
DAP.F96 1

Lecture 19:
Syncrhonization, Memory Consistency

Models, and MP Example

Professor David A. Patterson
Computer Science 252

Fall 1996

DAP.F96 2

Review

• Caches contain all information on state of
cached memory blocks

• Snooping and Directory Protocols similar;
bus makes snooping easier because of
broadcast

DAP.F96 3

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 WrMs P2 A2 10

Excl. A2 40 WrBk P2 A1 20 20

Assumes A1 and A2 map to same cache block

A1

A1

DAP.F96 4

Implementation Complications

• Write Races:
– Cannot update cache until bus is obtained

» Otherwise, another processor may get bus first, and write the
same cache block

– Two step process:
» Arbitrate for bus
» Place miss on bus and complete operation

– If miss occurs to block while waiting for bus, handle miss
(invalidate may be needed) and then restart.

– Split transaction bus:
» Bus transaction is not atomic: can have multiple outstanding

transactions for a block
» Multiple misses can interleave, allowing two caches to grab block

in the Exclusive state
» Must track and prevent multiple misses for one block

• Must support interventions and invalidations

DAP.F96 5

Implementing Snooping Caches
• Multiple processors must be on bus, access to both

addresses and data
• Add a few new commands to perform coherency,

in addition to read and write
• Processors continuously snoop on address bus

– If address matches tag, either invalidate or update

DAP.F96 6

Implementing Snooping Caches
• Bus serializes writes, getting bus ensures no one else

can perform memory operation
• On a miss in a write back cache, may have the desired

copy and its dirty, so must reply
• Add extra state bit to cache to determine shared or not
• Since every bus transaction checks cache tags, could

interfere with CPU just to check:
– solution 1: duplicate set of tags for L1 caches just to allow

checks in parallel with CPU
– solution 2: L2 cache that obeys inclusion with L1 cache

DAP.F96 7

Larger MPs
• Separate Memory per Processor
• Local or Remote access via memory controller
• Cache Coherency solution: non-cached pages
• Alternative: directory per cache that tracks state of every

block in every cache
– Which caches have a copies of block, dirty vs. clean, ...

• Info per memory block vs. per cache block?
– PLUS: In memory => simpler protocol (centralized/one location)
– MINUS: In memory => directory is ƒ(memory size) vs. ƒ(cache size)

• Prevent directory as bottleneck: distribute directory
entries with memory, each keeping track of which Procs
have copies of their blocks

DAP.F96 8

Distributed Directory MPs

DAP.F96 9

Directory Protocol

• Similar to Snoopy Protocol: Three states
– Shared: ≥ 1 processors have data, memory up-to-date
– Uncached (no processor hasit; not valid in any cache)
– Exclusive: 1 processor (owner) has data; memory out-

of-date

• In addition to cache state, must track which
processors have data when in the shared state
(usually bit vector, 1 if processor has copy)

• Keep it simple(r):
– Writes to non-exclusive data => write miss
– Processor blocks until access completes
– Assume messages received and acted upon in order

sent

DAP.F96 10

Directory Protocol

• No bus and don’t want to broadcast:
– interconnect no longer single arbitration point
– all messages have explicit responses

• Terms:
– Local node is the node where a request originates
– Home node is the node where the memory location

of an address resides
– Remote node is the node that has a copy of a cache

block, whether exclusive or shared

• Example messages on next slide:
P = processor number, A = address

DAP.F96 11

Directory Protocol Messages
Message type Source Destination Msg
Read miss Local cache Home directory P, A

– Processor P reads data at address A;
send data and make P a read sharer

Write miss Local cache Home directory P, A

– Processor P writes data at address A;
send data and make P the exclusive owner

Invalidate Home directory Remote caches A

– Invalidate a shared copy at address A.
Fetch Home directory Remote cache A

– Fetch the block at address A and send it to its home directory
Fetch/Invalidate Home directory Remote cache A

– Fetch the block at address A and send it to its home directory;
invalidate the block in the cache

Data value reply Home directory Local cache Data

– Return a data value from the home memory
Data write-back Remote cache Home directory A, Data

– Write-back a data value for address A

DAP.F96 12

State Transition Diagram for an
Individual Cache Block in a

Directory Based System

• States identical to snoopy
case; transactions very
similar.

• Tranistions caused by
read misses, write misses,
invalidates, data fetch req.

• Generates read miss &
write miss msg to home
directory.

• Write misses that were
broadcast on the bus =>
explicit invalidate & data
fetch requests.

Invalid Shared

Exclusive

DAP.F96 13

State Transition Diagram for the
Directory

• Same states &
structure as the
transition diagram for
an individual cache

– 2 actions: update of
directory state & send
msgs to statisfy req.

– Tracks all copies of
memory block.

– Also indicate an action
that updates the
sharing set, Sharers, as
opposed to sending a
message.

Uncached Shared

Exclusive

WrMs

WrBk

WrMs

RdMs

RdMs

Data Value
Reply

Sharers =
Sharers+{P}

Fetch/Invalidate
Sharers={P}

Sharers={}

Data Value Reply
Sharers = Sharers+{P}

DAP.F96 14

Example Directory Protocol
• Message sent to directory causes two actions:

– Update the directory
– More messages to satisfy request

• Block is in Uncached state: the copy in memory is the
current value; only possible requests for that block are:

– Read miss: requesting processor sent data from memory &
requestor made only sharing node; state of block made Shared.

– Write miss: requesting processor is sent the value & becomes the
Sharing node. The block is made Exclusive to indicate that the only
valid copy is cached. Sharers indicates the identity of the owner.

• Block is Shared => the memory value is up-to-date:
– Read miss: requesting processor is sent back the data from

memory & requesting processor is added to the sharing set.
– Write miss: requesting processor is sent the value. All processors

in the set Sharers are sent invalidate messages, & Sharers is set to
identity of requesting processor. The state of the block is made
Exclusive.

DAP.F96 15

Example Directory Protocol
• Block is Exclusive: current value of the block is held in

the cache of the processor identified by the set Sharers
(the owner) => three possible directory requests:

– Read miss: owner processor sent data fetch message, which
causes state of block in owner’s cache to transition to Shared
and causes owner to send data to directory, where it is written to
memory & sent back to requesting processor. Identity of
requesting processor is added to set Sharers, which still
contains the identity of the processor that was the owner (since it
still has a readable copy).

– Data write-back: owner processor is replacing the block and
hence must write it back. This makes the memory copy up-to-
date (the home directory essentially becomes the owner), the
block is now uncached, and the Sharer set is empty.

– Write miss: block has a new owner. A message is sent to old
owner causing the cache to send the value of the block to the
directory from which it is sent to the requesting processor, which
becomes the new owner. Sharers is set to identity of new owner,
and state of block is made Exclusive.

DAP.F96 16

Implementing a Directory

• We assume operations atomic, but they are
not; reality is much harder; must avoid
deadlock when run out of bufffers in network
(see Appendix E)

• Optimizations:
– read miss or write miss in Exclusive: send data

directly to requestor from owner vs. 1st to memory
and then from memory to requestor

DAP.F96 17

Example

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc.AddrValue AddrState {Procs}Value

P1: Write 10 to A1

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

DAP.F96 18

Example

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc.AddrValue AddrState {Procs}Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

DAP.F96 19

Example

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc.AddrValue AddrState {Procs}Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

DAP.F96 20

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc.AddrValue AddrState {Procs}Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar.{P1,P2} 10

10
10

P2: Write 40 to A2 10

DAP.F96 21

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc.AddrValue AddrState {Procs}Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar.{P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2 10

DAP.F96 22

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc.AddrValue AddrState {Procs}Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar.{P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2 WrMs P2 A2 A2 Excl. {P2} 0

WrBk P2 A1 20 A1 Unca. {} 20
Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2} 0

DAP.F96 23

• 4th C: Conflict, Capacity, Compulsory and Coherency
Misses

• More processors: increase coherency misses while
decreasing capacity misses since more cache memory
(for fixed problem size)

• Cache behavior of Five Parallel Programs:
– FFT Fast Fourier Transform: Matrix transposition +

computation
– LU factorization of dense 2D matrix (linear algebra)
– Barnes-Hut n-body algorithm solving galaxy evolution probem
– Ocean simluates influence of eddy & boundary currents on

large-scale flow in ocean: dynamic arrays per grid

Miss Rates for Snooping Protocol

DAP.F96 24

M
is

s
 R

a
te

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

fft lu barnes ocean volrend

8%

2%

1%

14%

1%

8%

2%

1%

18%

1%

8%

2%

1%

15%

1%

8%

2%

1%

13%

1%

8%

2%

1%

9%

1%

1 2 4 8 16

Miss Rates for Snooping Protocol

– Cache size is 64KB, 2-way set associative, with 32B blocks.
– Misses in these applications are generated by accesses to data

that is potentially shared.
– Except for Ocean, data is heavily shared; in Ocean only the

boundaries of the subgrids are shared, though the entire grid is
treated as a shared data object. Since the boundaries change as
we increase the processor count (for a fixed size problem),
different amounts of the grid become shared. The anamolous
increase in miss rate for Ocean in moving from 1 to 2 processors
arises because of conflict misses in accessing the subgrids.

Big differences
in miss rates
among the
programs

Miss Rate

of processors
Ocean

High Capacity
Misses

DAP.F96 25

Processor Count

M
is

s
 R

a
te

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 4 8 16

fft lu barnes

ocean volrend

% Misses Caused by Coherency
Traffic vs. # of Processors

• % cache misses caused by
coherency transactions typically
rises when a fixed size problem is
run on more processors.

• The absolute number of coherency
misses is increasing in all these
benchmarks, including Ocean. In
Ocean, however, it is difficult to
separate out these misses from
others, since the amount of sharing
of the grid varies with processor
count.

• Invalidations increases significantly;
In FFT, the miss rate arising from
coherency misses increases from
nothing to almost 7%.

80% of misses due to
coherency misses!

FFT

LU

Barnes
Ocean

Volrend

DAP.F96 26

Cache Size in KB

M
is

s
 R

a
te

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

16 32 64 128 256

fft lu barnes

ocean volrend

Miss Rates as Increase Cache
Size/Processor

• Miss rate drops as the cache size is increased, unless the
miss rate is dominated by coherency misses.

• The block size is 32B & the cache is 2-way set-associative.
The processor count is fixed at 16 processors.

FFT

LU

Barnes

Ocean

Volrend

Miss
Rate

Cache Size

Ocean and FFT
strongly influenced
by capacity misses

DAP.F96 27

M
is

s
 R

a
te

0%

2%

4%

6%

8%

10%

12%

14%

fft lu barnes ocean volrend

13%

4%

1%

13%

1%

8%

2%

1%

9%

1%

5%

1%
1%

6%

1%

4%

0% 1%

5%

1%

16 32 64 128

Miss Rate vs. Block Size

• Since cache block hold
multiple words, may get
coherency traffic for
unrelated variables in same
block

• False sharing arises from
the use of an invalidation-
based coherency algorithm.
It occurs when a block is
invalidated (and a
subsequent reference
causes a miss) because
some word in the block,
other than the one being
read, is written into.

miss rates mostly fall with increasing block size

DAP.F96 28

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

16 32 64 128

fft lu barnes

ocean volrend

% Misses Caused by Coherency
Traffic vs. Block Size

• FFT communicates data in large
blocks & communication adapts to
the block size (it is a parameter to
the code); makes effective use of
large blocks.

• Ocean competing effects that favor
different block size

– Accesses to the boundary of
each subgrid, in one
direction the accesses
match the array layout,
taking advantage of large
blocks, while in the other
dimension, they do not
match. These two effects
largely cancel each other
out leading to an overall
decrease in the coherency
misses as well as the
capacity misses.

Barnes

LU

FFT
Ocean

Volrend

Behavior tracks cache size behavior
FFT: Coherence misses reduced faster
than capacity misses!

DAP.F96 29

B
y
te

s
 p

e
r

d
a
ta

 r
e
fe

re
n
c
e

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

16 32 64 128

fft lu barnes

ocean volrend

Bus Traffic as Increase Block Size

• Bus traffic climbs steadily as
the block size is increased.

• The factor of 3 increase in
traffic for Ocean is the best
argument against larger block
sizes.

• Remember that our protocol
treats ownership misses the
same as other misses, slightly
increasing the penalty for large
cache blocks: in both Ocean
and FFT this effect accounts for
less than 10% of the traffic.

Huge Increases in bus traffic
due to coherency!

Bytes per
data ref

Ocean

FFT
LU

Volrend

DAP.F96 30

M
is

s
 R

a
te

0%

1%

2%

3%

4%

5%

6%

7%

fft lu barnes ocean volrend

5%

1%

0%

6%

1%

5%

1%

0%

4%

1%

5%

1%

0%

3%

1%

5%

1%

0%

7%

1%

8 16 32 64

Miss Rates for Directory

– Cache size is 128 KB, 2-way
set associative, with 64B
blocks (cover longer latency)

– Ocean: only the boundaries
of the subgrids are shared.
Since the boundaries change
as we increase the processor
count (for a fixed size
problem), different amounts
of the grid become shared.
The increase in miss rate for
Ocean in moving from 32 to
64 processors arises
because of conflict misses in
accessing small subgrids &
for coherency misses for 64
processors.

Miss Rate

of Processors

Ocean

Use larger cache to circumvent longer latencies to directories

DAP.F96 31

M
is

s
 R

a
te

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

fft lu barnes ocean volrend

9%

2%

1%

18%

1%

8%

2%

1%

13%

1%

7%

2%

0%

9%

1%

5%

1%

0%

7%

1%

4%

1%

0%

5%

1%

32 64 128 256 512

Miss Rates as Increase Cache
Size/Processor for Directory

• Miss rate drops as the
cache size is increased,
unless the miss rate is
dominated by coherency
misses.

• The block size is 64B and
the cache is 2-way set-
associative. The processor
count is fixed at 16
processors.

DAP.F96 32

M
is

s
 R

a
te

0%

2%

4%

6%

8%

10%

12%

14%

fft lu barnes ocean volrend

12%

3%

0%

13%

1%

7%

2%

0%

9%

1%

5%

1%
0%

7%

1%

3%

0% 0%

5%

1%

16 32 64 128

Block Size for Directory
• Assumes 128 KB cache & 64 processors

– Large cache size to combat higher memory latencies than snoop
caches

DAP.F96 33

Summary

• Caches contain all information on state of
cached memory blocks

• Snooping and Directory Protocols similar;
bus makes snooping easier because of
broadcast

• Directory has extra data structure to keep
track of state of all cache blocks

• Distributing directory => scalable shared
address multiprocessor

DAP.F96 34

Synchronization

• Why Synchronize? Need to know when it is safe for
different processes to use shared data

• Issues for Synchronization:
– Uninterruptable instruction to fetch and update memory

(atomic operation);
– User level synchronization operation using this primitive;
– For large scale MPs, synchronization can be a bottleneck;

techniques to reduce contention and latency of
synchronization

DAP.F96 35

Uninterruptable Instruction to
Fetch and Update Memory

• Atomic exchange: interchange a value in a register for
a value in memory

0 => synchronization variable is free
1 => synchronization variable is locked and unavailable
– Set register to 1 & swap
– New value in register determines success in getting lock

0 if you succeeded in setting the lock (you were first)
1 if other processor had already claimed access

– Key is that exchange operation is indivisible

• Test-and-set: tests a value and sets it if the value
passes the test

• Fetch-and-increment: it returns the value of a memory
location and atomically increments it

– 0 => synchronization variable is free

DAP.F96 36

Uninterruptable Instruction to
Fetch and Update Memory

• Hard to have read & write in 1 instruction: use 2 instead
• Load linked (or load locked) + store conditional

– Load linked returns the initial value
– Store conditional returns 1 if it succeeds (no other store to same

memory location since preceeding load) and 0 otherwise

• Example doing atomic swap with LL & SC:
try: mov R3,R4 ; mov exchange value

ll R2,0(R1) ; load linked
sc R3,0(R1) ; store conditional
beqz R3,try ; branch store fails (R3 = 0)
mov R4,R2 ; put load value in R4

• Example doing fetch & increment with LL & SC:
try: ll R2,0(R1) ; load linked

addi R2,R2,#1 ; increment (OK if reg–reg)
sc R2,0(R1) ; store conditional
beqz R2,try ; branch store fails (R2 = 0)

DAP.F96 37

User Level Synchronization—
Operation Using this Primitive

• Spin locks: processor continuously tries to acquire,
spinning around a loop trying to get the lock

li R2,#1
lockit: exch R2,0(R1) ;atomic exchange

bnez R2,lockit ;already locked?

• What about MP with cache coherency?
– Want to spin on cache copy to avoid full memory latency
– Likely to get cache hits for such variables

• Problem: exchange includes a write, which invalidates all
other copies; this generates considerable bus traffic

• Solution: start by simply repeatedly reading the variable;
when it changes, then try exchange (“test and test&set”):
try: li R2,#1
lockit: lw R3,0(R1) ;load var

bnez R3,lockit ;not free=>spin
exch R2,0(R1) ;atomic exchange
bnez R2,try ;already locked?

DAP.F96 38

Steps for Invalidate Protocol

Step P0 $ P1 $ P2 $ Bus/Direct activity
1. Has lock Sh spins Sh spins Sh None
2. Lock<– 0 Ex Inv Inv P0 Invalidates lock
3. Sh miss Sh miss Sh WB P0; P2 gets bus
4. Sh waits Sh lock = 0 Sh P2 cache filled
5. Sh lock=0 Sh exch Sh P2 cache miss(WI)
6. Inv exch Inv r=0;l=1 Ex P2 cache filled; Inv
7. Inv r=1;l=1 Ex locked Inv WB P2; P1 cache
8. Inv spins Ex Inv None

DAP.F96 39

For Large Scale MPs, Synchronization
Can Be a Bottleneck

• 20 procs spin on lock held by 1 proc, 50 cycles for bus
Read miss all waiting processors to fetch lock 1000
Write miss by releasing processor and invalidates 50
Read miss by all waiting processors 1000
Write miss by all waiting processors ,
one successful lock, & invalidate all copies 1000
Total time for 1 proc. to acquire & release lock 3050

– Each time one gets a lock, drops out of competition= 1525
– 20 x 1525 = 30,000 cycles for 20 processors to pass through the

lock
– Problem is contention for lock and serialization of lock access:

once lock is free, all compete to see who gets it

• Alternative: create a list of waiting processors, go
through list: called a “queuing lock”

– Special HW to recognize 1st lock access & lock release

• Another mechanism: fetch-and-increment; can be used
to create barrier; wait until everyone reaches same point

DAP.F96 40

Another MP Issue: Memory
Consistency Models

• What is consistency? When must a processor see the
new value? e.g., seems that
P1: A = 0; P2: B = 0;

A = 1; B = 1;

L1: if (B == 0) ... L2: if (A == 0) ...

• Impossible for both if statements L1 & L2 to be true?
– What if write invalidate is delayed & processor continues?

• Memory consistency models: what are the rules for
such cases?

• Sequential consistency: result of any execution is the
same as if the accesses of each processor were kept in
order and the accesses among different processors
were interleaved => assignments before ifs above

– SC: delay all memory accesses until all invalidates done

DAP.F96 41

Memory Consistency Model
• Schemes faster execution to sequential consistency
• Not really an issue for most programs; they are

synchronized
– A program is synchronized if all access to shared data are

ordered by synchronization operations
 write (x)

...
release (s) {unlock}
...
acquire (s) {lock}
...
read(x)

• Only those programs willing to be nondeterministic are
not synchronized: “data race”: outcome f(proc. speed)

• Several Relaxed Models for Memory Consistency since
most programs are synchronized: characterized by their
attitude towards: RAR, WAR, RAW, WAW to different
addresses

DAP.F96 42

CS 252 Administrivia
• Next reading is Chapter 8 of CA:AQA 2/e and

Sections 1.1-1.4, Chapter 1 of upcoming book by
Culler, Singh, and Gupta:

www.cs.berkeley.edu/~culler/

• Remzi Arpaci will talk Fri. 11/8 on Networks of
Workstations and world record sort

• Dr. Dan Lenowski, architect of SGI Origin, talk in
Systems Seminar Thur. 11/14 at 4PM in 306 Soda

• Next project review: survey due Mon. 11/11; 20 min.
meetings moved to Fri. 11/15; signup Wed. 11/6

DAP.F96 43

Key Issues for MPs
• Measuring Performance

– Not just time on one size, but how performance scales with P
– For fixed size problem (same memory per processor) and scaled

up problem (fixed execution time)
– What about accuracy of result as scale size of problem?

e.g., may need more iteractions to converge
– Care to compare to best uniprocessor algorithm, not just

parallel program on 1 processor (unless its best)

• Multilevel Caches, Coherency, and Inclusion
– Invalidation at L2 cache forces invalidation at higher levels if

caches adher to the inclusion property
– But larger L2 blocks lead to several L1 blocks getting

invalidated

DAP.F96 44

Key Issues for MPs
• Nonblocking Caches and Prefetching

– More latency to hide (misses longer), so nonblocking caches
even more important

– Makes sense if there is available memory bandwidth;
must balance bus utilization, false sharing (conflict w/ other
processors)

– Want prefetch to be coherent (“nonbinding” to local copy):
in cache, not in a register, so that update can invalidate

• Virtual Memory to get Shared Memory MP: Distributed
VIrtual Memory (DVM) or Shared Virtual Memory (SVM)

– pages are units of coherency (false sharing bigger problem)
– SW implements coherency (higher overhead)
– Improve performance with HW to reduce overhead, variable

page size, compiler optimizations

DAP.F96 45

Example: SGI Origin2000

• Directory-based machine with network
connecting up to 128 processors: “Scalable
Shared memory Multiprocessor (S2MP)”

– Deskside/Rack/Row does up to 8/16/128 procs

• Based on 3 Crossbar switches (ASICs)
– Hub: 4-way DSM communication/coherence controller

connects processor to memory cntrlr, network, I/O
– Crossbow (“Xbox”): 8-way crossbar connects 6 I/O

interfaces to 2 nodes
– Router: 6-way crossbar forms the interconnection

network at 800 MB/sec: : “Cray Link Interconnect”

• OS migrates pages near processor that uses
data

DAP.F96 46

Example: 4 Node SGI Origin
Main Memory/

Directory

Hub

R10K R10K

Main Memory/
Directory

Hub

R10K R10K

Main Memory/
Directory

Hub

R10K R10K

Main Memory/
Directory

Hub

R10K R10K

4 Node boards/ 8 processors

Star Router 1

Star Router 2

 XIO slot 1
 XIO slot 2
 XIO slot 3
 XIO slot 4
 XIO slot 5
 XIO slot 6

Xbow 1

 XIO slot 7
 XIO slot 8
 XIO slot 9
 XIO slot 10
 XIO slot 11
 XIO slot 12

Xbow 2

Midplane board

to other
Nodes

to other
Nodes

Cray Link Interconnect

DAP.F96 47

Example: SGI Origin 2000

• Node:
– Dual MIPS 195 MHz, R10000s connected by bus
– Each processor has own L1 and L2 cache
– One directory entry per memory block
– up to 2 GB of memory/node
– Directory information stored in local memory for up to

64 processors; 128 require extra DRAM per board
– Communication/coherence controller(“Hub”) is 4-way

crossbar: proc. bus , memory controller, network, I/O

DAP.F96 48

Example: SGI Origin

• Hub
– Controller and Network Interface ASIC
– Single chip crossbar-switch
– sits on system bus
– connects processors, local memory, network

interface(“Router”), and I/O interface (“Xbow”)
» Xbow is single chip cross-bar switch for I/O devices:

up to 480 MB/sec

– implements directory protocol
– has block transfer engine
– supports up to 12 oustanding memory requests per

processor
– supports load linked, store conditional

DAP.F96 49

Example: SGI Origin2000

• Network:
– Composed of other single-chip crossbar-switches:

“Router”
– Router has 6 ports, full duplex
– Differential cabling up to 15 meters longs
– Link Bandwidth: 800 MB/sec
– Network has 4 virtual channels
– Wormhole routing
– Packet size is 128 bits
– Topology is Hypercube

DAP.F96 50

Example: SGI Origin2000

• Coherency:
– Illinois/MESI cache states: Invalid, Shard, Dirty,

Clean-Exclusive
– Snoopy coherence on system bus for 2 processors
– Directory states: Unowned, Shared, Exclusive, + 3

pending or busy states (home received request but
not yet completed it)

– Sequential consistency

