
DAP.F96 1

Lecture 6:
 Vector Processing

Professor David A. Patterson
Computer Science 252

Fall 1996

DAP.F96 2

Review

• Dynmamic Branch Prediction
– Branch History Table: 2 bits for loop accuracy
– Correlation: Recently executed branches correlated with next

branch
– Branch Target Buffer: include branch address & prediction

• Superscalar and VLIW
– CPI < 1
– Dynamic issue vs. Static issue
– More instructions issue at same time, larger the penalty of

hazards

• SW Pipelining
– Symbolic Loop Unrolling to get most from pipeline with little

code expansion, little overhead

DAP.F96 3

Instructon Level Parallelism

• High speed execution based on instruction
level parallelism (ilp): potential of short
instruction sequences to execute in parallel

• High-speed microprocessors exploit ILP by:
1) pipelined execution: overlap instructions
2) superscalar execution: issue and execute
multiple instructions per clock cycle
3) Out-of-order execution (commit in-order)

• Memory accesses for high-speed
microprocessor?

– For cache hits

DAP.F96 4

Problems with conventional approach

• Limits to conventional exploitation of ILP:
1) pipelined clock rate: at some point, each
increase in clock rate has corresponding CPI
increase
2) instruction fetch and decode: at some
point, its hard to fetch and decode more
instructions per clock cycle
3) cache hit rate: some long-running
(scientific) programs have very large data
sets accessed with poor locality

DAP.F96 5

Vector Processors
• Vector processors have high-level operations that work

on linear arrays of numbers: "vectors"
e.g., A = BxC, where A, B, C are 64-element vectors of
64-bit floating point numbers

• Properties of vectors:
– Each result independent of previous result

=> long pipeline, compiler ensures no dependencies
– single vector instruction implies lots of work (≈ loop)

=> fewer instruction fetches
– vector instructions access memory with known pattern

=> highly interleaved memory
=> amortize memory latency of over ≈ 64 elements
=> no caches required!

– reduces branches and branch problems in pipelines

DAP.F96 6

Styles of Vector Architectures

• vector-register processors: all vector operations
between vector registers (except load and store)

– Vector equivalent of load-store architectures
– Includes all vector machines since late 1980s:

Cray, Convex, Fujitsu, Hitachi, NEC

• memory-memory vector processors: all vector
operations are memory to memory

DAP.F96 7

Components of Vector Processor
• Vector Register: fixed length bank holding a single

vector
– has at least 2 read and 1 write ports
– typically 8-16 vector registers, each holding 64-128 64-bit

elements

• Vector Functional Units (FUs): fully pipelined, start new
operation every clock

– typically 4 to 8: FP add, FP mult, FP reciprocal (1/X), integer
add, logical, shift

• Vector Load-Store Units (LSUs): fully pipelined unit to
load or store a vector

• Scalar registers: single element for FP scalar or
address

• Cross-bar to connect FUs , LSUs, registers

DAP.F96 8

Example Vector Machines
• Machine Year Clock Regs Elements FUs LSUs
• Cray 1 1976 80 MHz 8 64 6 1
• Cray XMP 1983 120 MHz 8 64 8 2 L, 1 S
• Cray YMP 1988 166 MHz 8 64 8 2 L, 1 S
• Cray C-90 1991 240 MHz 8 128 8 4
• Cray T-90 1996 455 MHz 8 128 8 4
• Conv. C-1 1984 10 MHz 8 128 4 1
• Conv. C-4 1994 133 MHz 16 128 3 1
• Fuj. VP200 1982 133 MHz 8-256 32-1024 3 2
• Fuj. VP300 1996 100 MHz 8-256 32-1024 3 2
• NEC SX/2 1984 160 MHz 8+8K 256+var 16 8
• NEC SX/3 1995 400 MHz 8+8K 256+var 16 8

DAP.F96 9

Vector Linpack Performance
 Machine Year Clock 100x100 1kx1k Peak(Procs)

• Cray 1 1976 80 MHz 12 110 160(1)
• Cray XMP 1983 120 MHz 121 218 940(4)
• Cray YMP 1988 166 MHz 150 307 2,667(8)
• Cray C-90 1991 240 MHz 387 902 15,238(16)
• Cray T-90 1996 455 MHz 705 1603 57,600(32)
• Conv. C-1 1984 10 MHz 3 -- 20(1)
• Conv. C-4 1994 135 MHz 160 2531 3240(4)
• Fuj. VP200 1982 133 MHz 18 422 533(1)
• NEC SX/2 1984 166 MHz 43 885 1300(1)
• NEC SX/3 1995 400 MHz 368 2757 25,600(4)

DAP.F96 10

“DLXV” Vector Instructions
Instr. Operands Operation Comment

• ADDV V1,V2,V3 V1=V2+V3 vector + vector
• ADDSV V1,F0,V2 V1=F0+V2 scalar + vector
• MULTV V1,V2,V3 V1=V2xV3 vector x vector
• MULSV V1,F0,V2 V1=F0xV2 scalar x vector
• LV V1,R1 V1=M[R1..R1+63] load, stride=1
• LVWS V1,R1,R2 V1=M[R1..R1+63*R2] load, stride=R2
• LVI V1,R1,V2 V1=M[R1+V2i,i=0..63] indir.("gather")
• CeqV VM,V1,V2 VMASKi = (V1i=V2i)? comp. setmask
• MOV VLR,R1 Vec. Len. Reg. = R1 set vector length
• MOV VM,R1 Vec. Mask = R1 set vector mask

DAP.F96 11

DAXPY (Y = a * X + Y)

 LD F0,a
 ADDI R4,Rx,#512 ;last address to load

loop: LD F2, 0(Rx) ;load X(i)
 MULTD F2,F0,F2 ;a*X(i)
 LD F4, 0(Ry) ;load Y(i)
 ADDD F4,F2, F4 ;a*X(i) + Y(i)
 SD F4 ,0(Ry) ;store into Y(i)
 ADDI Rx,Rx,#8 ;increment index to X
 ADDI Ry,Ry,#8 ;increment index to Y
 SUB R20,R4,Rx ;compute bound
 BNZ R20,loop ;check if done

LD F0,a ;load scalar a

LV V1,Rx ;load vector X

MULTS V2,F0,V1 ;vector-scalar mult.

LV V3,Ry ;load vector Y

ADDV V4,V2,V3 ;add

SV Ry,V4 ;store the result

Assuming vectors X, Y
are length 64

Scalar vs. Vector

 578 (2+9*64) vs.
 6 instructions:

64 operation vectors +
no loop overhead

also 64X fewer pipeline
hazards

DAP.F96 12

CS 252 Administrivia
• Projects this Friday?

DAP.F96 13

Vector Execution Time

• Time = f(vector length, data dependicies, struct. hazards)
• Initiation rate: rate that FU consumes vector elements

(usually 1 or 2 on Cray T-90)
• Convoy: set of vector instructions that can begin

execution in same clock (no struct. or data hazards)
• Chime: approx. time for a vector operation
• m convoys take m chimes; if each vector length is n,

then they take approx. m x n clock cycles (ignores
overhead; good approximization for long vectors)

4 conveys
=> 4 x 64 ≈ 256 clocks
(or 4 clocks per result)

1: LV V1,Rx ;load vector X

2: MULS V2,F0,V1 ;vector-scalar mult.

LV V3,Ry ;load vector Y

3: ADDV V4,V2,V3 ;add

4: SV Ry,V4 ;store the result

DAP.F96 14

DLXV Start-up Time
• Start-up time: pipeline latency time (depth of FU

pipeline); another sources of overhead
• Operation Start-up penalty (from CRAY-1)
• Vector load/store 12
• Vector multply 7
• Vector add 6

Assume convoys don't overlap; vector length = n:

Convoy Start 1st result last result

1. LV 0 12 11+n

2. MULV, LV 12+n 12+n+12 24+2n Load start-up

3. ADDV 25+2n 25+2n+6 30+3n Wait convoy 2

4. SV 31+3n 32+3n+12 42+4n Wait convoy 3

DAP.F96 15

Vector Load/Store Units & Memories
• Start-up overheads usually longer fo LSUs
• Memory system must sustain 1 word/clock cycle
• Many Vector Procs. use banks vs. simple interleaving:

1) support multiple loads/stores per cycle
=> multiple banks & address banks independently
2) support non-sequential accesses (see soon)

• Note: No. memory banks > memory latency to avoid
stalls

– m banks => m words per memory lantecy l clocks
– if m < l, then gap in memory pipeline:
clock: 0 … l l+1 l+2 … l+m- 1 l+m … 2 l
word: -- … 0 1 2 … m-1 -- … m

DAP.F96 16

Vector Length

• What to do when vector length is not exactly 64?
• vector-length register (VLR) controls the length of

any vector operation, including a vector load or
store. (cannot be > the length of vector registers)

do 10 i = 1, n

10 Y(i) = a * X(i) + Y(i)

• Don't know n until runtime!
n > Max. Vector Length (MVL)?

• Strip mining: generation of code such that each
vector operation is done for a size ≤ to the MVL

DAP.F96 17

Strip Mining
• Suppose Vector Length > Max. Vector Length (MVL)?
• Strip mining: generation of code such that each vector

operation is done for a size ≤ to the MVL
• 1st loop do short piece (n mod MVL), rest VL = MVL

 low = 1
 VL = (n mod MVL) /*find the odd size piece*/
 do 1 j = 0,(n / MVL) /*outer loop*/

do 10 i = low,low+VL-1 /*runs for length VL*/
Y(i) = a*X(i) + Y(i) /*main operation*/

10 continue
low = low+VL /*start of next vector*/
VL = MVL /*reset the length to max*/

1 continue

DAP.F96 18

Vector Metrics
• R∞—MFLOPS rate on an infinite-length vector

– Real problems do not have unlimited vector lengths, and the
start-up penalties encountered in real problems will be larger

– (Rn is the MFLOPS rate for a vector of length n)

• N1/2—The vector length needed to reach one-half of R∞
– a good measure of the impact of start-up

• NV—The vector length needed to make vector mode
faster than scalar mode

– measures both start-up and speed of scalars relative to vectors

DAP.F96 19

Vector Stride
• Suppose adjacent elements not sequential in memory
do 10 i = 1,100

do 10 j = 1,100

A(i,j) = 0.0

do 10 k = 1,100

10 A(i,j) = A(i,j)+B(i,k)*C(k,j)

• Either B or C accesses not adjacent (800 bytes between)
• stride: distance separating elements that are to be

merged into a single vector (caches do unit stride)
=> LVWS instruction

• Strides => can cause bank conflicts
(e.g., stride = 32 and 16 banks)

DAP.F96 20

Compiler Vectorization on Cray XMP
• Benchmark %FP %FP in vector
• ADM 23% 68%
• DYFESM 26% 95%
• FLO52 41% 100%
• MDG 28% 27%
• MG3D 31% 86%
• OCEAN 28% 58%
• QCD 14% 1%
• SPICE 16% 7%
• TRACK 9% 23%
• TRFD 22% 10%

DAP.F96 21

Vector Opt #1: Chaining
• Suppose:
• MULV V1,V2,V3
• ADDV V4,V1,V5 ; separate convoy?
• chaining: vector register (V1) is not as a single entity but

as a group of individual registers, then pipeline
forwarding can work on individual elements of a vector

• Flexible chaining: allow vector to chain to any other
active vector operation => more read/write port

• As long as enough HW, increases convoy size

DAP.F96 22

Vector Opt #2: Sparse Matrices
• Suppose:

do 100 i = 1,n

100 A(K(i)) = A(K(i)) + C(M(i))

• gather (LVI) operation takes an index vector and fetches
the vector whose elements are at the addresses given by
adding a base address to the offsets given in the index
vector => a nonsparse vector in a vector register

• After these elements are operated on in dense form, the
sparse vector can be stored in expanded form by a
scatter store (SVI), using the same index vector

• Can't be done by compiler since can't know Ki elements
distinct, no dependencies; by compiler directive

• Use CVI to create index 0,m, 2m, ..., 63m

DAP.F96 23

Sparse Matrix Example

• Cache (1993) vs. Vector (1988)
IBM RS6000 Cray YMP

Clock 72 MHz 167 MHz
Cache 256 KB 0.25 KB
Linpack 140 MFLOPS 160 (1.1)
Sparse Matrix 17 MFLOPS 125 (7.3)

(Cholesky Blocked)

DAP.F96 24

Vector Opt #3: Conditional Execution
• Suppose:

do 100 i = 1, 64

if (A(i) .ne. 0) then

A(i) = A(i) – B(i)

endif

100 continue

• vector-mask control takes a Boolean vector: when
vector-mask register is loaded from vector test, vector
instructions operate only on vector elements whose
corresponding entries in the vector-mask register are 1.

• Still requires clock even if result not stored; if still
performs operation, what about divide by 0?

DAP.F96 25

Vector for Multimedia?

• MMX: 57 new 80x86 instructions (1st since 386)
– similar to Mot. 88110, HP PA-71000LC, UltraSPARC

• 3 data types: 8 8-bit, 4 16-bit, 2 32-bit in 64bits
– reuse 8 FP registers (FP and MMX cannot mix)

• ≈ short vector: load, add, store 8 8-bit operands

• Claim: overall speedup 1.5 to 2X for 2D/3D
graphics, audio, video, speech, comm., ...

– use in drivers or added to library routines; no compiler

+

DAP.F96 26

MMX Instructions

• Move 32b, 64b
• Add, Subtract in parallel: 8 8b, 4 16b, 2 32b

– opt. signed/unsigned saturate (set to max) if overflow

• Shifts (sll,srl, sra), And, And Not, Or, Xor
in parallel: 8 8b, 4 16b, 2 32b

• Multiply, Multiply-Add in parallel: 4 16b
• Compare = , > in parallel: 8 8b, 4 16b, 2 32b

– sets field to 0s (false) or 1s (true); removes branches

• Pack/Unpack
– Convert 32b<–> 16b, 16b <–> 8b
– Pack saturates (set to max) if number is too large

DAP.F96 27

Vector Pitfalls
• Pitfall: Concentrating on peak performance and ignoring

start-up overhead: NV (faster than scalar) > 100!
• Pitfall: Increasing vector performance, without

comparable increases in scalar performance
(Amdahl's Law)

– failure of Cray competitor from his former company

• Pitfall: Good processor vector performance without
providing good memory bandwidth

– MMX?

DAP.F96 28

Vector Summary

• Alternate model accomodates long memory latency
• Much easier for hardware: more powerful instructions,

more predictable memory accesses, fewer harzards,
fewer branches, fewer mispredicted branches, ...

• What % of computation is vectorizable?
• Is vector a good match to new apps such as

multidemia, DSP?

DAP.F96 29

5 minute Class Break

• Lecture Format:
– ≈ 1 minute: review last time & motivate this lecture
– ≈ 20 minute lecture
– ≈ 3 minutes: discuss class manangement
– ≈ 25 minutes: lecture
– 5 minutes: break
– ≈25 minutes: lecture
– ≈1 minute: summary of today’s important topics

DAP.F96 30

XSPEC ‘02

• eXperimental SPEC for 2002: create benchmark set of
programs, data size of future apps

– Why design computers of future using programs of past?
– e.g., Speech understanding, Word processing of book,

Video, 3D animation, sound, Object data base, Encryption,
Just-In-Time compiler, Network apps, Games, …

– Public domain and third party programs
– At least 2 programs, 3 data set sizes (‘96, ‘99, ‘02), ported to

at least 2 instruction sets (with optimizating compilers),
characterize using performance monitors (cache misses,
CPI, instruction types, I/O traffic, paging, ...)

– success requires potability and publishing results
– can beveral groups

DAP.F96 31

JAVA vs. SPEC

• JAVA 1: characterization of cache behavior, register
usage, branch behavior, and depth of calls (to name
a few interesting data points) for Java applications.

– Contrast these parameters with Spec benchmarks.
– Analyze where differences come from
– Compare with vanilla byte codes and Just-In-Time compilers
– Suggested by Dileep Bhandarkar

(Dileep_Bhandarkar@ccm.sc.intel.com)

DAP.F96 32

SPEC95 Path Length

• Since you have a variety of architectures, take the gcc
compiler and measure SPECint95 on some public
version of Unix such as Linux or FreeBSD

– You already know about ATOM (alpha) and EEL (sparc). Now
there is also ETCH for x86. Look at:

 http://www.cs.washington.edu/homes/bershad/Etch/index.html
 Having similar tools for 3 architectures might allow you to have

3 groups of students look at similar stuff on 3 architectures.
– Compare path lengths for the various architectures
– Do static code size comparisons
– See impact of optimizations
– Suggested by Dileep Bhandarkar

(Dileep_Bhandarkar@ccm.sc.intel.com)

DAP.F96 33

SPEC95 Caches Tables

• Repeat Mark Hill's SPEC92 cache analysis for
SPEC95.

– Gee, J.D.; Hill, M.D.; Pnevmatikatos, D.N.; Smith, A.J. “Cache
performance of the SPEC92 benchmark suite.” IEEE Micro,
Aug. 1993, vol.13, (no.4):17-27.

– Abstract: The authors consider whether SPECmarks, the
figures of meritobtained from running the SPEC benchmarks
under certain specified conditions, accurately indicate the
performance to be expected from real, live work loads. Miss
ratios for the entire set of SPEC92 benchmarks are
measured.

– This may need multiple teams, N benchmarks per team.
– See if it varies for x86 vs. RISC? Use NOW, PC clusters.
– Suggested by Dileep Bhandarkar

(Dileep_Bhandarkar@ccm.sc.intel.com)

DAP.F96 34

Measure OS Primitives

• Pick some set of OS primitives (process creation,
synchronization etc) and measure the times for NT vs
Unix on same platform.

– See if it varies for x86 vs. Alpha?
– Suggested by Dileep Bhandarkar

(Dileep_Bhandarkar@ccm.sc.intel.com)

DAP.F96 35

A "voting" data-prefetch engine
• This H/W device has the following characteristics:

– For any data reference stream, TWO independent prefetch
devices make predictions: one is a standard load address
stride predictor (which predicts strided accesses), and the
other is a stream buffer, which basically reacts to cache
miss history.

– The challenge is to design a voting function that dynamically
selects one or the other of the prefetch addresses to issue to
the higher levels of the memory hierarchy.

– This selection should be made conditional on whichever of
the two predictors is currently generating the more accurate
future address stream.

– Accuracy is defined as the ability to reduce future data
cache misses.

– Suggested by Sharad Mehrotra
(Sharad.Mehrotra@Eng.Sun.COM)

DAP.F96 36

IRAM Vision Statement
• Microprocessor & DRAM on single

chip:
– bridge the processor-memory

performance gap via on-chip latency
(5-10X) & bandwidth (100X)

– improve power-performance (no
DRAM bus: 2-3X)

– lower minimum memory size
(designer picks any amount)

$ $
Proc

L2$

L
o
g
i
c

f
a
b

D
R
A
M

f
a
b

Proc

Bus

Bus

D R A M

D R A M

DAP.F96 37

Potential IRAM CS252 Projects?

• Large program/data solution
– Get traces of large programs
– Compare and contrast:

» Cache Only Memory Architecture, all IRAMs
» IRAM as cache, external DRAM as main memory
» IRAM as low physical memory, external DRAM as

high physical memory; paging policy (CS 262)?

• Examine on-the-fly compression,
decompression for external BW, capacity

• Model processor redundancy to improve yield
of IRAM

– Dynamic pipeline and multiple functional units
– Multiple small processors?

DAP.F96 38

Brass Vision Statement
• Microprocessor & FPGA on single chip:

– use some of millions of transitors to customize
HW dynamically to application

– “Reconfigurable Computing”

DAP.F96 39

Potential BRASS CS252
Projects?

• Comparison between full-custom, FPGA, and
processor implementations

• There are a few instances (e.g. multipliers, FIRs)
where we have custom IC, FPGA, and processor
implementations and can compare the area-time
efficiency of each.

• Pick an application which has a plausible
custom implementation to compare against and
develop/estimate a good processor and array
(FPGA/GARP-array/etc.) implementation
(perhaps include the processor+FPGA hybrid,
as well).

– Suggested by André DeHon (amd@CS.Berkeley.edu)

DAP.F96 40

Potential BRASS CS252
Projects?

• More suggestions by André DeHon; see him for
more details (amd@CS.Berkeley.edu)

• FPGAs to accelerate common APIs
• Specialization Opportunity
• Coping with Finite Array Size
• Multitasking and Configurable Arrays
• Important Program Characteristics

– (derivable) datasizes (1b vs 8b vs 16b)
– retiming distances (space to save vs. wait)
– richness of interconnect

DAP.F96 41

Architecture Archeology/
Endangered Species Act

• documenting architectural history might attempt to
either collect or construct emulators for machines
which are disappearing

– The real wonder for the ARPAnet for me in 1973 was the
diversity of architecture. I started on an IBM 360/75, I
believed at that timethat the world revolved around EBCDIC.
Over the next couple of years encountered my first DEC-10,
ILLIAC-IV, CDC-6600, ...

– The value of emulation history is going to take on interesting
significance in the future. The challenge will be to preserve
this software history as the base emulation machines
themselves pass into history.

– Write emulators in Java so can run anywhere?Simple
assembler so can write programs?

– Suggested by Eugene Miya (eugene@pioneer.arc.nasa.gov)

