

Overview What do computers do? • Recap: C v. Java · Computer representation of "things" Unsigned Numbers Administrivia • Free Food 5PM Thursday, Sept. 7 Computers manipulate representations of Computers at Work things Signed Numbers: search for a good What can you represent with N bits? representation -2^N things! Shortcuts Which things? -Numbers! Characters! Pixels! Dollars! In Conclusion Position! Instructions! ... -Depends on what operations you do on them cs61c-f00 L3 9/6

 Hexadecimal: 0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, 	F
–Normal digits + 6 more: picked al	phabet
 Conversion: Binary <-> Hex 	
-1 hex digit represents 16 decimal	values
-4 binary digits represent 16 decir	nal values
=> 1 hex digit replaces 4 binary dig	gits
• Examples:	
-1010 1100 0101 (binary) = ? (hex)	
-10111 (binary) = 0001 0111 (binar	y) = ?
-3F9(hex) = ? (binary)	

Decimal vs. Hexadecimal vs.Binary				
•Examples:	00 0	0000		
•1010 1100 0101 (binary)	01 1	0001		
	02 2	0010		
= ? (hex)	03 3	0011		
	04 4	0100		
10111 (binom/)	05 5	0101		
•10111 (binary)	06 6	0110		
= 0001 0111 (binary)	07 7	0111		
= ? (hex)	08 8	1000		
	09 9	1001		
	10 A	1010		
•3F9(hex)	11 B	1011		
= ? (binary)	12 C	1100		
	13 D	1101		
	14 E	1110		
	15 F	1111		
es61e-f00 L3 9/6				

Free Food 5PM Thursday, Sept. 7

- "The Importance of Graduate School" -Professor Katherine Yelick, UC Berkeley (Moderator)
 - -Professor Mary Gray Baker, Stanford University
 - -Dr. Serap Savari, Lucent Technology
 - -Kris Hildrum, CS Current Graduate Student –5:30 p.m. PANEL DISCUSSION, Hewlett-Packard Auditorium, 306 SODA
- 5:00 p.m. REFRESHMENTS in the Hall,
- Fourth Floor, Soda Hall

cs61c-f00 1.3.9/6

Two'sC	omple	ment			
0000 0000	0000	0000	0000 _{two} =	0 _{ter}	
0000 0000	0000	0000	0001 =	1 _{ter}	
0000 0000	0000	0000	$0010_{two}^{two} =$	2 ^{tor}	
0111 1111 0111 1111 0111 1111	1111	1111	1101 _{two} =	2,147,483,645 _{ter}	
0111 1111	1111	1111	$1110_{two}^{two} =$	2,147,483,646 ter	
0111 1111	1111	1111	$1111_{two}^{two} =$	2,147,483,647 ^{tor}	
1000 0000	0000	0000	$0000_{two} = -$	2,147,483,645 _{ter} 2,147,483,646 _{ter} 2,147,483,647 _{fer} -2,147,483,648 _{ter}	
1000 0000 1000 0000	0000	0000	$0001_{two} = -$	-2,147,483,647 _{ter}	
1000 0000	0000	0000	$0010_{two} = -$	-2,147,483,647 _{ter} -2,147,483,646 _{ter}	
•••••					
1111 1111	1111	1111	$1101_{two} =$	-3 _{ter}	
1111 1111 1111 1111 1111 1111	1111	1111	$1110_{two} =$	-2 _{ter}	
<u>1</u> 111 1111	1111	1111	$1111_{two} =$	-1 _{ter}	
One zero. ²	lst bit	=> >	>=0 or <0.	called sign bit	
-but one negative with no positive -2,147,483,648					
-but one ne	gative	with i	no positive	–2,147,483,648 _{ten}	

And in Conclusion...

- We represent "things" in computers as particular bit patterns: N bits =>2^N –numbers, characters, ... (data)
- Decimal for human calculations, binary to undertstand computers, hex to understand binary
- 2's complement universal in computing: cannot avoid, so learn
- Computer operations on the representation correspond to real operations on the real thing
- Overflow: numbers infinite but computers finite, so errors occur