHz 180 MHz
Cache 8K/8K/96K/2M 8K/8K/0.5M 0/0/2M
Issue rate 2int+2FP 3 instr (x86) 4 instr
Pipe stages 7-9 12-14 7-9
Out-of-Order 6 loads 40 instr (µop) 56 instr
Rename regs none 40 56

DAP.F96 45

SPECint95base Performance

0

2

4

6

8

10

12

g
o

88
ks

im gc
c

co
m

pr
es

s li

ijp
eg pe

rl

vo
rt

ex

S
P

E
C

in
t

PA-8000
21164
PPro

DAP.F96 46

SPECfp95base Performance

0

5

10

15

20

25

30

35

to
m

ca
tv

sw
im

su
2c

or

hy
dr

o2
d

m
gr

id

ap
pl

u

tu
rb

3d

ap
si

fp
pp

p

w
av

e5

S
P

E
C

fp

PA-8000
21164
PPro

DAP.F96 47

5 minute Class Break

• Lecture Format:
– ≈ 1 minute: review last time & motivate this lecture
– ≈ 20 minute lecture
– ≈ 3 minutes: discuss class manangement
– ≈ 25 minutes: lecture
– 5 minutes: break
– ≈25 minutes: lecture
– ≈1 minute: summary of today’s important topics

DAP.F96 48

Instructon Level Parallelism

• High speed execution based on instruction
level parallelism (ilp): potential of short
instruction sequences to execute in parallel

• High-speed microprocessors exploit ILP by:
1) pipelined execution: overlap instructions
2) superscalar execution: issue and execute
multiple instructions per clock cycle
3) Out-of-order execution (commit in-order)

• Memory accesses for high-speed
microprocessor?

– For cache hits

DAP.F96 49

Problems with conventional approach

• Limits to conventional exploitation of ILP:
1) pipelined clock rate: at some point, each
increase in clock rate has corresponding CPI
increase
2) instruction fetch and decode: at some
point, its hard to fetch and decode more
instructions per clock cycle
3) cache hit rate: some long-running
(scientific) programs have very large data
sets accessed with poor locality

DAP.F96 50

Vector Processors
• Vector processors have high-level operations that work

on linear arrays of numbers: "vectors"
e.g., A = BxC, where A, B, C are 64-element vectors of
64-bit floating point numbers

• Properties of vectors:
– Each result independent of previous result

=> long pipeline, compiler ensures no dependencies
– single vector instruction implies lots of work (≈ loop)

=> fewer instruction fetches
– vector instructions access memory with known pattern

=> highly interleaved memory
=> amortize memory latency of over ≈ 64 elements
=> no caches required!

– reduces branches and branch problems in pipelines

DAP.F96 51

Styles of Vector Architectures

• vector-register processors: all vector operations
between vector registers (except load and store)

– Vector equivalent of load-store architectures
– Includes all vector machines since late 1980s:

Cray, Convex, Fujitsu, Hitachi, NEC

• memory-memory vector processors: all vector
operations are memory to memory

DAP.F96 52

Components of Vector Processor
• Vector Register: fixed length bank holding a single

vector
– has at least 2 read and 1 write ports
– typically 8-16 vector registers, each holding 64-128 64-bit

elements

• Vector Functional Units (FUs): fully pipelined, start new
operation every clock

– typically 4 to 8: FP add, FP mult, FP reciprocal (1/X), integer
add, logical, shift

• Vector Load-Store Units (LSUs): fully pipelined unit to
load or store a vector

• Scalar registers: single element for FP scalar or
address

• Cross-bar to connect FUs , LSUs, registers

DAP.F96 53

Example Vector Machines
• Machine Year Clock Regs Elements FUs LSUs
• Cray 1 1976 80 MHz 8 64 6 1
• Cray XMP 1983 120 MHz 8 64 6 3
• Cray YMP 1988 166 MHz 8 64 8 3
• Cray C-90 1991 240 MHz 8 128 8 4
• Cray T-90 1996 455 MHz 8 128 8 4
• Conv. C-1 1984 10 MHz 8 128 4 1
• Conv. C-4 1994 133 MHz 16 128 3 1
• Fuj. VP200 1982 133 MHz 8-256 32-1024 3 2
• Fuj. VP300 1996 100 MHz 8-256 32-1024 3 2
• NEC SX/2 1984 160 MHz 8+8K 256+var 16 8
• NEC SX/3 1995 400 MHz 8+8K 256+var 16 8

DAP.F96 54

Vector Linpack Performance
• Machine Year Clock 100x100 1kx1kPeak(Procs)
• Cray 1 1976 80 MHz 12 110 160(1)
• Cray XMP 1983 120 MHz 121 218 940(4)
• Cray YMP 1988 166 MHz 150 307 2,667(8)
• Cray C-90 1991 240 MHz 387 902 15,238(16)
• Cray T-90 1996 455 MHz 705 1603 57,600(32)
• Conv. C-1 1984 10 MHz 3 -- 20(1)
• Conv. C-4 1994 135 MHz 160 2531 3240(4)
• Fuj. VP200 1982 133 MHz 18 422 533(1)
• NEC SX/2 1984 166 MHz 43 885 1300(1)
• NEC SX/3 1995 400 MHz 368 2757 25,600(4)

DAP.F96 55

Vector Instructions
Instr. Operands Operation Comment

• ADDV V1,V2,V3 V1=V2+V3 vector + vector
• ADDS V1,F0,V2 V1=F0+V2 scalar + vector
• MULV V1,V2,V3 V1=V2xV3 vector x vector
• MULS V1,F0,V2 V1=F0xV2 scalar x vector
• LV V1,R1 V1=M[R1..R1+63] load, stride=1
• LVWS V1,R1,R2 V1=M[R1..R1+63*R2] load, stride=R2
• LVI V1,R1,V2 V1=M[R1+V2i,i=0..63] "gather"
• CeqV VM,V1,V2 VMASKi = (V1i=V2i)? comp. setmask
• MOV VLR,R1 Vec. Len. Reg. = R1 set vector length
• MOV VM,R1 Vec. Mask = R1 set vector mask

DAP.F96 56

DAXPY (Y = a x X + Y)

 LD F0,a
 ADDI R4,Rx,512 ;last address to load

loop: LD F2,0(Rx) ;load X(i)
 MULTD F2,F0,F2 ;a*X(i)
 LD F4,0(Ry) ;load Y(i)
 ADDD F4,F2,F4 ;a*X(i) + Y(i)
 SD F4,0(Ry) ;store into Y(i)
 ADDI Rx,Rx,#8 ;increment index to X
 ADDI Ry,Ry,#8 ;increment index to Y
 SUB R20,R4,Rx ;compute bound
 BNZ R20,loop ;check if done

LD F0,a ;load scalar a

LV V1,Rx ;load vector X

MULS V2,F0,V1 ;vector-scalar mult.

LV V3,Ry ;load vector Y

ADDV V4,V2,V3 ;add

SV Ry,V4 ;store the result

Assuming vectors X, Y
are length 64

Scalar vs. Vector

 578 (2+9*64) vs.
 6 instructions:

64 operation vectors +
no loop overhead

also fewer pipeline
hazards

DAP.F96 57

Vector Execution Time

• Time = f(vector length, data dependicies, hazards)
• Initiation rate: rate that FU consumes vector elements

(usually 1, 2 on T-90)
• Convoy: set of vector instructions that can begin

execution in same clock (no hazards)
• Chime: approx. time for a vector operation
• m convoys take m chimes; if each vector length is n,

then they take approx. m x n clock cycles (ignores
overhead)

4 conveys
=> 4 x 64 ≈ 256 clocks

1: LV V1,Rx ;load vector X

2: MULS V2,F0,V1 ;vector-scalar mult.

LV V3,Ry ;load vector Y

3: ADDV V4,V2,V3 ;add

4: SV Ry,V4 ;store the result

DAP.F96 58

Start-up Time
• Start-up time: pipeline latency time (depth of FU

pipeline)
• Operation Start-up penalty
• Vector load/store 12
• Vector multply 7
• Vector add 6

– Assumes convoys don't overlap; vector length = n

Convoy Start 1st result last result

1. LV 0 12 11+n

2. MULV, LV 12+n 12+n+12 24+2n

3. ADDV 25+2n 25+2n+6 31+3n

4. SV 32+3n 32+3n+12 42+4n

DAP.F96 59

Vector Load/Store Units & Memories
• Start-up overheads usually longer fo LSUs
• Memory system must sustain 1 word/clock cycle
• Many Vector Procs. use banks vs. simple interleaving:

1) support multiple loads/stores per cycle
=> multiple banks & address banks independently
2) support non-sequential accesses

• Note: No. memory banks > memory latency to avoid
stalls

DAP.F96 60

Summary

• Superscalar and VLIW
– CPI < 1
– Dynamic issue vs. Static issue
– More instructions issue at same time, larger the penalty of

hazards

• SW Pipelining
– Symbolic Loop Unrolling to get most from pipeline with little

code expansion, little overhead

• Vector
– Alternate model accomodates long memory latency
– Much easier for hardware: more powerful instructions, more

predictable memory accesses, fewer branches, ...
– What % of computation is vectorizable? For new apps?

