CS252 **Graduate Computer Architecture** Lecture 2

Review of Cost, Integrated Circuits, Benchmarks, Moore's Law, & Prerequisite Quiz

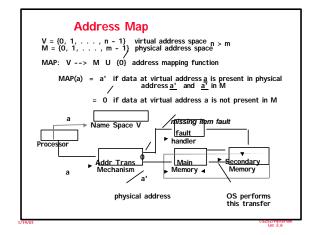
> January 19, 2001 Prof. David A. Patterson Computer Science 252 Spring 2001

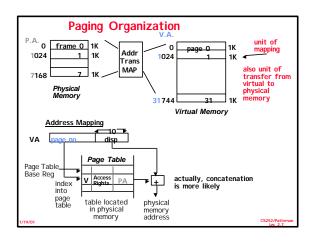
Review #1/3: Pipelining & Performance

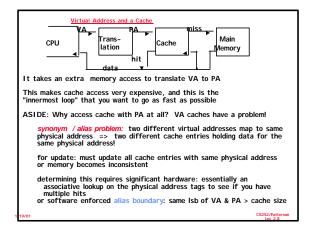
- · Just overlap tasks; easy if tasks are independent
- Speed Up ${\mathfrak L}$ Pipeline Depth; if ideal CPI is 1, then:

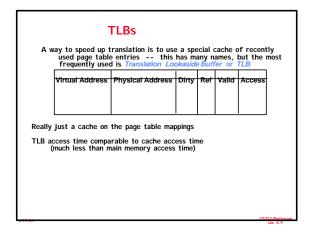
 $\text{Cycle Time}_{\underline{\text{unpipelined}}}$ Pipeline depth Speedup = Pipeline depth Cycle Time_{pipelined} Cycle Time_{pipelined}

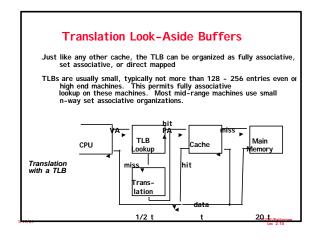
- · Hazards limit performance on computers:
 - Structural: need more HW resources
 - Data (RAW, WAR, WAW): need forwarding, compiler scheduling
 - Control: delayed branch, prediction
- · Time is measure of performance: latency or throughput
- · CPI Law:

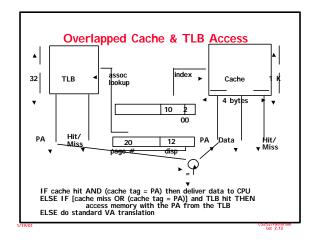

PU time = Seconds = Instructions x Cycles x Seconds Program Program Instruction

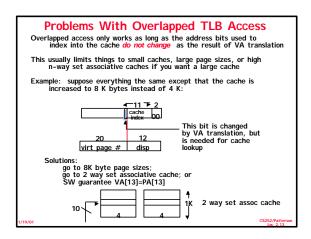

Review #2/3: Caches


- · The Principle of Locality:
 - Program access a relatively small portion of the address space at any instant of time.
 - » Temporal Locality: Locality in Time
 - » Spatial Locality: Locality in Space
- · Three Major Categories of Cache Misses:
 - Compulsory Misses: sad facts of life. Example: cold start misses.
 - Capacity Misses: increase cache size
 - Conflict Misses: increase cache size and/or associativity.
- Write Policy:
 - Write Through: needs a write buffer.
- Write Back: control can be complex
- Today CPU time is a function of (ops, cache misses) vs. just f(ops): What does this mean to Compilers, Data structures, Algorithms?


Now, Review of Virtual Memory


Basic Issues in VM System Design 0 size of information blocks that are transferred from secondary to main storage (M) block of information brought into M, and M is full, then some region of M must be released to make room for the new block --> which region of M is to hold the new block --> placement policy 0 missing item fetched from secondary memory only on the occurrence of a fault --> demand load policy Paging Organization virtual and physical address space partitioned into blocks of equal size page frames




Reducing Translation Time

Machines with TLBs go one step further to reduce # cycles/cache access

They overlap the cache access with the TLB access:

high order bits of the VA are used to look in the TLB while low order bits are used as index into cache

SPEC: System Performance Evaluation Cooperative

- · First Round 1989
- 10 programs yielding a single number ("SPECmarks")
- Second Round 1992
 - SPECInt92 (6 integer programs) and SPECfp92 (14 floating point programs)
 - » Compiler Flags unlimited. March 93 of DEC 4000 Model 610:

spice: unix.c:/def=(sysv,has_bcopy,"bcopy(a,b,c)=
 memcpy(b,a,c)"

wave5: /ali=(all,dcom=nat)/ag=a/ur=4/ur=200
nasa7: /norecu/ag=a/ur=4/ur2=200/lc=blas

- · Third Round 1995
 - new set of programs: SPECint95 (8 integer programs) and SPECfp95 (10 floating point)
 - "benchmarks useful for 3 years"
 - Single flag setting for all programs: SPECint_base95,

CS252/Patterso

SPEC: System Performance Evaluation Cooperative

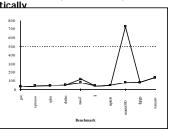
- · Fourth Round 2000: SPEC CPU2000
 - 12 Integer
 - 14 Floating Point
 - 2 choices on compilation; "aggressive" (SPECint2000, SPECfp2000), "conservative" (SPECint_base2000, SPECfp_base); flags same for all programs, no more than 4 flags, same compiler for conservative, can change for aggressive
 - multiple data sets so that can train compiler if trying to collect data for input to compiler to improve optimization

52/Patters Lec 2.15

How to Summarize Performance

 Arithmetic mean (weighted arithmetic mean) tracks execution time:
 S(T)/n or S(W*T)

 $S(T_i)/n$ or $S(W_i*T_i)$


- Harmonic mean (weighted harmonic mean) of rates (e.g., MFLOPS) tracks execution time: n/S(1/R_i) or n/S(W_i/R_i)
- Normalized execution time is handy for scaling performance (e.g., X times faster than SPARCstation 10)
- But do not take the arithmetic mean of normalized execution time, use the geometric mean:

($P T_j / N_j$)^{1/n}

S252/Patter

SPEC First Round m: 99% of time in single

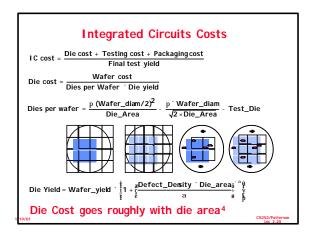
- One program: 99% of time in single line of code
- New front-end compiler could improve dramatically

Lec 2.17

Impact of Means on SPECmark89 for IBM 550

Ra	AX:	Time	2:	Weighted Time			
Program	Before	After	Before	After	Before	After	
gcc	30	29	49	51	8.91	9.22	
espresso	35	34	65	67	7.64	7.86	
spice	47	47	510	510	5.69	5.69	
doduc	46	49	41	38	5.81	5.45	
nasa7	78	144	258	140	3.43	1.86	
li	34	34	183	183	7.86	7.86	
eqntott	40	40	28	28	6.68	6.68	
matrix300	78	730	58	6	3.43	0.37	
fpppp	90	87	34	35	2.97	3.07	
tomcatv	33	138	20	19	2.01	1.94	
Mean	54	72	124	108	54.42	49.99	
	Geometri	c .	Arithmetic	rithmetic		Weighted Arith.	
	Ratio	1.33	Ratio	1.16	Ratio	1.09	

1/19/01

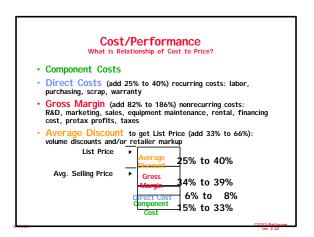

Lec 2.18

Performance Evaluation

- · "For better or worse, benchmarks shape a field"
- · Good products created when have:
 - Good benchmarks
- Good ways to summarize performance
- Given sales is a function in part of performance relative to competition, investment in improving product as reported by performance summary
- If benchmarks/summary inadequate, then choose between improving product for real programs vs. improving product to get more sales; Sales almost always wins!
- Execution time is the measure of computer performance!

1/19/01

252/Patterso Lec 2.19

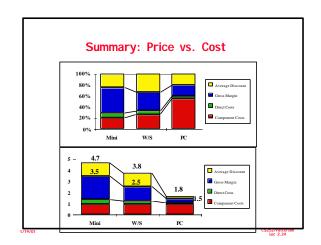


Real World Examples Metal Line Wafer Defeat Area Direct Viold Dis Cont.

								Die Cost
	layers	widt	1 cost	/cm²	mm²	wafer		
386DX	2	0.90	\$900	1.0	43	360	71%	\$4
486DX2	3	0.80	\$1200	1.0	81	181	54%	\$12
PowerPC 6	601 4	0.80	\$1700	1.3	121	115	28%	\$53
HP PA 710	0 3	0.80	\$1300	1.0	196	66	27%	\$73
DEC Alpha	3	0.70	\$1500	1.2	234	53	19%	\$149
SuperSPAI	RC 3	0.70	\$1700	1.6	256	48	13%	\$272
Pentium	3	0.80	\$1500	1.5	296	40	9%	\$417

- From "Estimating IC Manufacturing Costs," by Linley Gwennap, Microprocessor Report, August 2, 1993, p. 15

> 52/Patters Lec 2.21



Chip Prices (August 1993)

· Assume purchase 10,000 units

Chip	Area	Mfg	. Price	Multi-	Comment
	mm	2 cost	t	plier	
386DX	43	\$9	\$31	3.4	Intense Competition
486DX2	81	\$35	\$245	7.0	No Competition
PowerPC 601	121	\$77	\$280	3.6	
DEC Alpha	234	\$202	\$1231	6.1	Recoup R&D?
Pentium	296	\$473	\$965	2.0	Early in shipments

US252/Patter

CS 252 Course Focus Understanding the design techniques, machine structures, technology factors, evaluation methods that will determine the form of computers in 21st Century Technology Programming Languages Applications 1 nterface Design (ISA) Computer Architecture: Instruction Set Design Organization Hardware/Software Boundary Compilers Operating Measurement & History Systems Evaluation

Topic Coverage

Textbook: Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 3rd Ed., 2001

Research Papers -- Handed out in class

1 week: Review: Fundamentals of Computer Architecture (Ch. 1), Pipelining, Performance, Caches, Virtual Memory, Cost, Ics

1 week: Memory Hierarchy (Chapter 5)

2 weeks: Fault Tolerance, Queuing Theory, Input/Output and Storage (Ch. 6) $\,$

2 weeks: Networks and Clusters (Ch. 7)

· 2 weeks: Multiprocessors (Ch. 8)

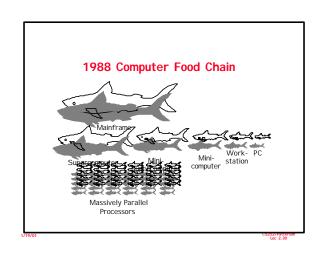
Instruction Sets, DSPs, SIMD (Ch. 2), Vector Processors (Appendix B). 2 weeks:

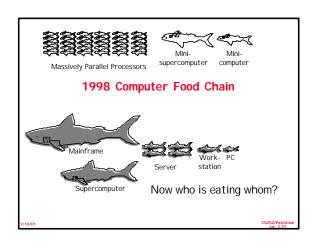
1 week: Dynamic Execution. (Ch 3) • 1 week: Static Execution. (Ch 4)

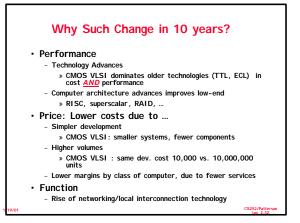
Rest: Project stategy meetings, presentations, quizzes

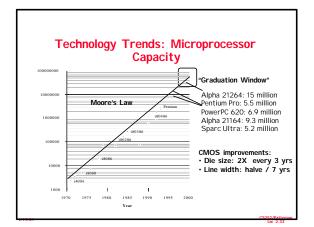
Lecture style

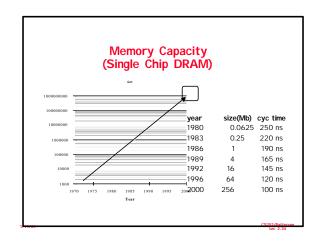
- 1-Minute Review
- 20-Minute Lecture/Discussion
- 5- Minute Administrative Matters
- · 25-Minute Lecture/Discussion
- 5- Minute Class Discussion or Break (water, stretch)
- · 25-Minute Lecture/Discussion
- · Instructor will come to class early & stay after to answer questions

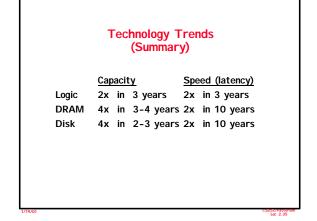

Attention

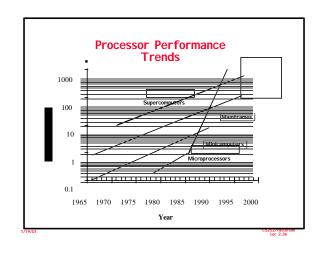

Break "In Conclusion, ..." 20 min.

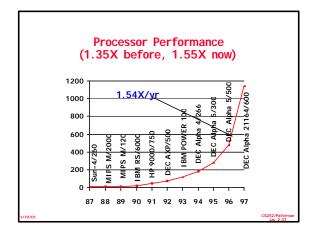

Quizes


- Reduce the pressure of taking quizes
- Only 2 Graded Quizes:
 - Tentative: Wed Mar 7th and Wed. Apr 18th
- Our goal: test knowledge vs. speed writing
- 3 hrs to take 1.5-hr test (5:30-8:30 PM, TBA location)
- Both mid-term quizes can bring summary sheet
 - » Transfer ideas from book to paper
- Last chance Q&A: during class time day of exam
- Students/Faculty meet over free pizza/drinks at La Vals: Wed Oct. 18th (8:30 PM) and Wed Apr 18th (8:30 PM)


Original Big Fishes Eating Little Fishes







Performance Trends (Summary)

- Workstation performance (measured in Spec Marks) improves roughly 50% per year (2X every 18 months)
- Improvement in cost performance estimated at 70% per year

CS252/Patte

Moore's Law Paper

- Discussion
- · What did Moore predict?
- · 35 years later, how did it hold up?
- In your view, what was biggest surprise in paper?

Lec 2.39

Review #3/3: TLB, Virtual Memory

- Caches, TLBs, Virtual Memory all understood by examining how they deal with 4 questions: 1)
 Where can block be placed? 2) How is block found?
 What block is repalced on miss? 4) How are writes handled?
- · Page tables map virtual address to physical address
- TLBs make virtual memory practical
- Locality in data => locality in addresses of data, temporal and spatial
- TLB misses are significant in processor performance

 funny times, as most systems can't access all of 2nd level cache without TLB misses!
- Today VM allows many processes to share single memory without having to swap all processes to disk; today VM protection is more important than memory hierarchy

Summary

- Performance Summary needs good benchmarks and good ways to summarize performance
- Transistors/chip for microprocessors growing via "Moore's Law" 2X 1.5/yrs
- Disk capacity (so far) is at a faster rate last 4-5 years
- DRAM capacity is at a slower rate last 4-5 years
- In general, Bandwidth improving fast, latency improving slowly

Lec 2.41