
cs61c L4 9/7/00 1

CS61C - Machine Structures

Lecture 4 - C/Assembler Arithmetic and
Memory Access

September 8, 2000

David Patterson

http://www-inst.eecs.berkeley.edu/~cs61c/

cs61c L4 9/7/00 2

Overview

°C operators, operands

°Variables in Assembly: Registers

°Comments in Assembly

°Addition and Subtraction in Assembly

°Memory Access in Assembly

cs61c L4 9/7/00 3

Review C Operators/Operands (1/2)

°Operators: +, - , * , / , % (mod);
¥7/4==1 , 7%4==3

°Operands:
• Variables: lower , upper , fahr , celsius

• Constants: 0, 1000 , -17 , 15.4

°Assignment Statement:

Variable = expression
• Examples:

celsius = 5*(fahr-32)/9;

a = b+c+d-e;
cs61c L4 9/7/00 4

C Operators/Operands (1/2)

° In C (and most High Level Languages)
variables declared first and given a
type

• Example:
int fahr, celsius;
char a, b, c, d, e;

°Each variable can ONLY represent a
value of the type it was declared as
(cannot mix and match int and char
variables).

cs61c L4 9/7/00 5

Assembly Design: Key Concepts

°Keep it simple!
• Limit what can be a variable and what
can’t

• Limit types of operations that can be
done to absolute minimum

- if an operation can be decomposed into a
simpler operation, don’t include it

cs61c L4 9/7/00 6

Assembly Variables: Registers (1/4)

°Unlike HLL, assembly cannot use
variables

• Why not? Keep Hardware Simple

°Assembly Operands are registers
• limited number of special locations built
directly into the hardware

• operations can only be performed on
these!

°Benefit: Since registers are directly in
hardware, they are very fast

cs61c L4 9/7/00 7

Assembly Variables: Registers (2/4)

°Drawback: Since registers are in
hardware, there are a predetermined
number of them

• Solution: MIPS code must be very
carefully put together to efficiently use
registers

°32 registers in MIPS
• Why 32? Smaller is faster

°Each MIPS register is 32 bits wide
• Groups of 32 bits called a word in MIPS

cs61c L4 9/7/00 8

Assembly Variables: Registers (3/4)

°Registers are numbered from 0 to 31

°Each register can be referred to by
number or name

°Number references:
$0, $1, $2, $30, $31

cs61c L4 9/7/00 9

Assembly Variables: Registers (4/4)

°By convention, each register also has
a name to make it easier to code

°For now:
$16 - $22 Ł ŁŁŁ $s0 - $s7

(correspond to C variables)

$8 - $15 Ł ŁŁŁ $t0 - $t7

(correspond to temporary variables)

° In general, use names to make your
code more readable

cs61c L4 9/7/00 10

Comments in Assembly

°Another way to make your code more
readable: comments!

°Hash (#) is used for MIPS comments
• anything from hash mark to end of line is
a comment and will be ignored

°Note: Different from C.
• C comments have format /* comment */ ,
so they can span many lines

cs61c L4 9/7/00 11

Assembly Instructions

° In assembly language, each statement
(called an Instruction), executes
exactly one of a short list of simple
commands

°Unlike in C (and most other High Level
Languages), each line of assembly
code contains at most 1 instruction

cs61c L4 9/7/00 12

Addition and Subtraction (1/4)

°Syntax of Instructions:
1 2,3,4

where:

1) operation by name

2) operand getting result (“destination”)

3) 1st operand for operation (“source1”)

4) 2nd operand for operation (“source2”)

°Syntax is rigid:
• 1 operator, 3 operands

• Why? Keep Hardware simple via regularity

cs61c L4 9/7/00 13

Addition and Subtraction (2/4)

°Addition in Assembly
• Example: add $s0,$s1,$s2 (in MIPS)

Equivalent to: a = b + c (in C)

where registers $s0,$s1,$s2 are
associated with variables a, b, c

°Subtraction in Assembly
• Example: sub $s3,$s4,$s5 (in MIPS)

Equivalent to: d = e - f (in C)

where registers $s3,$s4,$s5 are
associated with variables d, e, f

cs61c L4 9/7/00 14

Addition and Subtraction (3/4)

°How do the following C statement?
 a = b + c + d - e;

°Break into multiple instructions
add $s0, $s1, $s2 # a = b + c

add $s0, $s0, $s3 # a = a + d

sub $s0, $s0, $s4 # a = a - e

°Notice: A single line of C may break up
into several lines of MIPS.

°Notice: Everything after the hash mark
on each line is ignored (comments)

cs61c L4 9/7/00 15

Addition and Subtraction (4/4)

°How do we do this?
¥f = (g + h) - (i + j);

°Use intermediate temporary register
add $s0,$s1,$s2 # f = g + h

add $t0,$s3,$s4 # t0 = i + j

need to save i+j, but can t use
f, so use t0

sub $s0,$s0,$t0 # f=(g+h)-(i+j)

cs61c L4 9/7/00 16

Administrivia

°Project 1 due Midnight

°Lab 3: Your first MIPS program!

°HW 2 (due Mon 9/11) and HW3 (9/18)
online and available

°Reading assignment:
• P&H 3.1-3.3, 3.5, 3.8 (page 145)

cs61c L4 9/7/00 17

Immediates

° Immediates are numerical constants.

°They appear often in code, so there
are special instructions for them.

°Add Immediate:
addi $s0,$s1,10 (in MIPS)

f = g + 10 (in C)

where registers $s0,$s1 are associated
with variables f, g

°Syntax similar to add instruction,
except that last argument is a number
instead of a register.

cs61c L4 9/7/00 18

Register Zero

°One particular immediate, the number
zero (0), appears very often in code.

°So we define register zero ($0 or
$zero) to always have the value 0.

°This is defined in hardware, so an
instruction like

addi $0,$0,5

will not do anything.

°Use this register, it’s very handy!

cs61c L4 9/7/00 19

Assembly Operands: Memory

°C variables map onto registers; what
about large data structures like arrays?

°1 of 5 components of a computer:
memory contains such data structures

°But MIPS arithmetic instructions only
operate on registers, never directly on
memory.

°Data transfer instructions transfer data
between registers and memory:

• Memory to register

• Register to memory
cs61c L4 9/7/00 20

Data Transfer: Memory to Reg (1/4)

°To transfer a word of data, we need to
specify two things:

• Register: specify this by number (0 - 31)

• Memory address: more difficult

- Think of memory as a single one-
dimensional array, so we can address
it simply by supplying a pointer to a
memory address.

- Other times, we want to be able to
offset from this pointer.

cs61c L4 9/7/00 21

Data Transfer: Memory to Reg (2/4)

°To specify a memory address to copy
from, specify two things:

• A register which contains a pointer to
memory

• A numerical offset (in bytes)

°The desired memory address is the
sum of these two values.

°Example: 8($t0)

• specifies the memory address pointed to
by the value in $t0 , plus 8 bytes

cs61c L4 9/7/00 22

Data Transfer: Memory to Reg (3/4)

°Load Instruction Syntax:
1 2,3(4)

• where

1) operation name

2) register that will receive value

3) numerical offset in bytes

4) register containing pointer to memory

° Instruction Name:
¥lw (meaning Load Word, so 32 bits
or one word are loaded at a time)

cs61c L4 9/7/00 23

Data Transfer: Memory to Reg (4/4)

°Example: lw $t0,12($s0)

This instruction will take the pointer in
$s0 , add 12 bytes to it, and then load the
value from the memory pointed to by this
calculated sum into register $t0

°Notes:
¥$s0 is called the base register

• 12 is called the offset

• offset is generally used in accessing
elements of array: base reg points to
beginning of array

cs61c L4 9/7/00 24

Data Transfer: Reg to Memory (1/2)

°Also want to store value from a register
into memory

°Store instruction syntax is identical to
Load instruction syntax

° Instruction Name:

sw (meaning Store Word, so 32 bits
 or one word are loaded at a time)

cs61c L4 9/7/00 25

Data Transfer: Reg to Memory (2/2)

°Example: sw $t0,12($s0)

This instruction will take the pointer in
$s0 , add 12 bytes to it, and then store the
value from register $t0 into the memory
address pointed to by the calculated sum

cs61c L4 9/7/00 26

Pointers v. Values

°Key Concept: A register can hold any
32-bit value. That value can be a
(signed) int , an unsigned int , a
pointer (memory address), etc.

° If you write add $t2,$t1,$t0
then $t0 and $t1
better contain values

° If you write lw $t2,0($t0)
then $t0 better contain a pointer

°Don’t mix these up!

cs61c L4 9/7/00 27

Addressing: Byte vs. word

°Every word in memory has an address,
similar to an index in an array

°Early computers numbered words like
C numbers elements of an array:

¥Memory[0] , Memory[1] , Memory[2] , …
Called the “address” of a word

°Computers needed to access 8-bit
bytes as well as words (4 bytes/word)

°Today machines address memory as
bytes, hence word addresses differ by 4

¥Memory[0] , Memory[4] , Memory[8], …

cs61c L4 9/7/00 28

Compilation with Memory
°What offset in lw to select A[8] in C?

° 4x8=32 to select A[8] : byte v. word

°Compile by hand using registers:
g = h + A[8];

• g: $s1 , h: $s2 , $s3 :base address of A

°1st transfer from memory to register:

lw $t0, 32($s3) # $t0 gets A[8]

• Add 32 to $s3 to select A[8] , put into $t0

°Next add it to h and place in g
add $s1,$s2,$t0 # $s1 = h+A[8]

cs61c L4 9/7/00 29

Notes about Memory

°Pitfall: Forgetting that sequential word
addresses in machines with byte
addressing do not differ by 1.

• Many an assembly language programmer
has toiled over errors made by assuming
that the address of the next word can be
found by incrementing the address in a
register by 1 instead of by the word size
in bytes.

• So remember that for both lw and sw, the
sum of the base address and the offset
must be a multiple of 4 (to be word
aligned)

cs61c L4 9/7/00 30

More Notes about Memory: Alignment

0 1 2 3

Aligned

Not
Aligned

°MIPS requires that all words start at
addresses that are multiples of 4 bytes

°Called Alignment: objects must fall on
address that is multiple of their size.

cs61c L4 9/7/00 31

Role of Registers vs. Memory
°What if more variables than registers?

• Compiler tries to keep most frequently
used variable in registers

• Writing less common to memory: spilling

°Why not keep all variables in memory?
• Smaller is faster:
registers are faster than memory

• Registers more versatile:
- MIPS arithmetic instructions can read 2,

operate on them, and write 1 per instruction

- MIPS data transfer only read or write 1
operand per instruction, and no operation

cs61c L4 9/7/00 32

“And in Conclusion…” (1/2)

° In MIPS Assembly Language:
• Registers replace C variables

• One Instruction (simple operation) per line

• Simpler is Better

• Smaller is Faster

°Memory is byte-addressable, but lw and
sw access one word at a time.

°A pointer (used by lw and sw) is just a
memory address, so we can add to it or
subtract from it (using offset).

cs61c L4 9/7/00 33

“And in Conclusion…”(2/2)

°New Instructions:
add, addi,

sub

lw, sw

°New Registers:
C Variables: $s0 - $s7

Temporary Variables: $t0 - $t9

Zero: $zero

