
Page 1

CS252/Patterson
Lec 2.11/19/01

January 19, 2001
Prof. David A. Patterson
Computer Science 252

Spring 2001

CS252
Graduate Computer Architecture

Lecture 2

 Review of Cost, Integrated Circuits, Benchmarks,
Moore’s Law, & Prerequisite Quiz

CS252/Patterson
Lec 2.21/19/01

Review #1/3:
Pipelining & Performance

• Just overlap tasks; easy if tasks are independent
• Speed Up ≤ Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:
– Structural: need more HW resources
– Data (RAW,WAR,WAW): need forwarding, compiler scheduling
– Control: delayed branch, prediction

pipelined

dunpipeline

 TimeCycle
 TimeCycle

CPI stall Pipeline 1

depth Pipeline Speedup ×
+

=

CPU time = Seconds = Instructions x Cycles x Seconds
 Program Program Instruction Cycle

CPU time = Seconds = Instructions x Cycles x Seconds
 Program Program Instruction Cycle

• Time is measure of performance: latency or
throughput

• CPI Law:

CS252/Patterson
Lec 2.31/19/01

Review #2/3: Caches

• The Principle of Locality:
– Program access a relatively small portion of the address space at

any instant of time.
» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

• Three Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life. Example: cold start misses.
– Capacity Misses: increase cache size
– Conflict Misses: increase cache size and/or associativity.

• Write Policy:
– Write Through: needs a write buffer.
– Write Back: control can be complex

• Today CPU time is a function of (ops, cache misses)
vs. just f(ops): What does this mean to
Compilers, Data structures, Algorithms?

CS252/Patterson
Lec 2.41/19/01

Now, Review of Virtual Memory

CS252/Patterson
Lec 2.51/19/01

Basic Issues in VM System Design
size of information blocks that are transferred from
 secondary to main storage (M)

block of information brought into M, and M is full, then some region
 of M must be released to make room for the new block -->
 replacement policy

which region of M is to hold the new block --> placement policy

missing item fetched from secondary memory only on the occurrence
 of a fault --> demand load policy

Paging Organization

virtual and physical address space partitioned into blocks of equal size

page frames

pages

pages
reg

cache
mem disk

frame

CS252/Patterson
Lec 2.61/19/01

Address Map
V = {0, 1, . . . , n - 1} virtual address space
M = {0, 1, . . . , m - 1} physical address space

MAP: V --> M U {0} address mapping function

n > m

MAP(a) = a' if data at virtual address a is present in physical
 address a' and a' in M

 = 0 if data at virtual address a is not present in M

Processor

Name Space V

Addr Trans
Mechanism

fault
handler

Main
Memory

Secondary
Memory

a

a
a'

0

missing item fault

physical address OS performs
this transfer

Page 2

CS252/Patterson
Lec 2.71/19/01

Paging Organization
frame 0

1

7

0
1024

7168

P.A.

Physical
Memory

1K
1K

1K

Addr
Trans
MAP

page 0
1

31

1K
1K

1K

0
1024

31744

unit of
mapping

also unit of
transfer from
virtual to
physical
memory

Virtual Memory

Address Mapping

VA page no. disp
10

Page Table

index
into
page
table

Page Table
Base Reg

V Access
Rights PA +

table located
in physical
memory

physical
memory
address

actually, concatenation
is more likely

V.A.

CS252/Patterson
Lec 2.81/19/01

Virtual Address and a Cache

CPU Trans-
lation Cache Main

Memory

VA PA miss

hit
data

It takes an extra memory access to translate VA to PA

This makes cache access very expensive, and this is the
"innermost loop" that you want to go as fast as possible

ASIDE: Why access cache with PA at all? VA caches have a problem!

synonym / alias problem: two different virtual addresses map to same
physical address => two different cache entries holding data for the
same physical address!

for update: must update all cache entries with same physical address
or memory becomes inconsistent

determining this requires significant hardware: essentially an
 associative lookup on the physical address tags to see if you have
 multiple hits
or software enforced alias boundary: same lsb of VA & PA > cache size

CS252/Patterson
Lec 2.91/19/01

TLBs
A way to speed up translation is to use a special cache of recently
 used page table entries -- this has many names, but the most
 frequently used is Translation Lookaside Buffer or TLB

Virtual Address Physical Address Dirty Ref Valid Access

Really just a cache on the page table mappings

TLB access time comparable to cache access time
 (much less than main memory access time)

CS252/Patterson
Lec 2.101/19/01

Translation Look-Aside Buffers
Just like any other cache, the TLB can be organized as fully associative,
 set associative, or direct mapped

TLBs are usually small, typically not more than 128 - 256 entries even on
 high end machines. This permits fully associative
 lookup on these machines. Most mid-range machines use small
 n-way set associative organizations.

CPU TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

20 tt1/2 t

Translation
with a TLB

CS252/Patterson
Lec 2.111/19/01

Reducing Translation Time

Machines with TLBs go one step further to reduce #
cycles/cache access

They overlap the cache access with the TLB access:

 high order bits of the VA are used to look in the
TLB while low order bits are used as index into
cache

CS252/Patterson
Lec 2.121/19/01

Overlapped Cache & TLB Access

TLB Cache

10 2
00

4 bytes

index 1 K

page # disp
20 12

assoc
lookup32

PA Hit/
Miss PA Data Hit/

Miss

=

IF cache hit AND (cache tag = PA) then deliver data to CPU
ELSE IF [cache miss OR (cache tag = PA)] and TLB hit THEN
 access memory with the PA from the TLB
ELSE do standard VA translation

Page 3

CS252/Patterson
Lec 2.131/19/01

Problems With Overlapped TLB Access
Overlapped access only works as long as the address bits used to
 index into the cache do not change as the result of VA translation

This usually limits things to small caches, large page sizes, or high
 n-way set associative caches if you want a large cache

Example: suppose everything the same except that the cache is
 increased to 8 K bytes instead of 4 K:

11 2
00

virt page # disp
20 12

cache
index

This bit is changed
by VA translation, but
is needed for cache
lookup

Solutions:
 go to 8K byte page sizes;
 go to 2 way set associative cache; or
 SW guarantee VA[13]=PA[13]

1K
4 4

10
2 way set assoc cache

CS252/Patterson
Lec 2.141/19/01

SPEC: System Performance Evaluation
Cooperative

• First Round 1989
– 10 programs yielding a single number (“SPECmarks”)

• Second Round 1992
– SPECInt92 (6 integer programs) and SPECfp92 (14 floating

point programs)
» Compiler Flags unlimited. March 93 of DEC 4000 Model

610:
spice: unix.c:/def=(sysv,has_bcopy,”bcopy(a,b,c)=

memcpy(b,a,c)”
wave5: /ali=(all,dcom=nat)/ag=a/ur=4/ur=200
nasa7: /norecu/ag=a/ur=4/ur2=200/lc=blas

• Third Round 1995
– new set of programs: SPECint95 (8 integer programs) and

SPECfp95 (10 floating point)
– “benchmarks useful for 3 years”
– Single flag setting for all programs: SPECint_base95,

SPECfp_base95

CS252/Patterson
Lec 2.151/19/01

SPEC: System Performance Evaluation
Cooperative

• Fourth Round 2000: SPEC CPU2000
– 12 Integer
– 14 Floating Point
– 2 choices on compilation; “aggressive”

(SPECint2000,SPECfp2000), “conservative”
(SPECint_base2000,SPECfp_base); flags same for all
programs, no more than 4 flags, same compiler for
conservative, can change for aggressive

– multiple data sets so that can train compiler if trying to
collect data for input to compiler to improve optimization

CS252/Patterson
Lec 2.161/19/01

How to Summarize Performance
• Arithmetic mean (weighted arithmetic mean)

tracks execution time:
Σ(Ti)/n or Σ(Wi*Ti)

• Harmonic mean (weighted harmonic mean) of
rates (e.g., MFLOPS) tracks execution time:

n/Σ(1/Ri) or n/Σ(Wi/Ri)
• Normalized execution time is handy for scaling

performance (e.g., X times faster than
SPARCstation 10)

• But do not take the arithmetic mean of
normalized execution time, use the geometric
mean:

(Π Tj / Nj)1/n

CS252/Patterson
Lec 2.171/19/01

SPEC First Round
• One program: 99% of time in single line of code
• New front-end compiler could improve

dramatically

Benchmark

0

100

200

300

400

500

600

700

800

gc
c

ep
re

ss
o

sp
ic

e

do
du

c

na
sa

7 li

eq
nt

ot
t

m
at

rix
30

0 fp
pp

p

to
m

ca
tv

CS252/Patterson
Lec 2.181/19/01

Impact of Means on SPECmark89 for
IBM 550

 Ratio to VAX: Time: Weighted Time:
Program Before After Before After Before After
gcc 30 29 49 51 8.91 9.22
espresso 35 34 65 67 7.64 7.86
spice 47 47 510 510 5.69 5.69
doduc 46 49 41 38 5.81 5.45
nasa7 78 144 258 140 3.43 1.86
li 34 34 183 183 7.86 7.86
eqntott 40 40 28 28 6.68 6.68
matrix300 78 730 58 6 3.43 0.37
fpppp 90 87 34 35 2.97 3.07
tomcatv 33 138 20 19 2.01 1.94
Mean 54 72 124 108 54.42 49.99

 Geometric Arithmetic Weighted Arith.
Ratio 1.33 Ratio 1.16 Ratio 1.09

Page 4

CS252/Patterson
Lec 2.191/19/01

Performance Evaluation

• “For better or worse, benchmarks shape a field”
• Good products created when have:

– Good benchmarks
– Good ways to summarize performance

• Given sales is a function in part of performance
relative to competition, investment in improving
product as reported by performance summary

• If benchmarks/summary inadequate, then choose
between improving product for real programs vs.
improving product to get more sales;
Sales almost always wins!

• Execution time is the measure of computer
performance!

CS252/Patterson
Lec 2.201/19/01

Integrated Circuits Costs

Die Cost goes roughly with die area4

 Test_Die
Die_Area 2

Wafer_diam
Die_Area

2m/2)(Wafer_dia wafer per Dies −
⋅

×π
−

π
=





















α
×

+×=
α−Die_area sityDefect_Den 1 dWafer_yiel YieldDie

yieldtest Final
cost Packaging cost Testingcost Die cost IC ++

=

yield Die Wafer per Dies
costWafer cost Die

×
=

CS252/Patterson
Lec 2.211/19/01

Real World Examples

Chip Metal Line Wafer Defect Area Dies/ Yield Die Cost
 layers width cost /cm2 mm2 wafer
386DX 2 0.90 $900 1.0 43 360 71% $4
486DX2 3 0.80 $1200 1.0 81 181 54% $12
PowerPC 601 4 0.80 $1700 1.3 121 115 28% $53
HP PA 7100 3 0.80 $1300 1.0 196 66 27% $73
DEC Alpha 3 0.70 $1500 1.2 234 53 19% $149
SuperSPARC 3 0.70 $1700 1.6 256 48 13% $272
Pentium 3 0.80 $1500 1.5 296 40 9% $417

– From "Estimating IC Manufacturing Costs,” by Linley Gwennap,
Microprocessor Report , August 2, 1993, p. 15

CS252/Patterson
Lec 2.221/19/01

Cost/Performance
What is Relationship of Cost to Price?

• Component Costs
• Direct Costs (add 25% to 40%) recurring costs: labor,

purchasing, scrap, warranty

• Gross Margin (add 82% to 186%) nonrecurring costs:
R&D, marketing, sales, equipment maintenance, rental, financing
cost, pretax profits, taxes

• Average Discount to get List Price (add 33% to 66%):
volume discounts and/or retailer markup

Component
Cost

Direct Cost

Gross
Margin

Average
Discount

Avg. Selling Price

List Price

15% to 33%
 6% to 8%
34% to 39%

25% to 40%

CS252/Patterson
Lec 2.231/19/01

• Assume purchase 10,000 units

Chip Prices (August 1993)

Chip Area Mfg. Price Multi- Comment
mm2 cost plier

386DX 43 $9 $31 3.4 Intense CompetitionIntense Competition
486DX2 81 $35 $245 7.0 No CompetitionNo Competition
PowerPC 601 121 $77 $280 3.6
DEC Alpha 234 $202 $1231 6.1 Recoup R&D?
Pentium 296 $473 $965 2.0 Early in shipments

CS252/Patterson
Lec 2.241/19/01

Summary: Price vs. Cost

0%

20%

40%

60%

80%

100%

Mini W/S PC

Average Discount

Gross Margin

Direct Costs

Component Costs

0

1

2

3

4

5

Mini W/S PC

Average Discount

Gross Margin

Direct Costs

Component Costs

4.7
3.8

1.8

3.5
2.5

1.5

Page 5

CS252/Patterson
Lec 2.251/19/01

CS 252 Course Focus

Understanding the design techniques, machine
structures, technology factors, evaluation
methods that will determine the form of
computers in 21st Century

Technology Programming
Languages

Operating
Systems History

Applications Interface Design
(ISA)

Measurement &
Evaluation

Parallelism

Computer Architecture:
• Instruction Set Design
• Organization
• Hardware/Software Boundary Compilers

CS252/Patterson
Lec 2.261/19/01

Topic Coverage
Textbook: Hennessy and Patterson, Computer
Architecture: A Quantitative Approach, 3rd Ed., 2001
Research Papers -- Handed out in class

• 1 week: Review: Fundamentals of Computer Architecture (Ch.
1), Pipelining, Performance, Caches, Virtual Memory, Cost, Ics

• 1 week: Memory Hierarchy (Chapter 5)
• 2 weeks: Fault Tolerance, Queuing Theory, Input/Output and

Storage (Ch. 6)
• 2 weeks: Networks and Clusters (Ch. 7)
• 2 weeks: Multiprocessors (Ch. 8)
• 2 weeks: Instruction Sets, DSPs, SIMD (Ch. 2),

Vector Processors (Appendix B).
• 1 week: Dynamic Execution. (Ch 3)
• 1 week: Static Execution. (Ch 4)
• Rest: Project stategy meetings, presentations, quizzes

CS252/Patterson
Lec 2.271/19/01

Lecture style

• 1-Minute Review
• 20-Minute Lecture/Discussion
• 5- Minute Administrative Matters
• 25-Minute Lecture/Discussion
• 5- Minute Class Discussion or Break (water, stretch)
• 25-Minute Lecture/Discussion
• Instructor will come to class early & stay after to

answer questions

Attention

Time

20 min. Break “In Conclusion, ...”

CS252/Patterson
Lec 2.281/19/01

Quizes

• Reduce the pressure of taking quizes
– Only 2 Graded Quizes:

Tentative: Wed Mar 7th and Wed. Apr 18th
– Our goal: test knowledge vs. speed writing
– 3 hrs to take 1.5-hr test (5:30-8:30 PM, TBA location)
– Both mid-term quizes can bring summary sheet

» Transfer ideas from book to paper
– Last chance Q&A: during class time day of exam

• Students/Faculty meet over free pizza/drinks at La
Vals:
Wed Oct. 18th (8:30 PM) and Wed Apr 18th (8:30
PM)

CS252/Patterson
Lec 2.291/19/01

Original

Big Fishes Eating Little Fishes

CS252/Patterson
Lec 2.301/19/01

1988 Computer Food Chain

PCWork-
stationMini-

computer

Mainframe

Mini-
supercomputer

Supercomputer

Massively Parallel
Processors

Page 6

CS252/Patterson
Lec 2.311/19/01

1998 Computer Food Chain

PCWork-
station

Mainframe

Supercomputer

Mini-
supercomputerMassively Parallel Processors

Mini-
computer

Now who is eating whom?

Server

CS252/Patterson
Lec 2.321/19/01

Why Such Change in 10 years?

• Performance
– Technology Advances

» CMOS VLSI dominates older technologies (TTL, ECL) in
cost AND performance

– Computer architecture advances improves low-end
» RISC, superscalar, RAID, …

• Price: Lower costs due to …
– Simpler development

» CMOS VLSI: smaller systems, fewer components
– Higher volumes

» CMOS VLSI : same dev. cost 10,000 vs. 10,000,000
units

– Lower margins by class of computer, due to fewer services

• Function
– Rise of networking/local interconnection technology

CS252/Patterson
Lec 2.331/19/01

Year

1000

10000

100000

1000000

10000000

100000000

1970 1975 1980 1985 1990 1995 2000

i80386

i4004

i8080

Pentium

i80486

i80286

i8086

Technology Trends: Microprocessor
Capacity

CMOS improvements:
• Die size: 2X every 3 yrs
• Line width: halve / 7 yrs

“Graduation Window”

Alpha 21264: 15 million
Pentium Pro: 5.5 million
PowerPC 620: 6.9 million
Alpha 21164: 9.3 million
Sparc Ultra: 5.2 million

Moore’s Law

CS252/Patterson
Lec 2.341/19/01

Memory Capacity
(Single Chip DRAM)

size

Year

1000

10000

100000

1000000

10000000

100000000

1000000000

1970 1975 1980 1985 1990 1995 2000

year size(Mb) cyc time
1980 0.0625 250 ns
1983 0.25 220 ns
1986 1 190 ns
1989 4 165 ns
1992 16 145 ns
1996 64 120 ns
2000 256 100 ns

CS252/Patterson
Lec 2.351/19/01

Technology Trends
(Summary)

Capacity Speed (latency)
Logic 2x in 3 years 2x in 3 years
DRAM 4x in 3-4 years 2x in 10 years
Disk 4x in 2-3 years 2x in 10 years

CS252/Patterson
Lec 2.361/19/01

Processor Performance
Trends

Microprocessors

Minicomputers

Mainframes

Supercomputers

Year

0.1

1

10

100

1000

1965 1970 1975 1980 1985 1990 1995 2000

Page 7

CS252/Patterson
Lec 2.371/19/01

0

200

400

600

800

1000

1200

87 88 89 90 91 92 93 94 95 96 97
D
EC

 A
lp
ha

 2
11

64
/6

00

D
EC

 A
lp
ha

 5
/5

00

D
EC

 A
lp
ha

 5
/3

00

D
EC

 A
lp
ha

 4
/2

66

IB
M

 P
O
W

ER
 1

00

D
EC

 A
X
P/

50
0

H
P

90
00

/7
50

S
un

-4
/2

60

IB
M

 R
S/

60
00

M
IP

S
M

/1
20

M
IP

S
 M

/2
00

0

Processor Performance
(1.35X before, 1.55X now)

1.54X/yr

CS252/Patterson
Lec 2.381/19/01

Performance Trends
(Summary)

• Workstation performance (measured in Spec
Marks) improves roughly 50% per year
(2X every 18 months)

• Improvement in cost performance estimated
at 70% per year

CS252/Patterson
Lec 2.391/19/01

Moore’s Law Paper

• Discussion
• What did Moore predict?
• 35 years later, how did it hold up?
• In your view, what was biggest surprise in

paper?

CS252/Patterson
Lec 2.401/19/01

Review #3/3: TLB, Virtual Memory
• Caches, TLBs, Virtual Memory all understood by

examining how they deal with 4 questions: 1)
Where can block be placed? 2) How is block found?
3) What block is repalced on miss? 4) How are
writes handled?

• Page tables map virtual address to physical address
• TLBs make virtual memory practical

– Locality in data => locality in addresses of data, temporal and
spatial

• TLB misses are significant in processor performance
– funny times, as most systems can’t access all of 2nd level cache

without TLB misses!

• Today VM allows many processes to share single
memory without having to swap all processes to
disk; today VM protection is more important than
memory hierarchy

CS252/Patterson
Lec 2.411/19/01

Summary

• Performance Summary needs good
benchmarks and good ways to summarize
performancfe

• Transistors/chip for microprocessors growing
via “Moore’s Law” 2X 1.5/yrs

• Disk capacity (so far) is at a faster rate
last 4-5 years

• DRAM capacity is at a slower rate last 4-5
years

• In general, Bandwidth improving fast,
latency improving slowly

