
9/7/00

CS61C F99 1

Machine Representation/Numbers
Lecture 3

CS 61C Machines Structures
 Fall 00

David Patterson
U.C. Berkeley

http://www-inst.eecs.berkeley.edu/~cs61c/

cs61c-f00 L3 9/6 2

From last time: C v. Java

• C Designed for writing systems code,
device drivers

• C is an efficient language, with little
protection
–Array bounds not checked
–Variables not automatically initialized

• C v. Java: pointers and explicit
memory allocation and deallocation
–No garbage collection
–Leads to memory leaks, funny pointers
–Structure declaration does not allocate

memory; use malloc() and free()

cs61c-f00 L3 9/6 3

Overview

• Recap: C v. Java
• Computer representation of “things”
• Unsigned Numbers
• Administrivia
• Free Food 5PM Thursday, Sept. 7
• Computers at Work
• Signed Numbers: search for a good

representation
• Shortcuts
• In Conclusion

cs61c-f00 L3 9/6 4

What do computers do?

• Computers manipulate representations of
things!

• What can you represent with N bits?
–2N things!

• Which things?
–Numbers! Characters! Pixels! Dollars!

Position! Instructions! ...
–Depends on what operations you do on them

cs61c-f00 L3 9/6 5

Decimal Numbers: Base 10

• Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

• Example:
3271 =
(3x103) + (2x102) + (7x101) + (1x100)

cs61c-f00 L3 9/6 6

Numbers: positional notation

• Number Base B => B symbols per digit:
–Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Base 2 (Binary): 0, 1
• Number representation:

–d31d30 ... d2d1d0 is a 32 digit number
–value = d31x B31 + d30 x B30 + ... + d2 x B2 +

d1 x B1 + d0 x B0

• Binary: 0,1
–1011010 = 1x26 + 0x25 + 1x24 + 1x23 + 0x22

+ 1x2 + 0x1 = 64 + 16 + 8 + 2 = 90
–Notice that 7 digit binary number turns

into a 2 digit decimal number
–A base that converts to binary easily?

9/7/00

CS61C F99 2

cs61c-f00 L3 9/6 7

Hexadecimal Numbers: Base 16

• Hexadecimal:
0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F
–Normal digits + 6 more: picked alphabet

• Conversion: Binary <-> Hex
–1 hex digit represents 16 decimal values
–4 binary digits represent 16 decimal values
=> 1 hex digit replaces 4 binary digits

• Examples:
–1010 1100 0101 (binary) = ? (hex)
–10111 (binary) = 0001 0111 (binary) = ?
–3F9(hex) = ? (binary)

cs61c-f00 L3 9/6 8

Decimal vs. Hexadecimal vs.Binary

•Examples:
•1010 1100 0101 (binary)
= ? (hex)

•10111 (binary)
= 0001 0111 (binary)
= ? (hex)

•3F9(hex)
= ? (binary)

00 0 0000
01 1 0001
02 2 0010
03 3 0011
04 4 0100
05 5 0101
06 6 0110
07 7 0111
08 8 1000
09 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

cs61c-f00 L3 9/6 9

What to do with representations of
numbers?
• Just what we do with numbers!

–Add them
–Subtract them
–Multiply them
–Divide them
–Compare them

• Example: 10 + 7 = 17

–so simple to add in binary that we can
build circuits to do it

–subtraction also just as you would in
decimal

 1 0 1 0

+ 0 1 1 1

1 0 0 0 1

11

cs61c-f00 L3 9/6 10

Which base do we use?

• Decimal: great for humans, especially
when doing arithmetic

• Hex: if human looking at long strings
of binary numbers, its much easier to
convert to hex and look 4 bits/symbol
–Terrible for arithmetic; just say no

• Binary: what computers use;
you learn how computers do +,-,*,/
–To a computer, numbers always binary
–Doesn’t matter base in C, just the value:

3210 == 0x20 == 1000002
–Use subscripts “ten”, “hex”, “two” in

book, slides when might be confusing

cs61c-f00 L3 9/6 11

Administrivia

• Grading: fixed scale, not on a curve
• To try to switch sections - email

request to cs61c
• Viewing lectures again: tapes in 205

McLaughlin
• Read web page: Intro, FAQ, Schedule
www-
inst.eecs.berkeley.edu/~cs61c
–TA assignments, Office Hours
–Project 1 due Friday by Midnight

cs61c-f00 L3 9/6 12

Administrivia

• Tu/Th section 5-6PM; 18/118
• “Mark Chew” is most recent TA
• He quit, so lab/discussion in canceled

9/7/00

CS61C F99 3

cs61c-f00 L3 9/6 13

Free Food 5PM Thursday, Sept. 7

• "The Importance of Graduate School"
–Professor Katherine Yelick, UC Berkeley

(Moderator)
–Professor Mary Gray Baker, Stanford

University
–Dr. Serap Savari, Lucent Technology
–Kris Hildrum, CS Current Graduate Student
–5:30 p.m. PANEL DISCUSSION,

Hewlett-Packard Auditorium, 306 SODA
• 5:00 p.m. REFRESHMENTS in the Hall,

Fourth Floor, Soda Hall

cs61c-f00 L3 9/6 14

Bicycle Computer (Embedded)

• P. Brain
–wireless

heart
monitor strap

–record 5 measures:
speed, time, current
distance, elevation and
heart rate

–Every 10 to 60 sec.
–8KB data => 33 hours
–Stores information so

can be uploaded
through a serial port
into PC to be analyzed

Speed
Altitude

Heart
Rate

cs61c-f00 L3 9/6 15

Limits of Computer Numbers

• Bits can represent anything!
• Characters?

–26 letter => 5 bits
–upper/lower case + punctuation

=> 7 bits (in 8)
–rest of the world’s languages => 16 bits

(unicode)
• Logical values?

–0 -> False, 1 => True
• colors ?
• locations / addresses? commands?
• but N bits => only 2N things

cs61c-f00 L3 9/6 16

Comparison

• How do you tell if X > Y ?
• See if X - Y > 0

cs61c-f00 L3 9/6 17

How to Represent Negative Numbers?

• So far, unsigned numbers
• Obvious solution: define leftmost bit to be

sign!
–0 => +, 1 => -
–Rest of bits can be numerical value of number

• Representation called sign and magnitude
• MIPS uses 32-bit integers. +1ten would be:
0000 0000 0000 0000 0000 0000 0000 0001
• And - 1ten in sign and magnitude would be:
1000 0000 0000 0000 0000 0000 0000 0001

cs61c-f00 L3 9/6 18

Shortcomings of sign and magnitude?

• Arithmetic circuit more complicated
–Special steps depending whether signs are

the same or not

• Also, Two zeros
– 0x00000000 = +0ten
– 0x80000000 = -0ten
–What would it mean for programming?

• Sign and magnitude abandoned

9/7/00

CS61C F99 4

cs61c-f00 L3 9/6 19

Another try: complement the bits

• Example: 710 = 001112 -710 = 110002
• Called one’s Complement
• Note: postive numbers have leading 0s,

negative numbers have leadings 1s.

00000 00001 01111...

111111111010000 ...

• What is -00000 ?
• How many positive numbers in N bits?
• How many negative ones?

cs61c-f00 L3 9/6 20

Shortcomings of ones complement?

• Arithmetic not too hard

• Still two zeros
– 0x00000000 = +0ten
– 0xFFFFFFFF = -0ten
–What would it mean for programming?

• One’s complement eventually abandoned
because another solution was better

cs61c-f00 L3 9/6 21

Search for Negative Number Representation

• Obvious solution didn’t work, find another
• What is result for unsigned numbers if tried
to subtract large number from a small one?
–Would try to borrow from string of leading 0s,
so result would have a string of leading 1s

–With no obvious better alternative, pick
representation that made the hardware simple:
leading 0s ⇒ positive, leading 1s ⇒ negative

–000000...xxx is >=0, 111111...xxx is < 0
• This representation called two’s
complement

cs61c-f00 L3 9/6 22

2’s Complement Number line

• 2 N-1 non-
negatives

• 2 N-1 negatives
• one zero
• how many

positives?
• comparison?
• overflow?

00000 00001
00010

11111
11100

10000 0111110001

0 1
2

-1
-2

-15-16 15

.

.

.

.

.

.

cs61c-f00 L3 9/6 23

Two’sComplement

 0000 ... 0000 0000 0000 0000two = 0ten
0000 ... 0000 0000 0000 0001two = 1ten
0000 ... 0000 0000 0000 0010two = 2ten
. . .
0111 ... 1111 1111 1111 1101two = 2,147,483,645ten
0111 ... 1111 1111 1111 1110two = 2,147,483,646ten
0111 ... 1111 1111 1111 1111two = 2,147,483,647ten
1000 ... 0000 0000 0000 0000two = –2,147,483,648ten
1000 ... 0000 0000 0000 0001two = –2,147,483,647ten
1000 ... 0000 0000 0000 0010two = –2,147,483,646ten
. . .
1111 ... 1111 1111 1111 1101two = –3ten
1111 ... 1111 1111 1111 1110two = –2ten
1111 ... 1111 1111 1111 1111two = –1ten

• One zero, 1st bit => >=0 or <0, called sign bit
–but one negative with no positive –2,147,483,648ten cs61c-f00 L3 9/6 24

Two’s Complement Formula

• Can represent positive and negative
numbers in terms of the bit value times a
power of 2:
–d31 x -231 + d30 x 230 + ... + d2 x 22 + d1 x 21 + d0 x

20

• Example
1111 1111 1111 1111 1111 1111 1111 1100two
= 1x-231 +1x230 +1x229+... +1x22+0x21+0x20

= -231 + 230 + 229 + ... + 22 + 0 + 0
= -2,147,483,648ten + 2,147,483,644ten
= -4ten

• Note: need to specify width: we use 32 bits

9/7/00

CS61C F99 5

cs61c-f00 L3 9/6 25

Two’s complement shortcut: Negation

• Invert every 0 to 1 and every 1 to 0, then
add 1 to the result
–Sum of number and its one’s complement

must be 111...111two
–111...111two= -1ten
–Let x’ mean the inverted representation of x
–Then x + x’ = -1 ⇒ x + x’ + 1 = 0 ⇒ x’ + 1 = -x

• Example: -4 to +4 to -4
x : 1111 1111 1111 1111 1111 1111 1111 1100two
x’: 0000 0000 0000 0000 0000 0000 0000 0011two
+1: 0000 0000 0000 0000 0000 0000 0000 0100two
()’: 1111 1111 1111 1111 1111 1111 1111 1011two
+1: 1111 1111 1111 1111 1111 1111 1111 1100two

cs61c-f00 L3 9/6 26

Signed vs. Unsigned Numbers

• C declaration int
–Declares a signed number
–Uses two’s complement

• C declaration unsigned int
–Declares a unsigned number
–Treats 32-bit number as unsigned

integer, so most significant bit is part of
the number, not a sign bit

cs61c-f00 L3 9/6 27

Signed v. Unsigned Comparisons

• X = 1111 1111 1111 1111 1111 1111 1111 1100two
• Y = 0011 1011 1001 1010 1000 1010 0000 0000two

• Is X > Y?
–unsigned: YES
–signed: NO

• Converting to decimal to check
–Signed comparison:

-4ten < 1,000,000,000ten?
–Unsigned comparison:

-4,294,967,292ten < 1,000,000,000ten?

cs61c-f00 L3 9/6 28

Numbers are stored at addresses

• Memory is a place to
store bits

• A word is a fixed
number of bits (eg,
32) at an address
–also fixed no. of bits

• Addresses are
naturally represented
as unsigned numbers

101101100110

00000

11111 = 2k - 1

01110

cs61c-f00 L3 9/6 29

What if too big?

• Binary bit patterns above are simply
representatives of numbers

• Numbers really have an infinite number
of digits
–with almost all being zero except for a few

of the rightmost digits
–Just don’t normally show leading zeros

• If result of add (or -,*/) cannot be
represented by these rightmost HW bits,
overflow is said to have occurred

00000 00001 00010 1111111110

cs61c-f00 L3 9/6 30

Two’s comp. shortcut: Sign extension

• Convert 2’s complement number using
n bits to more than n bits

• Simply replicate the most significant
bit (sign bit) of smaller to fill new bits
–2’s comp. positive number has infinite 0s
–2’s comp. negative number has infinite 1s
–Bit representation hides leading bits;
sign extension restores some of them
–16-bit -4ten to 32-bit:

1111 1111 1111 1100two
1111 1111 1111 1111 1111 1111 1111 1100two

9/7/00

CS61C F99 6

cs61c-f00 L3 9/6 31

And in Conclusion...

• We represent “things” in computers
as particular bit patterns: N bits =>2N

–numbers, characters, ... (data)
• Decimal for human calculations,

binary to undertstand computers, hex
to understand binary

• 2’s complement universal in
computing: cannot avoid, so learn

• Computer operations on the
representation correspond to real
operations on the real thing

• Overflow: numbers infinite but
computers finite, so errors occur

