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Review

• Dynmamic  Branch Prediction
– Branch History Table: 2 bits for loop accuracy
– Correlation: Recently executed branches correlated with next 

branch
– Branch Target Buffer: include branch address & prediction

• Superscalar and VLIW
– CPI < 1
– Dynamic issue vs. Static issue
– More instructions issue at same time, larger the penalty of 

hazards

• SW Pipelining
– Symbolic Loop Unrolling to get most from pipeline with little 

code expansion, little overhead
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Instructon Level Parallelism

• High speed execution based on instruction 
level parallelism (ilp): potential of short 
instruction sequences to execute in parallel

• High-speed microprocessors exploit ILP by:
1) pipelined execution: overlap instructions
2) superscalar execution: issue and execute 
multiple instructions per clock cycle
3) Out-of-order execution (commit in-order)

• Memory accesses for high-speed 
microprocessor?

– For cache hits
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Problems with conventional approach

• Limits to conventional exploitation of ILP:
1) pipelined clock rate: at some point, each 
increase in clock rate has corresponding CPI 
increase
2) instruction fetch and decode: at some 
point, its hard to fetch and decode more 
instructions per clock cycle
3) cache hit rate: some long-running 
(scientific) programs have very large data 
sets accessed with poor locality
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Vector Processors
• Vector processors have high-level operations that work 

on linear arrays of numbers: "vectors"
e.g., A = BxC, where A, B, C are 64-element vectors of 
64-bit floating point numbers

• Properties of vectors:
– Each result independent of previous result

=> long pipeline, compiler ensures no dependencies
– single vector instruction implies lots of work (≈ loop)

=> fewer instruction fetches
– vector instructions access memory with known pattern

=> highly interleaved memory
=> amortize memory latency of over ≈ 64 elements
=> no caches required!

– reduces branches and branch problems in pipelines
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Styles of Vector Architectures

• vector-register processors: all vector operations 
between vector registers (except load and store)

– Vector equivalent of load-store architectures
– Includes all vector machines since late 1980s: 

Cray, Convex, Fujitsu, Hitachi, NEC

• memory-memory vector processors: all  vector 
operations are memory to memory
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Components of Vector Processor
• Vector Register: fixed length bank holding a single 

vector
– has at least 2 read and 1 write ports
– typically 8-16 vector registers, each holding 64-128 64-bit 

elements 

• Vector Functional Units (FUs): fully pipelined, start new 
operation every clock

– typically 4 to 8: FP add, FP mult, FP reciprocal (1/X), integer 
add, logical, shift

• Vector Load-Store Units (LSUs): fully pipelined unit to 
load or store a vector

• Scalar registers: single element for FP scalar or 
address

• Cross-bar to connect FUs , LSUs, registers
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Example Vector Machines
• Machine Year Clock Regs Elements FUs LSUs
• Cray 1 1976 80 MHz 8 64 6 1
• Cray XMP 1983 120 MHz 8 64 8 2 L, 1 S
• Cray YMP 1988 166 MHz 8 64 8  2 L, 1 S
• Cray C-90 1991 240 MHz 8 128 8 4
• Cray T-90 1996 455 MHz 8 128 8 4
• Conv. C-1 1984 10 MHz 8 128 4 1
• Conv. C-4 1994 133 MHz 16 128 3 1
• Fuj. VP200 1982 133 MHz 8-256 32-1024 3 2
• Fuj. VP300 1996 100 MHz 8-256 32-1024 3 2
• NEC SX/2 1984 160 MHz 8+8K 256+var 16 8
• NEC SX/3 1995 400 MHz 8+8K 256+var 16 8
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Vector Linpack Performance
  Machine Year Clock  100x100 1kx1k Peak(Procs)

• Cray 1 1976 80 MHz 12 110 160(1)
• Cray XMP 1983 120 MHz 121 218 940(4)
• Cray YMP 1988 166 MHz 150 307 2,667(8)
• Cray C-90 1991 240 MHz 387 902 15,238(16)
• Cray T-90 1996 455 MHz 705 1603 57,600(32)
• Conv. C-1 1984 10 MHz 3 -- 20(1)
• Conv. C-4 1994 135 MHz 160 2531 3240(4)
• Fuj. VP200 1982 133 MHz 18 422 533(1)
• NEC SX/2 1984 166 MHz 43 885 1300(1)
• NEC SX/3 1995 400 MHz 368 2757 25,600(4)
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“DLXV” Vector Instructions
Instr. Operands Operation Comment

• ADDV V1,V2,V3 V1=V2+V3 vector + vector
• ADDSV V1,F0,V2 V1=F0+V2 scalar + vector
• MULTV V1,V2,V3 V1=V2xV3 vector x vector
• MULSV V1,F0,V2 V1=F0xV2 scalar x vector
• LV V1,R1 V1=M[R1..R1+63] load, stride=1
• LVWS V1,R1,R2 V1=M[R1..R1+63*R2] load, stride=R2
• LVI V1,R1,V2 V1=M[R1+V2i,i=0..63] indir.("gather")
• CeqV VM,V1,V2 VMASKi = (V1i=V2i)? comp. setmask
• MOV VLR,R1 Vec. Len. Reg. = R1 set vector length
• MOV VM,R1 Vec. Mask = R1 set vector mask
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DAXPY (Y = a * X + Y)

  LD F0,a
  ADDI R4,Rx,#512 ;last address to load 

loop: LD F2, 0(Rx)   ;load X(i)
  MULTD F2,F0,F2 ;a*X(i)
  LD F4, 0(Ry) ;load Y(i)
  ADDD F4,F2, F4 ;a*X(i) + Y(i)
  SD F4 ,0(Ry) ;store into Y(i)
  ADDI Rx,Rx,#8 ;increment index to X
  ADDI Ry,Ry,#8 ;increment index to Y
  SUB R20,R4,Rx ;compute bound
  BNZ R20,loop ;check if done

LD     F0,a ;load scalar a

LV     V1,Rx ;load vector X

MULTS V2,F0,V1 ;vector-scalar mult.

LV V3,Ry ;load vector Y

ADDV V4,V2,V3 ;add

SV Ry,V4 ;store the result

Assuming vectors X, Y 
are length 64

Scalar vs. Vector

 578 (2+9*64) vs.
 6 instructions:

64 operation vectors +
no loop overhead

also 64X fewer pipeline 
hazards
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CS 252 Administrivia
• Projects this Friday?
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Vector Execution Time

• Time = f(vector length, data dependicies, struct. hazards) 
• Initiation rate: rate that FU consumes vector elements 

(usually 1 or  2 on Cray T-90)
• Convoy: set of vector instructions that can begin 

execution in same clock (no struct. or data hazards)
• Chime: approx. time for a vector operation
• m convoys take m chimes; if each vector length is n, 

then they take approx. m x n clock cycles (ignores 
overhead; good approximization for long vectors)

4 conveys
=> 4 x 64 ≈ 256 clocks
(or 4 clocks per result)

1: LV     V1,Rx ;load vector X

2: MULS V2,F0,V1 ;vector-scalar mult.

LV V3,Ry ;load vector Y

3: ADDV V4,V2,V3 ;add

4: SV Ry,V4 ;store the result
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DLXV Start-up Time
• Start-up time: pipeline latency time (depth of FU 

pipeline); another sources of overhead
• Operation Start-up penalty (from CRAY-1)
• Vector load/store 12
• Vector multply   7
• Vector add   6

Assume convoys don't overlap; vector length = n:

Convoy Start 1st result last result

1. LV     0 12 11+n

2. MULV, LV 12+n 12+n+12 24+2n Load start-up

3. ADDV 25+2n 25+2n+6 30+3n Wait convoy 2

4. SV     31+3n 32+3n+12  42+4n Wait convoy 3
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Vector Load/Store Units & Memories
• Start-up overheads usually longer fo LSUs
• Memory system must sustain 1 word/clock cycle
• Many Vector Procs. use banks vs. simple interleaving:

1) support multiple loads/stores per cycle 
=> multiple banks & address banks independently
2) support non-sequential accesses (see soon)

• Note: No. memory banks > memory latency to avoid 
stalls

– m banks => m words per memory lantecy l clocks
– if m <  l, then gap in memory pipeline:
clock: 0 … l l+1 l+2 … l+m- 1 l+m … 2 l
word: -- … 0 1 2 … m-1 -- … m
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Vector Length

• What to do when vector length is not exactly 64?   
• vector-length register (VLR) controls the length of 

any vector operation, including a vector load or 
store. (cannot be > the length of vector registers)

do 10 i = 1, n

10 Y(i) = a * X(i) + Y(i)

• Don't know n until runtime! 
n > Max. Vector Length (MVL)?

• Strip mining: generation of code such that each 
vector operation is done for a size ≤ to the MVL
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Strip Mining
• Suppose Vector Length > Max. Vector Length (MVL)?
• Strip mining: generation of code such that each vector 

operation is done for a size ≤ to the MVL
• 1st loop do short piece (n mod MVL), rest VL = MVL

   low = 1
   VL = (n mod MVL)  /*find the odd size piece*/
   do 1 j = 0,(n / MVL)  /*outer loop*/

do 10 i = low,low+VL-1  /*runs for length VL*/
Y(i) = a*X(i) + Y(i)  /*main operation*/

10 continue
low = low+VL  /*start of next vector*/
VL = MVL  /*reset the length to max*/

1 continue
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Vector Metrics
• R∞—MFLOPS rate on an infinite-length vector

– Real problems do not have unlimited vector lengths, and the 
start-up penalties encountered in real problems will be larger 

– (Rn is the MFLOPS rate for a vector of length n)

• N1/2—The vector length needed to reach one-half of R∞ 
– a good measure of the impact of start-up

• NV—The vector length needed to make vector mode 
faster than scalar mode 

– measures both start-up and speed of scalars relative to vectors
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Vector Stride
• Suppose adjacent elements not sequential in memory
do 10 i = 1,100

do 10 j = 1,100

A(i,j) = 0.0

do 10 k = 1,100

10 A(i,j) = A(i,j)+B(i,k)*C(k,j)

• Either B or C accesses not adjacent (800 bytes between)
• stride: distance separating elements that are to be 

merged into a single vector (caches do unit stride) 
=> LVWS instruction

• Strides => can cause bank conflicts 
(e.g., stride = 32 and 16 banks)
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Compiler Vectorization on Cray XMP
• Benchmark %FP %FP in vector
• ADM 23% 68%
• DYFESM 26% 95%
• FLO52  41% 100%
• MDG 28% 27%
• MG3D 31% 86%
• OCEAN 28% 58%
• QCD 14% 1%
• SPICE 16% 7%
• TRACK 9% 23%
• TRFD 22% 10%
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Vector Opt #1: Chaining
• Suppose:
• MULV V1,V2,V3
• ADDV V4,V1,V5 ; separate convoy?
• chaining: vector register (V1) is not as a single entity but 

as a group of individual registers, then  pipeline 
forwarding can work on individual elements of a vector

• Flexible chaining: allow vector to chain to any other 
active vector operation => more read/write port

•  As long as enough HW, increases convoy size
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Vector Opt #2: Sparse Matrices
• Suppose:

do 100 i = 1,n

100 A(K(i)) = A(K(i)) + C(M(i))

• gather (LVI) operation takes an index vector and fetches 
the vector whose elements are at the addresses given by 
adding a base address to the offsets given in the index 
vector => a nonsparse vector in a vector register 

• After these elements are operated on in dense form,  the 
sparse vector can be stored in expanded form by a 
scatter store (SVI), using the same index vector

• Can't be done by compiler since can't know Ki elements 
distinct, no dependencies; by compiler directive

• Use CVI to create index 0,m, 2m, ..., 63m
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Sparse Matrix Example

• Cache (1993) vs. Vector (1988)
IBM RS6000 Cray YMP

Clock   72 MHz 167 MHz
Cache 256 KB 0.25 KB
Linpack 140 MFLOPS 160 (1.1)
Sparse Matrix   17 MFLOPS 125 (7.3)

(Cholesky Blocked )



DAP.F96  24

Vector Opt #3: Conditional Execution
• Suppose:

do 100 i = 1, 64

if (A(i) .ne. 0) then

A(i) = A(i) – B(i)

endif

100 continue

• vector-mask control takes a Boolean vector: when 
vector-mask register is loaded from vector test, vector 
instructions operate only on vector elements whose 
corresponding entries in the vector-mask register are 1.

•  Still requires clock even if result not stored; if still 
performs operation, what about divide by 0?
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Vector for Multimedia?

• MMX: 57 new 80x86 instructions (1st since 386)
– similar to Mot. 88110, HP PA-71000LC, UltraSPARC

• 3 data types: 8 8-bit, 4 16-bit, 2 32-bit in 64bits
– reuse 8 FP registers (FP and MMX cannot mix)

• ≈ short vector: load, add, store 8 8-bit operands

• Claim: overall speedup 1.5 to 2X for 2D/3D 
graphics, audio, video, speech, comm., ...

– use in drivers or added to library routines; no compiler

+
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MMX Instructions

• Move 32b, 64b
• Add, Subtract in parallel: 8 8b, 4 16b, 2 32b

– opt. signed/unsigned saturate (set to max) if overflow

• Shifts (sll,srl, sra), And, And Not, Or, Xor 
in parallel: 8 8b, 4 16b, 2 32b

• Multiply, Multiply-Add in parallel: 4 16b
• Compare = , > in parallel: 8 8b, 4 16b, 2 32b

– sets field to 0s (false) or 1s (true); removes branches

• Pack/Unpack
– Convert 32b<–> 16b, 16b <–> 8b
– Pack saturates (set to max) if number is too large
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Vector Pitfalls
• Pitfall: Concentrating on peak performance and ignoring 

start-up overhead: NV (faster than scalar) > 100!
• Pitfall: Increasing vector performance, without 

comparable increases in scalar performance 
(Amdahl's Law)

– failure of Cray competitor from his former company

• Pitfall: Good processor vector performance without 
providing good memory bandwidth

– MMX?
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Vector Summary

• Alternate model accomodates long memory latency
• Much easier for hardware: more powerful instructions, 

more predictable memory accesses, fewer harzards, 
fewer branches, fewer mispredicted branches,  ...

• What % of computation is vectorizable? 
• Is vector a good match to new apps such as 

multidemia, DSP?
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5 minute Class Break

• Lecture Format: 
–   ≈ 1 minute: review last time & motivate this lecture
– ≈ 20 minute lecture
–  ≈ 3 minutes: discuss class manangement
– ≈ 25 minutes: lecture 
–     5 minutes: break
– ≈25 minutes: lecture
–   ≈1 minute: summary of today’s important topics
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XSPEC ‘02

• eXperimental SPEC for 2002: create benchmark set of 
programs, data size of future apps

– Why design computers of future using programs of past?
– e.g., Speech understanding, Word processing of book, 

Video, 3D animation, sound, Object data base, Encryption, 
Just-In-Time compiler, Network apps, Games, …

– Public domain and third party programs
– At least 2 programs, 3 data set sizes (‘96, ‘99, ‘02), ported to 

at least 2 instruction sets (with optimizating compilers), 
characterize using performance monitors (cache misses, 
CPI, instruction types, I/O traffic, paging, ...)

– success requires potability and publishing results
– can beveral groups
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JAVA vs. SPEC

• JAVA 1: characterization of cache behavior, register 
usage, branch behavior, and depth of calls (to name 
a few interesting data points) for Java applications. 

– Contrast these parameters with Spec benchmarks. 
–  Analyze where differences come from
– Compare with vanilla byte codes and Just-In-Time compilers
– Suggested by Dileep Bhandarkar 

(Dileep_Bhandarkar@ccm.sc.intel.com)
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SPEC95 Path Length

• Since you have a variety of architectures, take the gcc 
compiler and measure SPECint95 on some public 
version of Unix such as Linux or FreeBSD

– You already know about ATOM (alpha) and EEL (sparc). Now 
there is also ETCH for x86. Look at:

     http://www.cs.washington.edu/homes/bershad/Etch/index.html  
     Having similar tools for 3 architectures might allow you to have 

3  groups of students look at similar stuff on 3 architectures.
– Compare path lengths for the various architectures
– Do static code size comparisons 
– See impact of optimizations
– Suggested by Dileep Bhandarkar 

(Dileep_Bhandarkar@ccm.sc.intel.com)
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SPEC95 Caches Tables

• Repeat Mark Hill's SPEC92 cache analysis for 
SPEC95. 

– Gee, J.D.; Hill, M.D.; Pnevmatikatos, D.N.; Smith, A.J. “Cache 
performance of the SPEC92 benchmark suite.” IEEE Micro, 
Aug. 1993, vol.13, (no.4):17-27.

– Abstract: The authors consider whether SPECmarks, the 
figures of meritobtained from running the SPEC benchmarks 
under certain specified conditions, accurately indicate the 
performance to be expected from real, live work loads. Miss 
ratios for the entire set of SPEC92 benchmarks are 
measured.  

– This may need multiple teams, N benchmarks per team.
– See if it varies for x86 vs. RISC? Use NOW, PC clusters.
– Suggested by Dileep Bhandarkar 

(Dileep_Bhandarkar@ccm.sc.intel.com)
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Measure OS Primitives

• Pick some set of OS primitives (process creation, 
synchronization etc) and measure the times for NT vs 
Unix on same platform.

– See if it varies for x86 vs. Alpha? 
– Suggested by Dileep Bhandarkar 

(Dileep_Bhandarkar@ccm.sc.intel.com)
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A "voting" data-prefetch engine
• This H/W device has the following characteristics:

– For any data reference stream, TWO independent prefetch 
devices make predictions: one is a standard load address 
stride predictor (which predicts strided accesses), and the 
other is a stream buffer, which basically reacts to cache 
miss history.  

– The challenge is to design a voting function that dynamically 
selects one or the other of the prefetch addresses to issue to 
the higher levels of the memory hierarchy.  

– This selection should be made conditional on whichever of 
the two predictors is currently generating the more accurate 
future address stream. 

– Accuracy is defined as the ability to reduce future data  
cache misses.

– Suggested by Sharad Mehrotra 
(Sharad.Mehrotra@Eng.Sun.COM)
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IRAM Vision Statement
• Microprocessor & DRAM on single 

chip:
– bridge the processor-memory 

performance gap via on-chip latency 
(5-10X) & bandwidth (100X)

– improve power-performance (no 
DRAM bus: 2-3X)

– lower minimum memory size
(designer picks any amount)
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Potential IRAM CS252 Projects?

• Large program/data solution
– Get traces of large programs
– Compare and contrast:

» Cache Only Memory Architecture, all IRAMs
» IRAM as cache, external DRAM as main memory
» IRAM as low physical memory, external DRAM as 

high physical memory; paging policy (CS 262)?

• Examine on-the-fly compression, 
decompression for external BW, capacity

• Model processor redundancy to improve yield 
of IRAM

– Dynamic pipeline and multiple functional units
– Multiple small processors?
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Brass Vision Statement
• Microprocessor & FPGA on single chip:

– use some of millions of transitors to customize 
HW dynamically to application

– “Reconfigurable Computing”
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Potential BRASS CS252 
Projects?

• Comparison between full-custom, FPGA, and 
processor implementations

• There are a few instances (e.g. multipliers, FIRs) 
where we have custom IC, FPGA, and processor 
implementations and can compare the area-time 
efficiency of each.  

• Pick an application which has a plausible 
custom implementation to compare against and 
develop/estimate a good processor and array 
(FPGA/GARP-array/etc.) implementation 
(perhaps include the processor+FPGA hybrid, 
as well).

– Suggested by André DeHon (amd@CS.Berkeley.edu)
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Potential BRASS CS252 
Projects?

• More suggestions by André DeHon; see him for 
more details (amd@CS.Berkeley.edu)

• FPGAs to accelerate common APIs
• Specialization Opportunity
• Coping with Finite Array Size
• Multitasking and Configurable Arrays
• Important Program Characteristics

– (derivable) datasizes (1b vs 8b vs 16b)
– retiming distances (space to save vs. wait)
– richness of interconnect
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Architecture Archeology/
Endangered Species Act

• documenting architectural history might attempt to 
either collect or construct emulators for machines 
which are disappearing

– The real wonder for the ARPAnet for me in 1973 was the 
diversity of architecture.  I started on an IBM 360/75, I 
believed at that timethat the world revolved around EBCDIC.  
Over the next couple of years encountered my first DEC-10, 
ILLIAC-IV, CDC-6600, ...

– The value of emulation history is going to take on interesting 
significance in the future.  The challenge will be to preserve 
this software history as the base emulation machines 
themselves pass into history.

–  Write emulators in Java so can run anywhere?Simple 
assembler so can write programs?

– Suggested by Eugene Miya (eugene@pioneer.arc.nasa.gov )


