Machine Representation/Numbers
Lecture 3
CS 61C Machines Structures Fall 00
David Patterson
U.C. Berkeley

http://www-inst.eecs.berkeley.edu/~cs61c/

From last time: C v. Java

- C Designed for writing systems code, device drivers
- C is an efficient language, with little protection
-Array bounds not checked
-Variables not automatically initialized
- C v. Java: pointers and explicit memory allocation and deallocation -No garbage collection
-Leads to memory leaks, funny pointers
-Structure declaration does not allocate memory; use malloc() and free()
cs6le-000 L. 3 9\%

Numbers: positional notation

- Number Base B => B symbols per digit: -Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Base 2 (Binary): 0, 1
- Number representation:
$-d_{31} d_{30} \ldots d_{2} d_{1} d_{0}$ is a 32 digit number
-value $=d_{31} \times B^{31}+d_{30} \times B^{30}+\ldots+d_{2} \times B^{2}+$ $\mathrm{d}_{1} \times B^{1}+\mathrm{d}_{0} \times B^{0}$
- Binary: 0,1
$-1011010=1 \times 2^{6}+0 \times 2^{5}+1 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}$
$+1 \times 2+0 \times 1=64+16+8+2=90$
- Notice that 7 digit binary number turns into a 2 digit decimal number
-A base that converts to binary easily?

Hexadecimal Numbers: Base 16

- Hexadecimal:

0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F
-Normal digits + 6 more: picked alphabet

- Conversion: Binary <-> Hex
-1 hex digit represents 16 decimal values
-4 binary digits represent 16 decimal values
=> 1 hex digit replaces 4 binary digits
- Examples:
-1010 11000101 (binary) = ? (hex)
- 10111 (binary) $=00010111$ (binary) = ?
-3F9(hex) = ? (binary)

Decimal vs. Hexadecimal vs.Binary

•Examples:	00	0	0000
-1010 1100 0101 (binary)	01	1	0001
= ? (hex)	02	2	0010
	03	3	0011
-10111 (binary)	04	4	0100
= 0001 0111 (binary)	05	5	0101
= ? (hex)	06	6	0110
	07	7	0111
-3F9(hex)	08	8	1000
= ? (binary)	09	9	1001
	10	A	1010
	11	B	1011
	12	C	1100
	13	D	1101
	14	E	1110
	15	F	1111

Which base do we use?

- Decimal: great for humans, especially when doing arithmetic
- Hex: if human looking at long strings of binary numbers, its much easier to convert to hex and look 4 bits/symbol -Terrible for arithmetic; just say no
- Binary: what computers use; you learn how computers do +,-,,*,I
-To a computer, numbers always binary -Doesn't matter base in C, just the value: $32_{10}=0 \times 20=100000_{2}$
-Use subscripts "ten", "hex", "two" in book, slides when might be confusing

Administrivia

- Tu/Th section 5-6PM; 18/118
- "Mark Chew" is most recent TA
- He quit, so lab/discussion in canceled
- Viewing lectures again: tapes in 205 McLaughlin
- Read web page: Intro, FAQ, Schedule www-
inst.eecs.berkeley.edu/~cs61c
-TA assignments, Office Hours
-Project 1 due Friday by Midnight

Free Food 5PM Thursday, Sept. 7

- "The Importance of Graduate School" -Professor Katherine Yelick, UC Berkeley (Moderator)
-Professor Mary Gray Baker, Stanford University
-Dr. Serap Savari, Lucent Technology
-Kris Hildrum, CS Current Graduate Student
-5:30 p.m. PANEL DISCUSSION, Hewlett-Packard Auditorium, 306 SODA
- 5:00 p.m. REFRESHMENTS in the Hall, Fourth Floor, Soda Hall
cs61c-100 L3 3 \%

Limits of Computer Numbers

- Bits can represent anything!
- Characters?
- 26 letter => 5 bits
-upper/lower case + punctuation => 7 bits (in 8)
-rest of the world's languages => 16 bits (unicode)
- Logical values?
-0 -> False, 1 => True
- colors ?
- locations / addresses? commands?
- but N bits => only 2^{N} things

How to Represent Negative Numbers?

- So far, unsigned numbers
- Obvious solution: define leftmost bit to be sign!

$$
-0=>+, 1 \text { => - }
$$

-Rest of bits can be numerical value of number

- Representation called sign and magnitude
- MIPS uses 32 -bit integers. $+1_{\text {ten }}$ would be: 00000000000000000000000000000001
- And - $1_{\text {ten }}$ in sign and magnitude would be: 10000000000000000000000000000001

Comparison

- How do you tell if $X>Y$?
- See if X - $Y>0$

Shortcomings of sign and magnitude?

- Arithmetic circuit more complicated
-Special steps depending whether signs are the same or not
- Also, Two zeros
$-0 \times 00000000=+0_{\text {ten }}$
$-0 \times 80000000=-0_{\text {ten }}$
-What would it mean for programming?
- Sign and magnitude abandoned

Another try: complement the bits

- Example: $\quad \mathbf{7}_{10}=\mathbf{0 0 1 1 1}_{2} \quad-\mathbf{7}_{10}=\mathbf{1 1 0 0 0}_{2}$
- Called one's Complement
- Note: postive numbers have leading 0s, negative numbers have leadings 1 s .

- What is -00000 ?
- How many positive numbers in \mathbf{N} bits?
- How many negative ones?

Search for Negative Number Representation

- Obvious solution didn't work, find another
- What is result for unsigned numbers if tried to subtract large number from a small one?
-Would try to borrow from string of leading 0 s , so result would have a string of leading 1 s -With no obvious better alternative, pick representation that made the hardware simple: leading $0 \mathrm{~s} \Rightarrow$ positive, leading $1 \mathrm{~s} \Rightarrow$ negative
$-000000 \ldots \mathrm{xxx}$ is $>=0,111111 \ldots \mathrm{xxx}$ is <0
- This representation called two's complement
cs61c-f00 L3 $9 / 6$

Shortcomings of ones complement?

- Arithmetic not too hard
- Still two zeros
$-0 \times 00000000=+\mathbf{0}_{\text {ten }}$
$-0 \times \operatorname{FFFFFFF}=-0_{\text {ten }}$
-What would it mean for programming?
- One's complement eventually abandoned because another solution was better

Two's Complement Formula

- Can represent positive and negative numbers in terms of the bit value times a power of 2:

- Example
$11111111111111111111111111111100^{\text {two }}$
$=1 \times-2^{31}+1 \times 2^{30}+1 \times 2^{29}+\ldots+1 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0}$
$=-2^{31}+2^{30}+2^{29}+\ldots+2^{2}+0+0$
$=-2,147,483,648_{\text {ten }}+2,147,483,644_{\text {ten }}$
$=-4_{\text {ten }}$
- Note: need to specify width: we use 32 bits

Two's complement shortcut: Negation

- Invert every 0 to 1 and every 1 to 0 , then add 1 to the result
-Sum of number and its one's complement must be 111...111 ${ }_{\text {two }}$
$-111 \ldots 111_{\text {two }}=-1_{\text {ten }}$
-Let x ' mean the inverted representation of x - Then $x+x^{\prime}=-1 \Rightarrow x+x^{\prime}+1=0 \Rightarrow x^{\prime}+1=-x$
- Example: -4 to $+\mathbf{4}$ to $\mathbf{- 4}$
x: $11111111111111111111111111111100_{\text {two }}$
x': $00000000000000000000000000000011_{\text {two }}$ +1: 00000000000000000000000000000100 two
()': $11111111111111111111111111111_{1011}^{\text {two }}$
+1: $11111111111111111111111111111100_{\text {two }}^{\text {two }}$

Signed vs. Unsigned Numbers

- C declaration int
-Declares a signed number
-Uses two's complement
- C declaration unsigned int
-Declares a unsigned number
-Treats 32 -bit number as unsigned integer, so most significant bit is part of the number, not a sign bit

Numbers are stored at addresses

cs6lc-100 L3 9/6

And in Conclusion...

- We represent "things" in computers as particular bit patterns: N bits $=>\mathbf{2}^{\mathrm{N}}$ -numbers, characters, ...
- Decimal for human calculations, binary to undertstand computers, hex to understand binary
- 2's complement universal in computing: cannot avoid, so learn
- Computer operations on the representation correspond to real operations on the real thing
- Overflow: numbers infinite but computers finite, so errors occur

