
DAP.F96 1

Lecture 17:
Introduction to Multiprocessors

Professor David A. Patterson
Computer Science 252

Fall 1996

DAP.F96 2

Review: Networking

• Protocols allow hetereogeneous networking
– Protocols allow operation in the presense of

failures
– Internetworking protocols used as LAN protocols

=> large overhead for LAN

• Integrated circuit revolutionizing networks as
well as processors

– Switch is a specialized computer
– Faster networks and slow overheads violate of

Amdahl’s Law

DAP.F96 3

Review: Phil Karn visit
• Wireless means we’ll always need protocols to

guarantee reliable communication
– Advantages when portable, remote site, or broadcast

• An Internetworking Protocol (IP) will be required
because we’ll never have single LAN/WAN network

– >1 for office to office, city to city, nation to nation

• Telephony has dominated WAN decisions
– will the Internet dominate WAN in the future?

• Internet continue as flat access fee? Local calls too?
• Cable provides interesting opportunities

– Compete with local companies for local phone calls?
– Direct Broadcast Satelites free cable bandwidth?
– Broadcast popular WWW pages? Locality of WWW?

DAP.F96 4

Parallel Computers

• Definition: “A parallel computer is a collection
of processiong elements that cooperate and
communicate to solve large problems fast.”

Almasi and Gottlieb, Highly Parallel Computing ,1989

• Questions about parallel computers:
– How large a collection?
– How powerful are processing elements?
– How do they cooperate and communicate?
– How are data transmitted?
– What type of interconnection?
– What are HW and SW primitives for programmer?
– Does it translate into performance?

DAP.F96 5

Parallel Processors Religion

• The dream of computer architects for 30
years: replicate processors to add
performance vs. design a faster processor

• Led to innovative organization tied to
particular programming models since
uniprocessors can’t keep going

– e.g., uniprocessors must stop getting faster due to
limit of speed of light: 1972,…, 1989

– Borders religious fervor at times: you must believe!
– Fervor damped some when companies went out of

business: Thinking Machines, Kendall Square, ...

• Argument instead is the “pull” of the
opportunity of scalable performance vs. the
“push” of uniprocessor plateau

DAP.F96 6

Opportunities: Scientific Computing
• Nearly Unlimited Demand (Grand Challenge):
App Perf (GFLOPS) Memory (GB)
48 hour weather 0.1 0.1
72 hour weather 3 1
Pharmaceutical design 100 10
Global Change, Genome 1000 1000
• Success in real industries:

– Petrolium: reservoir modeling
– Automotive: crash simulation, drag analysis, engine
– Aeronautics: airflow analysis, engine, structural mechanics
– Pharmaceuticals: molecular modeling
– Entertainment: full length movies (“Toy Story”)

DAP.F96 7

Example: Scientific Computing

• Molecular Dynamics on Intel Paragon with
128 processors

– (see Chapter 1, Figure 1-3, page 22 of Culler, Sighn,
Gupta [CSG96])

• Improve over time: load balancing, other
• 128 processor Intel Paragon = 406 MFLOPS
• C90 vector = 145 MFLOPS

(or ≈ 45 Intel processors)

DAP.F96 8

Opportunities:
Commercial Computing

•Transaction processing & TPC-C bencmark
– (see Chapter 1, Figure 1-4, page 23 of [CSG96])
– small scale parallel processors to large scale

•Througput (Transactions per minute) vs. Time
•Speedup: 1 4 8 16 32 64 112
IBM RS6000 735 1438 3119

1.00 1.96 4.24
Tandem Himilaya 3043 6067 12021 20918
 1.00 1.99 3.95 6.87

– IBM performance hit 1=>4, good 4=>8
– Tandem scales: 112/16 = 7.0

•Others: eletronic CAD simulation, multiple processes

DAP.F96 9

What level Parallelism?

• Bit level parallelism: 1970 to ≈1985
– 4 bits, 8 bit, 16 bit, 32 bit microprocessors

• Instruction level parallelism (ILP): 1985
through today

– Pipelining
– Superscalar
– VLIW
– Out-of-Order execution
– Limits to benefits?

• Process Level or Thread level parallelism???
– Servers are parallel (see Fig. 1-9, p. 32 of [CSG96])
– Highend Desktop dual processor PC soon?

(or the sell the socket?)

DAP.F96 10

Whither Supercomputing?

• Linpack (dense linear algebra) for Vector
Supercomputers vs. Microprocessors

• “Attack of the Killer Micros”
– (see Chapter 1, Figure 1-11, page 34 of [CSG96])
– 100 x 100 vs. 1000 x 1000

• MPPs vs. Supercomputers when rewrite
linpack to get peak performance

– (see Chapter 1, Figure 1-12, page 35 of [CSG96])

• 500 fastest machines in the world: parallel
vector processors (PVP), bus based shared
memory (SMP), and MPPs

– (see Chapter 1, Figure 1-13, page 36 of [CSG96])

DAP.F96 11

CS 252 Administrivia
• Homework on Chapter 7 due Monday 11/4 at 5 PM

in 252 box, done in pairs:
– Exercises 7.1, 7.3, 7.10

• Next reading is Chapter 8 of CA:AQA 2/e and
Sections 1.1-1.4, Chapter 1 of upcoming book by
Culler, Singh, and Gupta:

www.cs.berkeley.edu/~culler/

• Remzi Arpaci will talk Fri. 11/8 on Networks of
Workstations and world record sort

• Dr. Dan Lenowski, architect of SGI Origin, talk in
Systems Seminar Thur. 11/14 at 4PM in 306 Soda

• Next project review: survey due Mon. 11/11; 20 min.
meetings moved to Fri. 11/15; signup Wed. 11/6

DAP.F96 12

Parallel Architecture

• Parallel Architecture extends traditional
computer architecture with a communication
architecture

– abstractions (HW/SW interface)
– organizational structure to realize abstraction

efficiently

DAP.F96 13

Parallel Framework
• Layers:

– (see Chapter 1, Figure 1-14, page 37 of [CSG96])
– Programming Model:

» Multiprogramming : lots of jobs, no communication
» Shared address space: communicate via memory
» Message passing: send and recieve messages
» Data Parallel: several agents operate on several data

sets simultaneously and then exchange information
globally and simultaneously (shared or message
passing)

– Communication Abstraction:
» Shared address space: e.g., load, store, atomic swap
» Message passing: e.g., send, recieve library calls
» Debate over this topic (ease of programming, scaling)

=> many hardware designs 1:1 programming model

DAP.F96 14

Shared Address/Memory
Multiprocessor Model

• Communicate via Load and Store
– Oldest and most popular model

• Based on timesharing: processes on multiple
processors vs. sharing single processor

• process: a virtual address space and ≥ 1
thread of control

– Multiple processes can overlap (share), but ALL
threads share a process address space

• Writes to shared address space by one thread
are visible to reads of other threads

– Usual model: share code, private stack, some
shared heap, some private heap

DAP.F96 15

Small-Scale MP Designs
• Memory: centralized with uniform access time

(“uma”) and bus interconnect
• Examples: Sun Enterprise 5000 , SGI Challenge,

Intel SystemPro

DAP.F96 16

SMP Interconnect

• Processors to Memory AND to I/O
• Bus based: all memory locations equal

access time so SMP = “Symmetric MP”
– Sharing limited BW as add processors, IO
– (see Chapter 1, Figs 1-18/19, page 42-43 of [CSG96])

• Crossbar: expensive to expand
• Multistage network (less expensive to

expand than crossbar with more BW)
• “Dance Hall” designs: All processors on the

left, all memories on the right

DAP.F96 17

Large-Scale MP Designs
• Memory: distributed with nonuniform access time

(“numa”) and scalable interconnect (distributed memory)
• Examples: T3E: (see Ch. 1, Figs 1-21, page 45 of [CSG96])

Low Latency
High Reliability

1 cycle

40 cycles 100 cycles

DAP.F96 18

Shared Address Model
Summary

• Each processor can name every physical
location in the machine

• Each process can name all data it shares with
other processes

• Data transfer via load and store
• Data size: byte, word, ... or cache blocks
• Uses virtual memory to map virtual to local or

remote physical
• Memory hierarchy model applies: now

communication moves data to local
processor cache (as load moves data from
memory to cache)

– Latency, BW, scalability when communicate?

DAP.F96 19

Message Passing Model
• Whole computers (CPU, memory, I/O devices)

communicate as explicit I/O operations
– Essentially NUMA but integrated at I/O devices vs.

memory system

• Send specifies local buffer + receiving
process on remote computer

• Receive specifies sending process on remote
computer + local buffer to place data

– Usually send includes process tag and receive has
rule on tag: match 1, match any

– Synch: when send completes, when buffer free,
when request accepted, receive wait for send

• Send+receive => memory-memory copy,
where each each supplies local address, AND
does pairwise sychronization

DAP.F96 20

Message Passing Model
• Send+receive => memory-memory copy,

sychronization on OS even on 1 processor
• History of message passing:

– Network topology important because could only
send to immediate neighbor

– Typically synchronouns, blocking send & receive
– Later DMA with non-blocking sends, DMA for

receive into buffer until processor does receive,
and then data is tranfered to local memory

– Later SW libraries to allow arbitrary communication

• Example: IBM SP-2, RS6000 workstations in
racks

– Network Inteface Card has Intel 960
– 8X8 Crossbar wtich building block
– 40 MByte/sec per link

DAP.F96 21

Communication Models

• Shared Memory
– Processors communicate with shared address space
– Easy on small-scale machines
– Advantages:

» Model of choice for uniprocessors, small-scale MPs
» Ease of programming
» Lower latency
» Easier to use hardware controlled caching

• Message passing
– Processors have private memories, communicate via

messages
– Advantages:

» Less hardware, easier to design
» Focuses attention on costly non-local operations

• Can support either model on either HW base

DAP.F96 22

Flynn Categories
• SISD (Single Instruction Single Data)

– Uniprocessors

• MISD (Multiple Instruction Single Data)
– ???

• SIMD (Single Instruction Multiple Data)
– Examples: Illiac-IV, CM-2

» Simple programming model
» Low overhead
» Flexibility
» All custom integrated circuits

• MIMD (Multiple Instruction Multiple Data)
– Examples: Sun Enterprise 5000, Cray T3D, SGI Origin

» Flexible
» Use off-the-shelf micros

DAP.F96 23

Data Parallel Model
• Operations can be performed in parallel on

each element of a large regular data structure,
such as an array

• 1 Control Processsor broadcast to many PEs
(see Ch. 1, Figs 1-26, page 51 of [CSG96])

– When computers were large, could amortize the
control portion of many replicated PEs

• Data distributed in each memory
• Condition flag per PE so that can skip
• Early 1980s VLSI => SIMD rebirth: 32 1-bit PEs

+ memory on a chip was the PE
• Data parallel programming languages lay out

data to processor

DAP.F96 24

Data Parallel Model
• Vector processors have similar ISAs, but no

data placement restriction
• Advancing VLSI led to single chip FPUs and

whole fast µProcs
• SIMD programming model led to Single

Program Multiple Data (SPMD) model
– All processors execute identical program

• Data parallel programming languages still
useful, do communication all at once:
 “Bulk Synchronous” phases in which all
communicate after a global barrier

DAP.F96 25

Convergence in Parallel Architecture

• Complete computers connected to scalable
network via communication assist

– (see Ch. 1, Fig. 1-29, page 57 of [CSG96])

• Different programming models place different
requirements on communication assist

– Shared address space: tight integration with
memory to capture memory events that interact
with others + to accept requests from other nodes

– Message passing: send messages quickly and
respond to incoming messages: tag match, allocate
buffer, transfer data, wait for receive posting

– Data Parallel: fast global synchronization

• HPF shared-memory, data parallel; PVM, MPI
message passing libraries; both work on
many machines, different implementations

DAP.F96 26

Fundamental Issues: Naming
• Naming: how to solve large problem fast

– what data is shared
– how it is addressed
– what operations can access data
– how processes refer to each other

• Choice of naming affects code produced by a
compiler; via load where just remember
address or keep track of processor number
and local virtual address

• Choice of naming affects replication of data;
via load in cache memory hierachy or via SW
replication and consistency

DAP.F96 27

Fundamental Issues: Naming
• Global physical address space: any

processor can generate and address and
access it in a single operation

– memory can be anywhere: virtual addr. translation
handles it

• Global virtual address space: if the address
space of each process can be configured to
contain all shared data of the parallel program

• Segmented shared address space: if
locations are named <process number,
address> uniformly for all processes of the
parallel program

DAP.F96 28

Fundamental Issues:
Synchronization

• To cooperate, processes must coordinate
• Message passing is implicit coordination with

transmission or arrival of data
• Shared address => additional operations to

explicitly coordinate: e.g., write a flag, awaken
a thread, interrupt a processor

DAP.F96 29

Fundamental Issues:
Latency and Bandwidth

• Bandwidth
– Need high bandwidth in communication
– Cannot scale, but stay close
– Make limits in network, memory, and processor
– Overhead to communicate is a problem in many machines

• Latency
– Affects performance, since processor may have to wait
– Affects ease of programming, since requires more thought

to overlap communication and computation

• Latency Hiding
– How can a mechanism help hide latency?
– Examples: overlap message send with computation,

prefetch

DAP.F96 30

Small-Scale—Shared Memory

• Caches serve to:
– Increase bandwidth

versus bus/memory
– Reduce latency of

access
– Valuable for both

private data and
shared data

• What about cache
consistency?

DAP.F96 31

The Problem of Cache Coherency

DAP.F96 32

What Does Coherency Mean?

• Informally:
– Any read must return the most recent write
– Too strict and very difficult to implement

• Better:
– Any write must eventually be seen by a read
– All writes are seen in order (“serialization”)

• Two rules to ensure this:
– If P writes x and P1 reads it, P’s write will be seen if

the read and write are sufficiently far apart
– Writes to a single location are serialized:

seen in one order
» Latest write will be seen
» Otherewise could see writes in illogical order

 (could see older value after a newer value)

DAP.F96 33

Potential Solutions

• Snooping Solution (Snoopy Bus):
– Send all requests for data to all processors
– Processors snoop to see if they have a copy and respond

accordingly
– Requires broadcast, since caching information is at processors
– Works well with bus (natural broadcast medium)
– Dominates for small scale machines (most of the market)

• Directory-Based Schemes
– Keep track of what is being shared in one centralized place
– Distributed memory => distributed directory (avoids

bottlenecks)
– Send point-to-point requests to processors
– Scales better than Snoop
– Actually existed BEFORE Snoop-based schemes

DAP.F96 34

Basic Snoopy Protocols

• Write Invalidate Protocol:
– Multiple readers, single writer
– Write to shared data: an invalidate is sent to all caches

which snoop and invalidate any copies
– Read Miss:

» Write-through: memory is always up-to-date
» Write-back: snoop in caches to find most recent copy

• Write Broadcast Protocol:
– Write to shared data: broadcast on bus, processors

snoop, and update copies
– Read miss: memory is always up-to-date

• Write serialization: bus serializes requests
– Bus is single point of arbitration

DAP.F96 35

Basic Snoopy Protocols

• Write Invalidate versus Broadcast:
– Invalidate requires one transaction per write-run
– Invalidate uses spatial locality: one transaction per block
– Broadcast has lower latency between write and read
– Broadcast: BW (increased) vs. latency (decreased)

tradeoffName Protocol Type Memory-write policy Machines using

Write Once Write invalidate Write back First snoopy protocol.
after first write

Synapse N+1 Write invalidate Write back 1st cache-coherent MPs

Berkeley Write invalidate Write back Berkeley SPUR

Illinois Write invalidate Write back SGI Power and Challenge

“Firefly” Write broadcast Write back private,
Write through shared SPARCCenter 2000

DAP.F96 36

An Example Snoopy Protocol

• Invalidation protocol, write-back cache
• Each block of memory is in one state:

– Clean in all caches and up-to-date in memory
– OR Dirty in exactly one cache
– OR Not in any caches

• Each cache block is in one state:
– Shared: block can be read
– OR Exclusive: cache has only copy, its writeable, and

dirty
– OR Invalid: block contains no data

• Read misses: cause all caches to snoop
• Writes to clean line are treated as misses

DAP.F96 37

Snoopy-Cache State Machine-I

• State machine
for CPU requests

Invalid
Shared

(read/only)

Exclusive
(read/
write)

CPU Read

CPU Write

CPU Read hit

Place read miss
on bus

Place write miss
on bus

CPU read miss
Write back block

CPU Write
Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

DAP.F96 38

Snoopy-Cache State Machine-II

• State machine
for bus requests

Invalid
Shared

(read/only)

Exclusive
(read/
write)

Write Back
Block

Write miss for
this block

Read miss for
this block

Write miss for
the block

Write Back
Block

DAP.F96 39

Snoop Cache: State Machine
Extensions:

– Fourth State:
Ownership

– Clean-> dirty, need
invalidate only
(upgrade request)
Berkeley Protocol

– Clean exclusive state
(no miss for private
data on write)
Illinois Protocol

DAP.F96 40

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

DAP.F96 41

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

DAP.F96 42

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

DAP.F96 43

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 10
P2: Write 40 to A2 10

10

Assumes A1 and A2 map to same cache block

DAP.F96 44

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 10

10

Assumes A1 and A2 map to same cache block

DAP.F96 45

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 WrMs P2 A2 10

Excl. A2 40 WrBk P2 A1 20 20

Assumes A1 and A2 map to same cache block

DAP.F96 46

Implementation Complications

• Write Races:
– Cannot update cache until bus is obtained

» Otherwise, another processor may get bus first, and write the
same cache block

– Two step process:
» Arbitrate for bus
» Place miss on bus and complete operation

– If miss occurs to block while waiting for bus, handle miss
(invalidate may be needed) and then restart.

– Split transaction bus:
» Bus transaction is not atomic: can have multiple outstanding

transactions for a block
» Multiple misses can interleave, allowing two caches to grab block

in the Exclusive state
» Must track and prevent multiple misses for one block

• Must support interventions and invalidations

DAP.F96 47

Snoop Cache Variations

Berkeley Protocol
Owned Exclusive

Owned Shared
Shared
Invalid

Basic Protocol
Exclusive

Shared
Invalid

Illinois Protocol
Private Dirty
Private Clean

Shared
Invalid

Owner can update via bus invalidate operation
Owner must write back when replaced in cache

If read sourced from memory, then Private Clean
if read sourced from other cache, then Shared
Can write in cache if held private clean or dirty

DAP.F96 48

Implementing Snooping Caches
• Multiple processors must be on bus, access to both

addresses and data
• Add a few new commands to perform coherency, in

addition to read and write
• Processors continuously snoop on address bus

– If address matches tag, either invalidate or update

DAP.F96 49

Implementing Snooping Caches
• Bus serializes writes, getting bus ensures no one else

can perform operation
• On a miss in a write back cache, may have the desired

copy and its dirty, so must reply
• Add extra state bit to cache to determine shared or not
• Since every bus transaction checks cache tags, could

interfere with CPU just to check: solution is a duplicate
set of tags just to allow checks in parallel with CPU or
second level cache that obeys inclusion

DAP.F96 50

Larger MPs

• Separate Memory per Processor
• Local or Remote access via memory controller
• Cache Coherency solution: non-cached pages
• Alternative: directory per cache that tracks state of

every block in every cache
– Which caches have a copies of block, dirty vs. clean, ...

• Info per memory block vs. per cache block?
– PLUS: In memory => simpler protocol (centralized/one

location)
– MINUS: In memory => directory is ƒ(memory size) vs. ƒ(cache

size)

• Prevent directory as bottleneck: distribute directory
entries with memory, each keeping track of which
Procs have copies of their blocks

DAP.F96 51

Distributed Directory MPs

DAP.F96 52

Directory Protocol

• Similar to Snoopy Protocol: Three states
– Shared: ≥ 1 processors have data, memory up-to-date
– Uncached
– Exclusive: 1 processor (owner) has data; memory out-

of-date

• In addition to cache state, must track which
processors have data when in the shared state

• Terms:
– Local node is the node where a request originates
– Home node is the node where the memory location of

an address resides
– Remote node is the node that has a copy of a cache

block, whether exclusive or shared.

DAP.F96 53

Directory Protocol Messages
Message type Source Destination Msg
Read miss Local processor Home directory P, A

– Processor P reads data at address A; send data and make
P a read sharer

Write miss Local processor Home directory P, A

– Processor P writes data at address A; send data and make
P the exclusive owner

Invalidate Home directory Remote caches A

– Invalidate a shared copy at address A.
Fetch Home directory Remote cache A

– Fetch the block at address A and send it to its home
directory

Fetch/Invalidate Home directory Remote cache A

– Fetch the block at address A and send it to its home
directory; invalidate the block in the cache

Data value reply Home directory Local cache Data

– Return a data value from the home memory
Data write-back Remote cache Home directory A, Data

DAP.F96 54

Example Directory Protocol
• Message sent to directory causes two actions:

– Update the directory
– More messages to satisfy request

• Block is in Uncached state: the copy in memory is the
current value & only possible requests for that block are:

– Read miss: requesting processor is sent back the data from
memory and the requestor is the only sharing node. The state of
the block is made Shared.

– Write miss: requesting processor is sent the value and becomes
the Sharing node. The block is made Exclusive to indicate that the
only valid copy is cached. Sharers indicates the identity of the
owner.

• Block is Shared, the memory value is up-to-date:
– Read miss: requesting processor is sent back the data from

memory & requesting processor is added to the sharing set.
– Write miss: requesting processor is sent the value. All processors

in the set Sharers are sent invalidate messages, & Sharers is set
to identity of requesting processor. The state of the block is made

DAP.F96 55

Example Directory Protocol

• Block is Exclusive: current value of the block is held in
the cache of the processor identified by the set Sharers
(the owner) & three possible directory requests:

– Read miss: owner processor is sent a data fetch message,
which causes state of block in owner’s cache to transition to
Shared and causes owner to send data to directory, where it is
written to memory and sent back to the requesting processor.
Identity of requesting processor is added to set Sharers, which
still contains the identity of the processor that was the owner
(since it still has a readable copy).

– Data write-back: owner processor is replacing the block and
hence must write it back. This makes the memory copy up-to-
date (the home directory essentially becomes the owner), the
block is now uncached, and the Sharer set is empty.

– Write miss: block has a new owner. A message is sent to old
owner causing the cache to send the value of the block to the
directory from which it is sent to the requesting processor,
which becomes the new owner. Sharers is set to identity of new
owner, and state of block is made Exclusive.

DAP.F96 56

State Transition Diagram for an
Individual Cache Block in a

Directory Based System

• The states are identical to
those in the snoopy case,
and the transactions are
very similar with explicit
invalidate and write-back
requests replacing the
write misses that were
formerly broadcast on the
bus.

Invalid Shared

Exclusive

DAP.F96 57

State Transition Diagram for the
Directory

• The same states and
structure as the
transition diagram for
an individual cache

– All actions are in color
since they all are
externally caused.
Italics indicates the
action taken the
directory in response
to the request. Bold
italics indicate an
action that updates the
sharing set, Sharers, as
opposed to sending a
message.

Uncached Shared

Exclusive

WrMs

WrBk

WrMs

RdMs

RdMs

Data Value
Reply

Sharers =
Sharers+{P}

Fetch/Invalidate
Sharers={P}

Sharers={}

Data Value Reply
Sharers = Sharers+{P}

DAP.F96 58

Example

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc.AddrValue AddrState {Procs}Value

P1: Write 10 to A1

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

DAP.F96 59

Example

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc.AddrValue AddrState {Procs}Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

DAP.F96 60

Example

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc.AddrValue AddrState {Procs}Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

DAP.F96 61

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc.AddrValue AddrState {Procs}Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar.{P1,P2} 10

10
10

P2: Write 40 to A2 10

DAP.F96 62

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc.AddrValue AddrState {Procs}Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar.{P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2 10

DAP.F96 63

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc.AddrValue AddrState {Procs}Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar.{P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2 WrMs P2 A2 A2 Excl. {P2} 0

WrBk P2 A1 20 A1 Unca. {} 20
Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2} 0

