
cs 61C L2 C intro.1 Patterson Fall00 ©UCB

CS61C
Machine Structures

Lecture 2
September 1,2000

Dave Patterson
(http.cs.berkeley.edu/~patterson)

http://www-inst.eecs.berkeley.edu/~cs61c/

cs 61C L2 C intro.2 Patterson Fall00 ©UCB

Review 1/2
°15 weeks to learn big ideas in CS&E

• Principle of abstraction, used to build systems
as layers

• Pliable Data: a program determines what it is

• Stored program concept: instructions are just
data

• Principle of Locality, exploited via a memory
hierarchy (cache)

• Greater performance by exploiting parallelism
(pipeline)

• Compilation v. interpretation to move down
layers of system

• Principles/Pitfalls of Performance Measurement

cs 61C L2 C intro.3 Patterson Fall00 ©UCB

Review 2/.2
°Continued rapid improvement in
Computing
• 2X every 1.5 years in processor speed;
every 2.0 years in memory size;
every 1.0 year in disk capacity;
Moore’s Law enables processor, memory
(2X transistors/chip/ ~1.5 yrs)

°5 classic components of all computers
 Control Datapath Memory Input Output}

Processor
cs 61C L2 C intro.4 Patterson Fall00 ©UCB

Overview

°Review (2 minutes)

°C Pointers (10 min)

°Parameter Passing (8 min)

°Administrivia Break (5 min)

°Computers in the News (3 min)

°C structures (10)

°Memory Allocation (10 min)

°Conclusion (2 min)

cs 61C L2 C intro.5 Patterson Fall00 ©UCB

C vs. Java - Differences

°C has no objects, no classes, no
superclasses

• Java method => C procedure, function

°Variable, Array initialization
• C: ? (sometimes zero, sometimes random)

• Java: zero

°Output
• C: printf()

• Java: system.out.print()

°Memory management, pointers
cs 61C L2 C intro.6 Patterson Fall00 ©UCB

C Pointers

°Pointer: represents a raw memory address
(more details later in course)

°C variables can have pointer types:
int *x; /* type: pointer to an int */

int **x;/* type: pointer to a pointer to an int */

int *x, *y, *z; /* type: pointers to ints */

int *x, y, z; /* type: ? */

°How create a pointer to store in a variable?
¥& operator: get address of a variable

¡int *x; /* type: pointer to an int */

cs 61C L2 C intro.7 Patterson Fall00 ©UCB

C Pointers

°How create a pointer to store in a variable?
¥& operator: get address of a variable

int *x, y;

y = 3;

x ? y ?

x ? y 3

y = &x;
x y 3

°How get a value pointed to?
¥* dereference operator: get value pointed to

printf(x points to %d\n ,*x);

cs 61C L2 C intro.8 Patterson Fall00 ©UCB

C Pointers

°How change variable pointed to?
• Use dereference * operator to left of =

*x = 5; x y 5

°How get a address of the pointer?
• Why do you want to do this???

printf(x pointer is %p\n , x);

°Closest thing in C to object type in Java:
¥void * is a type that can point to anything

• Example: linked list in C with pointer to next
node and a pointer to the value, but not sure
what type it is

cs 61C L2 C intro.9 Patterson Fall00 ©UCB

C Pointers and Parameter Passing

°Java and C pass a parameter “by value”
• procedure/function gets a copy of the
parameter, so changing the copy cannot
change the original
void addOne (int x); {

x = x + 1;

};

int y = 3;
y 3

addOne (y);

x

y

3

x 4

cs 61C L2 C intro.10 Patterson Fall00 ©UCB

C Pointers and Parameter Passing

°How get a function to change a value?
void addOne (int *x); {

*x = *x + 1;

};

int y = 3; y 3

addOne (&y);

x

y

x

4

cs 61C L2 C intro.11 Patterson Fall00 ©UCB

Administrivia 1/4
°Change in TAs, new people, shuffle
sections (you asked for it)

°Students who have not taken 61B:
• Will be dropped from class if enrolled or
not promoted from wait list

° If you have taken 61B or the equivalent
and you are on the list:

• Petition Michael-David Sasson, 379 Soda,
643-6002, msasson@cs to petition today

°61B Fall Semester meets in the same
room, so it can easily add 100 people;
more sections will be added as needed

cs 61C L2 C intro.12 Patterson Fall00 ©UCB

Administrivia 2/4
° Instructor: David A. Patterson
(patterson@cs) 635 Soda Hall

Office Hours:Wed 1-2
• Sally Mack (smack@cs), 626 Soda, x3-4034

°Materials: http://www-inst.eecs/~cs61c

°Lectures, projects, labs, homeworks on
www-inst.eecs/~cs61c/schedule.html

°Newsgroup: ucb.class.cs61c

°Text:Computer Organization and Design:
The Hardware/Software Interface, 2/e

cs 61C L2 C intro.13 Patterson Fall00 ©UCB

Administrivia 3/4
°Must turn in survey, login and attend
lab/discussion sections to be
considered enrolled

• Go to old and new sections to ask TA’s to
switch sections

°Lab exercises are to be done every week
in lab section, and checked off by your lab
TA or turned in at beginning of lab

°Homework exercises are to be handed in
either online or to homework boxes in 283
Soda, due on Mondays at noon;

°Projects are larger programming
assignments; individual and team

cs 61C L2 C intro.14 Patterson Fall00 ©UCB

Administrivia 4/4
°Course Exams

• Midterm: Wednesday October 25
(5-8 PM, 1 Pimentel)

• Final: Tuesday, December 12
(5-8 PM, 1 Pimentel)

°Class agreed upon punishment for
• Cheating on Exercises, Labs, Projects

- 0 for assignment

• Cheating on Exams
- 0 for exam

cs 61C L2 C intro.15 Patterson Fall00 ©UCB

Computers in the News
° “ Artificial Life Milestone:

Robots Building Robots ”

 For the first time, computer scientists
have created a robot that designs and
builds other robots, almost e ntirely
without human help. In the short run,
this advance c ould lead to a new
industry of inexpensive robots
customized for specific tasks. …

Mimi cking biol ogical evolution,
the computer added, subtracted and
changed pieces in the designs. At the
same time, the c omputer similarly
mutated the programming i nstruct ions
for co ntroll ing the robot's mov ements.
After each step, the computer ran
simul ations to test the designs,
keeping the ones that moved well and
discarding the fail ures.

“Some thing we probably can
do we shouldn’t do”, Bi ll Joy… “We’re
on the road to somewhere where
there’s big issues…”

N.Y. Times, front page, 8/31/00
golem03.cs-i.brandeis.edu/download/AutomaticDesign.pdf

www.wired.com/wired/archive/8.04/joy.html

cs 61C L2 C intro.16 Patterson Fall00 ©UCB

C Structures vs. Java Classes

°Structure: Agglomerations of data;like a
Java class, but no methods attached
struct DlistNode {

struct DlistNode *next;
struct DlistNode *prev;
void *item;

}; /* need semicolon in C */

°Now create DlistNode variables
struct DlistNode theNode;
struct DlistNode otherNode;

next
prev
item

theNode
next
prev
item

otherNode

cs 61C L2 C intro.17 Patterson Fall00 ©UCB

C Structures vs. Java Classes

°Create pointer to structure as before
struct DlistNode * nodePtr;

next
prev
item

theNode
next
prev
item

otherNode

°Now can assign to fields
theNode.next = &otherNode;
otherNode.prev = &theNode;

nodePtr

cs 61C L2 C intro.18 Patterson Fall00 ©UCB

C Memory Management
°C requires knowing where objects are in
memory, otherwise don't work as expect

• Java hides location of objects

°C has 3 pools of memory
• Static storage : global variable storage,
basically permanent, entire program run;
not in Java (easier to combine, no side
effects, re-entry easier)

• The Stack : local variable storage,
debugging info, parameters, return address
(location of "activation records" in Java or
"stack frame" in C)

• The Heap (dynamic storage): data lives
until deallocated b y programmer

cs 61C L2 C intro.19 Patterson Fall00 ©UCB

The Stack

°Stack frame includes:
• Return address

• Parameters

• Space for other local variables

°Stack frames contiguous
blocks of memory; stack pointer
tells where top stack frame is

°When procedure ends, stack
frame is tossed off the stack,
using return address to decide
where to go to; frees memory
for future stack frames

frame

frame

frame

frameSP

cs 61C L2 C intro.20 Patterson Fall00 ©UCB

°Pointers in C allow access to deallocated
memory, leading to hard to find bugs !
int * ptr () {

int y;
y = 3;
return &y;

};
main () {
int *stackAddr,content;
stackAddr = ptr();
content = *stackAddr;
printf("%d", content); /* 3 */
content = *stackAddr;
printf("%d", content); /*13451514 */

};

Who cares about stack management?

main

ptr
(y=3)

SP

main
SP

main

SP
printf

cs 61C L2 C intro.21 Patterson Fall00 ©UCB

The Heap (Dynamic memory)
°Large pool of memory,
not allocated in contiguous order

• back-to-back requests for heap memory
could result blocks very far apart

• where Java new command allocates memory

° In C, specify number of bytes of memory
explicitly to allocate item
int *ptr;
ptr = (int *) malloc(4);
/* malloc returns type void *, so

need to cast to right type */

¥malloc: Allocates raw, uninitialized memory
from heap

cs 61C L2 C intro.22 Patterson Fall00 ©UCB

C Memory Allocation: malloc()

° Instead of explicit number, for portability,
use sizeof()
int *ptr;
ptr = (int *) malloc(sizeof(int));

• not a procedure; will check type or a
variable to turn into a number

°malloc() also for structure allocation
struct DlistNode * nodePtr;
nodePtr = (struct DlistNode *)
malloc(sizeof(struct DlistNode));

• Note: unlike Java, C never frees memory;
programmer must explicitly free memory

cs 61C L2 C intro.23 Patterson Fall00 ©UCB

C Memory Allocation

°Rule of thumb: deallocate anything
you're never going to use again

• If not too much, and program doesn't run
a long time, then allocate a lot at the
beginning and then let memory be freed
when program ends

• Otherwise, end up with "Memory Leaks",
that is, program gets bigger over time,
and need to restart computer

¡free() is opposite of malloc()

• Danger: may accidentally deallocate
memory when still have a pointer into it,
causing the same problem as with
pointers to stacks cs 61C L2 C intro.24 Patterson Fall00 ©UCB

Odds and Ends

°Structure declaration does not allocate
memory

°Variable declaration does allocate
memory

• If declare inside procedure,
allocated on the stack

• If declare outside a procedure,
allocated in static st orage

cs 61C L2 C intro.25 Patterson Fall00 ©UCB

"And in Conclusion…"
°C is an efficient language, with little
protection

• Array bounds not checked

• Variables not automatically initialized

°C v. Java: pointers and explicit
memory allocation and deallocation

• No garbage collection

• Leads to memory leaks, funny pointers

• Structure declaration does not allocate
memory; use malloc() and free()

°Designed for writing systems code,
device drivers

