
DAP.F96 1

Lecture 7:
 Memory Hierarchy—3 Cs and 7 Ways to

Reduce Misses

Professor David A. Patterson
Computer Science 252

Fall 1996

DAP.F96 2

Vector Summary

• Like superscalar and VLIW, exploits ILP
• Alternate model accomodates long memory

latency
• Requires memory performance as well as many

pipelined functional units and registers
• Much easier for hardware: more powerful

instructions, more predictable memory accesses,
fewer branches, ...

• Multimedia instructions (Intel MMX, SPARC Viz)
represent a resurgence of vector-like instructions

• What % of computation is vectorizable? What %
do compilers deliver? For new apps?

DAP.F96 3

Vector: CVI instruction
• Use CVI to create index 0,m, 2m, ..., 63m
• One use: create 0, 1, 2 ... to vectorize “A[i]+i”
• Compresses out elements where zeros in mask bits

– Mask = “110101…” => CVI V2,#8 generates 0,8,24,40,…

• Used for conditional code to compress vector (B-28):
SNESV F0,V1 ; sets vector mask bits to 1 if V1i ≠ F0
CVI V2,#8 ; creates indices in V2
POP F0,VM ; R1 = number of 1s in vector mask
MOVI2S VLR,R1; sets mask bits to 1 if V1i ≠ F0
CVM ; clear vector mask
LVI V3,(Ra+V2); Load A elements ≠ 0 in original mask
LVI V4,(Rb+V2); Load B elements ≠ 0 in original mask
SUBV V3,V3,V4 ; A(I)=A(I)-B(I) when ≠ 0 in old mask
SVI V3,(Ra+V2); Store A elements ≠ 0 in original mask

• For conditional expressions, what branch frequency
faster for gather/scatter vs. masked vector?

DAP.F96 4

Review: Who Cares About the
Memory Hierarchy?

• Processor Only Thus Far in Course:
– CPU cost/performance, ISA, Pipelined Execution

 CPU-DRAM Gap

• 1980: no cache in µproc; 1995 2-level cache, 60% trans.
on Alpha 21164 µproc (150 clock cycles for a miss!)

1

10

100

1000

1
9

8
0

1
9

8
1

1
9

8
2

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

DRAM

CPU

DAP.F96 5

Review: Four Questions for
Memory Hierarchy Designers

• Q1: Where can a block be placed in the upper level?
(Block placement)

– Fully Associative, Set Associative, Direct Mapped

• Q2: How is a block found if it is in the upper level?
 (Block identification)

– Tag/Block

• Q3: Which block should be replaced on a miss?
(Block replacement)

– Random, LRU

• Q4: What happens on a write?
(Write strategy)

– Write Back or Write Through (with Write Buffer)

DAP.F96 6

Review: Cache Performance

CPU time = (CPU execution clock cycles +
Memory stall clock cycles) x clock cycle time

Memory stall clock cycles = (Reads x Read miss
rate x Read miss penalty + Writes x Write
miss rate x Write miss penalty)

Memory stall clock cycles = Memory accesses x
Miss rate x Miss penalty

DAP.F96 7

Review: Cache Performance

CPUtime = IC x (CPIexecution + Mem accesses per
instruction x Miss rate x Miss penalty) x Clock
cycle time

Misses per instruction = Memory accesses per
instruction x Miss rate

CPUtime = IC x (CPIexecution + Misses per
instruction x Miss penalty) x Clock cycle time

DAP.F96 8

Review: Improving Cache
Performance

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

DAP.F96 9

Reducing Misses
• Classifying Misses: 3 Cs

– Compulsory—The first access to a block is not in the
cache, so the block must be brought into the cache. These
are also called cold start misses or first reference misses.
(Misses in Infinite Cache)

– Capacity—If the cache cannot contain all the blocks needed
during execution of a program, capacity misses will occur
due to blocks being discarded and later retrieved.
(Misses in Fully Associative Size X Cache)

– Conflict—If the block-placement strategy is set associative
or direct mapped, conflict misses (in addition to
compulsory and capacity misses) will occur because a
block can be discarded and later retrieved if too many
blocks map to its set. These are also called collision misses
or interference misses.
(Misses in N-way Associative, Size X Cache)

DAP.F96 10
Cache Size (KB)

M
is

s
R
a
te

 p
e
r

T
y
p
e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
1 2 4 8

1
6

3
2

6
4

1
2
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

3Cs Absolute Miss Rate

Conflict

DAP.F96 11
Cache Size (KB)

M
is

s
R
a
te

 p
e
r

T
y
p
e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
1 2 4 8

1
6

3
2

6
4

1
2
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

2:1 Cache Rule

Conflict

 miss rate 1-way associative cache size X
= miss rate 2-way associative cache size X/2

DAP.F96 12

3Cs Relative Miss Rate

Cache Size (KB)

M
is

s
R
a
te

 p
e
r

T
y
p
e

0%

20%

40%

60%

80%

100%
1 2 4 8

1
6

3
2

6
4

1
2
8

1-way

2-way
4-way

8-way

Capacity

Compulsory

Conflict

DAP.F96 13

How Can Reduce Misses?

• Change Block Size? Which of 3Cs affected?

• Change Associativity? Which of 3Cs affected?

• Change Compiler? Which of 3Cs affected?

DAP.F96 14

Block Size (bytes)

Miss
Rate

0%

5%

10%

15%

20%

25%

1
6

3
2

6
4

1
2
8

2
5
6

1K

4K

16K

64K

256K

1. Reduce Misses via Larger
Block Size

DAP.F96 15

2. Reduce Misses via Higher
Associativity

• 2:1 Cache Rule:
– Miss Rate DM cache size N ≈ Miss Rate 2-way cache

size N/2

• Beware: Execution time is only final measure!
– Will Clock Cycle time increase?
– Hill [1988] suggested hit time external cache +10%,

internal + 2% for 2-way vs. 1-way

DAP.F96 16

Example: Avg. Memory Access
Time vs. Miss Rate

• Example: assume CCT = 1.10 for 2-way, 1.12 for 4-way,
1.14 for 8-way vs. CCT direct mapped

Cache Size Associativity
 (KB) 1-way 2-way 4-way 8-way

 1 2.33 2.15 2.07 2.01
 2 1.98 1.86 1.76 1.68
 4 1.72 1.67 1.61 1.53
 8 1.46 1.48 1.47 1.43
 16 1.29 1.32 1.32 1.32
 32 1.20 1.24 1.25 1.27
 64 1.14 1.20 1.21 1.23
 128 1.10 1.17 1.18 1.20

(Red means A.M.A.T. not improved by more associativity)

DAP.F96 17

CS 252 Administrivia
• Sorry that last homework had high ratio of time to

learning; next one will be better!
• Distribute Memory hierarchy homework, to be

done in pairs
– Due Monday Sept 30 by 5PM in box in 273 Soda

• Pick partners and tentative projects by Monday
September 23? Send email Rich Fromm with
partner, short description of topic

• Part of CS 252 is expose to architecture research
projects underway at Berkeley

– Wednesday Septemeber 25, guest lecture on
Reconfigurable Computing, part of BRASS project just
starting at Berkeley

DAP.F96 18

3. Reducing Misses via
Victim Cache

• How to combine fast hit
time of Direct Mapped
yet still avoid conflict
misses?

• Add buffer to place data
discarded from cache

• Jouppi [1990]: 4-entry
victim cache removed
20% to 95% of conflicts
for a 4 KB direct mapped
data cache

• Used in Alpha, HP
machines

DAP.F96 19

4. Reducing Misses via
Pseudo-Associativity

• How to combine fast hit time of Direct Mapped and have
the lower conflict misses of 2-way SA cache?

• Divide cache: on a miss, check other half of cache to see
if there, if so have a pseudo-hit (slow hit)

• Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles
– Better for caches not tied directly to processor (L2)

Hit Time

Pseudo Hit Time Miss Penalty

Time

DAP.F96 20

5. Reducing Misses by HW
Prefetching of Instruction & Data

• E.g., Instruction Prefetching
– Alpha 21064 fetches 2 blocks on a miss
– Extra block placed in stream buffer
– On miss check stream buffer

• Works with data blocks too:
– Jouppi [1990] 1 data stream buffer got 25% misses from

4KB cache; 4 streams got 43%
– Palacharla & Kessler [1994] for scientific programs for

8 streams got 50% to 70% of misses from
2 64KB, 4-way set associative caches

• Prefetching relies on extra memory bandwidth
that can be used without penalty

DAP.F96 21

6. Reducing Misses by
SW Prefetching Data

• Data Prefetch
– Load data into register (HP PA-RISC loads)
– Cache Prefetch: load into cache (MIPS IV, PowerPC,

SPARC v. 9)
– Special prefetching instructions cannot cause faults;

a form of speculative execution

• Issuing Prefetch Instructions takes time
– Is cost of prefetch issues < savings in reduced misses?

DAP.F96 22

7. Reducing Misses by
Compiler Optimizations

• Instructions
– Reorder procedures in memory so as to reduce conflict misses
– Profiling to look at conflicts
– McFarling [1989] reduced caches misses by 75% on 8KB direct

mapped cache with 4 byte blocks

• Data
– Merging Arrays: improve spatial locality by single array of

compound elements vs. 2 arrays
– Loop Interchange: change nesting of loops to access data in

order stored in memory
– Loop Fusion: Combine 2 independent loops that have same

looping and some variables overlap
– Blocking: Improve temporal locality by accessing “blocks” of

data repeatedly vs. going down whole columns or rows

DAP.F96 23

Merging Arrays Example

/* Before */

int val[SIZE];

int key[SIZE];

/* After */

struct merge {

int val;

int key;

};

struct merge merged_array[SIZE];

Reducing conflicts between val & key

DAP.F96 24

Loop Interchange Example

/* Before */

for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];

/* After */

for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Sequential accesses Instead of striding through
memory every 100 words

DAP.F96 25

Loop Fusion Example
/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];

/* After */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per access

DAP.F96 26

Blocking Example
/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{r = 0;

 for (k = 0; k < N; k = k+1){

r = r + y[i][k]*z[k][j];};

 x[i][j] = r;

};

• Two Inner Loops:
– Read all NxN elements of z[]
– Read N elements of 1 row of y[] repeatedly
– Write N elements of 1 row of x[]

• Capacity Misses a function of N & Cache Size:
– 3 NxNx4 => no capacity misses; otherwise ...

• Idea: compute on BxB submatrix that fits

DAP.F96 27

Blocking Example
/* After */

for (jj = 0; jj < N; jj = jj+B)

for (kk = 0; kk < N; kk = kk+B)

for (i = 0; i < N; i = i+1)

 for (j = jj; j < min(jj+B-1,N); j = j+1)

{r = 0;

 for (k = kk; k < min(kk+B-1,N); k = k+1) {

r = r + y[i][k]*z[k][j];};

 x[i][j] = x[i][j] + r;

};

• Capacity Misses from 2N3 + N2 to 2N3/B +N2

• B called Blocking Factor
• Conflict Misses Too?

DAP.F96 28

Reducing Conflict Misses by Blocking

• Conflict misses in caches not FA vs. Blocking size
– Lam et al [1991] a blocking factor of 24 had a fifth the

misses vs. 48 despite both fit in cache

Blocking Factor

M
is

s
R
a
te

0

0.05

0.1

0 50 100 150

Fully Associative Cache

Direct Mapped Cache

DAP.F96 29

Performance Improvement

1 1.5 2 2.5 3

compress

cholesky
(nasa7)

spice

mxm (nasa7)

btrix (nasa7)

tomcatv

gmty (nasa7)

vpenta (nasa7)

merged
arrays

loop
interchange

loop fusion blocking

Summary of Compiler Optimizations to
Reduce Cache Misses

DAP.F96 30

Summary

• 3 Cs: Compulsory, Capacity, Conflict Misses
• Reducing Miss Rate

1. Reduce Misses via Larger Block Size
2. Reduce Misses via Higher Associativity
3. Reducing Misses via Victim Cache
4. Reducing Misses via Pseudo-Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Misses by Compiler Optimizations

• Remember danger of concentrating on just one
parameter when evaluating performance

CPUtime = IC × CPI
Execution

+
Memory accesses

Instruction
× Miss rate × Miss penalty





 × Clock cycle time

DAP.F96 31

5 minute Class Break

• Lecture Format:
– ≈ 1 minute: review last time & motivate this lecture
– ≈ 20 minute lecture
– ≈ 3 minutes: discuss class manangement
– ≈ 25 minutes: lecture
– 5 minutes: break
– ≈25 minutes: lecture
– ≈1 minute: summary of today’s important topics

DAP.F96 32

Review: Improving Cache
Performance

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

DAP.F96 33

1. Reducing Miss Penalty: Read
Priority over Write on Miss

• Write through with write buffers offer RAW conflicts
with main memory reads on cache misses

• If simply wait for write buffer to empty might
increase read miss penalty by 50% (old MIPS 1000)

• Check write buffer contents before read;
if no conflicts, let the memory access continue

• Write Back?
– Read miss replacing dirty block
– Normal: Write dirty block to memory, and then do the read
– Instead copy the dirty block to a write buffer, then do the

read, and then do the write
– CPU stall less since restarts as soon as do read

DAP.F96 34

2. Subblock Placement to
Reduce Miss Penalty

• Don’t have to load full block on a miss
• Have bits per subblock to indicate valid
• (Originally invented to reduce tag storage)

Valid Bits

DAP.F96 35

3. Early Restart and Critical
Word First

• Don’t wait for full block to be loaded before restarting
CPU

– Early restart—As soon as the requested word of the block
arrives, send it to the CPU and let the CPU continue
execution

– Critical Word First—Request the missed word first from
memory and send it to the CPU as soon as it arrives; let the
CPU continue execution while filling the rest of the words in
the block. Also called wrapped fetch and requested word first

• Generally useful only in large blocks,
• Spatial locality a problem; tend to want next

sequential word, so not clear if benefit by early restart

DAP.F96 36

4. Non-blocking Caches to
reduce stalls on misses

• Non-blocking cache or lockup-free cache allowing the
data cache to continue to supply cache hits during a
miss

• “hit under miss” reduces the effective miss penalty
by being helpful during a miss instead of ignoring the
requests of the CPU

• “hit under multiple miss” or “miss under miss” may
further lower the effective miss penalty by overlapping
multiple misses

– Significantly increases the complexity of the cache controller
as there can be multiple outstanding memory accesses

DAP.F96 37

Value of Hit Under Miss for SPEC

• FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26
• Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19
• 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss

Hit Under i Misses

A
vg

.
M

em
.
A
cc

es
s

T
im

e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

eq
nt

ot
t

es
p
re

ss
o

x
li
sp

co
m

p
re

ss

m
d
lj
sp

2

ea
r

fp
p
p
p

to
m

ca
tv

sw
m

2
5

6

do
du

c

su
2

co
r

w
av

e5

m
d
ljd

p
2

hy
d
ro

2
d

a
lv

in
n

na
sa

7

sp
ic

e2
g
6

o
ra

0->1

1->2

2->64

Base

Integer Floating Point

“Hit under n Misses”

DAP.F96 38

5th Miss Penalty Reduction:
Second Level Cache

• L2 Equations
AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2

AMAT = Hit TimeL1 + Miss RateL1 x (Hit TimeL2 + Miss RateL2 +
Miss PenaltyL2)

• Definitions:
– Local miss rate— misses in this cache divided by the

total number of memory accesses to this cache (Miss
rateL2)

– Global miss rate—misses in this cache divided by the
total number of memory accesses generated by the
CPU
(Miss RateL1 x Miss RateL2)

DAP.F96 39

Comparing Local and Global
Miss Rates

• 32 KByte 1st level cache;
Increasing 2nd level cache

• Global miss rate close to
single level cache rate
provided L2 >> L1

• Don’t use local miss rate
• L2 not tied to CPU clock

cycle
• Cost & A.M.A.T.
• Generally Fast Hit Times

and fewer misses
• Since hits are few, target

miss reduction

Linear

Log

Cache Size

Cache Size

DAP.F96 40

Reducing Misses: Which apply
to L2 Cache?

• Reducing Miss Rate
1. Reduce Misses via Larger Block Size
2. Reduce Conflict Misses via Higher Associativity
3. Reducing Conflict Misses via Victim Cache
4. Reducing Conflict Misses via Pseudo-Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Capacity/Conf. Misses by Compiler

Optimizations

DAP.F96 41

Relative CPU Time

Block Size

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

16 32 64 128 256 512

1.36
1.28 1.27

1.34

1.54

1.95

L2 cache block size & A.M.A.T.

• 32KB L1, 8 byte path to memory

DAP.F96 42

Reducing Miss Penalty Summary

• Five techniques
– Read priority over write on miss
– Subblock placement
– Early Restart and Critical Word First on miss
– Non-blocking Caches (Hit Under Miss)
– Second Level Cache

• Can be applied recursively to Multilevel Caches
– Danger is that time to DRAM will grow with multiple

levels in between

DAP.F96 43

Review: Improving Cache
Performance

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

DAP.F96 44

1. Fast Hit times via Small and
Simple Caches

• Why Alpha 21164 has 8KB Instruction and
8KB data cache + 96KB second level cache

• Direct Mapped, on chip

DAP.F96 45

2. Fast hits by Avoiding
Address Translation

• Send virtual address to cache? Called Virtually Addressed
Cache or just Virtual Cache vs. Physical Cache

– Every time process is switched logically must flush the cache;
otherwise get false hits

» Cost is time to flush + “compulsory” misses from empty cache

– Dealing with aliases (sometimes called synonyms);
Two different virtual addresses map to same physical address

– I/O must interact with cache, so need virtual address

• Solution to aliases
– HW that guarantees that every cache block has unique physical

address
– SW guarantee: lower n bits must have same address; as long as

covers index field & direct mapped, they must be unique;
called page coloring

• Solution to cache flush
– Add process identifier tag that identifies process as well as address

DAP.F96 46

Virtually Addressed Caches

CPU

TB

$

MEM

VA

PA

PA

Conventional
Organization

CPU

$

TB

MEM

VA

VA

PA

Virtually Addressed Cache
Translate only on miss

Synonym Problem

CPU

$ TB

MEM

VA

PA
Tags

PA

Overlap $ access
with VA translation:
requires $ index to
remain invariant

across translation

VA
Tags

L2 $

DAP.F96 47

2. Avoiding Translation:
Process ID impact

• Black is uniprocess
• Light Gray is multiprocess

when flush cache
• Dark Gray is multiprocess

when use Process ID tag
• Y axis: Miss Rates up to 20%
• X axis: Cache size from 2 KB

to 1024 KB

DAP.F96 48

2. Avoiding Translation: Index
with Physical Portion of Address

• If index is physical part of address, can start
tag access in parallel with translation so that
can compare to physical tag

• Limits cache to page size: what if want bigger
caches and uses same trick?

– Higher associativity
– Page coloring

Page Address Page Offset

Address Tag Index Block Offset

DAP.F96 49

• Pipeline Tag Check and Update Cache as separate stages;
current write tag check & previous write cache update

• Only Write in the pipeline; empty during a miss

• In color is Delayed Write Buffer; must be checked on
reads; either complete write or read from buffer

3. Fast Hit Times Via Pipelined Writes

DAP.F96 50

4. Fast Writes on Misses Via
Small Subblocks

• If most writes are 1 word, subblock size is 1 word, & write
through then always write subblock & tag immediately

– Tag match and valid bit already set: Writing the block was proper,
& nothing lost by setting valid bit on again.

– Tag match and valid bit not set: The tag match means that this is
the proper block; writing the data into the subblock makes it
appropriate to turn the valid bit on.

– Tag mismatch: This is a miss and will modify the data portion of
the block. As this is a write-through cache, however, no harm was
done; memory still has an up-to-date copy of the old value. Only
the tag to the address of the write and the valid bits of the other
subblock need be changed because the valid bit for this subblock
has already been set

• Doesn’t work with write back due to last case

DAP.F96 51

Cache Optimization Summary

Technique MR MP HT Complexity
Larger Block Size + – 0
Higher Associativity + – 1
Victim Caches + 2
Pseudo-Associative Caches + 2
HW Prefetching of Instr/Data + 2
Compiler Controlled Prefetching + 3
Compiler Reduce Misses + 0
Priority to Read Misses + 1
Subblock Placement + + 1
Early Restart & Critical Word 1st + 2
Non-Blocking Caches + 3
Second Level Caches + 2
Small & Simple Caches – + 0
Avoiding Address Translation + 2
Pipelining Writes + 1

DAP.F96 52

What is the Impact of What
You’ve Learned About Caches?

• 1960-1985: Speed
= ƒ(no. operations)

• 1995

– Pipelined
Execution &
Fast Clock Rate

– Out-of-Order
completion

– Superscalar
Instruction Issue

• 1995: Speed =
ƒ(non-cached memory accesses)

• What does this mean for

– Compilers?,Operating Systems?, Algorithms? Data
Structures?

1

10

100

1000

1
9

8
0

1
9

8
1

1
9

8
2

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

DRAM

CPU

