CS61C - Machine Structures

Lecture 5 - Decisions in C/Assembly
Language

September 13, 2000
David Patterson

http://www-inst.eecs.berkeley.edu/~cs6lc/

Review (2/2)

°New Instructions:
add, addi, sub, lw, sw

°New Registers:
C Variables: $s0 - $s7

Temporary Variables: $t 0 - $t 9
Zero: $zer o

So Far...

°All instructions have allowed us to
manipulate data.

°So we've built a calculator.

°In order to build a computer, we need
ability to make decisions...

°Heads up: I[i)ull out some papers and

pens, you'll do some in-class exercises
today!

Review (1/2)

°In MIPS Assembly Language:
*Registers replace C variables
*One Instruction (simple operation) per line
«Simpler is Better
*Smaller is Faster

°Memory is byte-addressable, but | wand
swaccess one word at a time.

°A pointer (used by | wand sw) is just a
memory address, so we can add to it or
subtract from it (using offset).

Overview

°C/Assembly Decisions: i f,if-el se

°C/Assembly Lo?ps: whi | e, do whil e,
or

°Inequalities
°C Switch Statement

C Decisions: i f Statements

°2 kinds of i f statements in C
¥i f (condition) clause
¥i f (condition) clausel el se clause2

°Rearrange 2nd i f into following:

if (condition) goto L1;
clause2;
go to L2;

L1: clausel;

L2:

*Not as elegant as if-else, but same meaning

MIPS Decision Instructions

°Decision instruction in MIPS:
¥beq registerl, register2, L1
¥beq is “Branch if (registers are) equal”
Same meaning as (using C):
if (registerl==register2) goto L1
°Complementary MIPS decision instruction
¥bne registerl, register2, L1

¥bne is “Branch if (registers are) not equal”
Same meaning as (using C):
if (registerll=register2) goto L1

°Called conditional branches

Compiling Ci f into MIPS (1/2)

°Compile by hand (true) (false)

if (i ==1j) f=g+h;
el se f=g-h;

°Use this mapping:
f:$s0,09:$s1,h: $s2,i:$s3,]: $s4

Loops in C/Assembly (1/3)

°Simple loop in C
do {
g g + AL
+ 5
} V\hlle (| 1= h);

°Rewrite this as:
Loop: g = g + Alil;
i =i +j;
if (i !'=h) goto Loop;
°Use this mapping:
g: $s1, h: $s2, i: $s3, j: $s4, base of A:$s5

12

MIPS Goto Instruction

°In addition to conditional branches, MIPS
has an unconditional branch:

j | abel
°Called a Jump Instruction: Jumg ﬂ
branch) directly to the given label without
needing to satisfy any condition

°Same meanlng as (using C):
goto | abel

°Technically, it's the same as:
beq $0, $0, | abel
since it always satisfies the condition.

Compiling Ci f into MIPS (2/2)

°Final compiled MIPS code
(fill in the blank):

10

Loops in C/Assembly (2/3)

°Final comgiled MIPS code
(fill in the blank):

13

Administrivia

°Kurt Meinz and Steve Tu heroically
volunteer to add to their worloads, save
Tu/Th 5-6 section

15

Loops in C/Assembly (3/3)

°There are three types of loops in C:
¥whil e
¥do...whil e
¥f or
°Each can be rewritten as either of the
other two, so the method used in the

previous example can be apFIied to
whi | e and f or loops as well.

°Key Concept: Though there are multiple
ways of writing a loop in MIPS,
conditional branch is key to decision
making

17

Inequalities in MIPS (2/4)
°How do we use this?

°Compile by hand:
if (g <h) goto Less;

°Use this mapping:
g: $s0, h: $s1

19

“What's This Stuff Good For?”

Breathing Observation Bubble:
BOB pipesar from atank under
the hand ebars into an acrylic
dome, replacing adiver'sface
mask and breathing apparatus.
Wird esstechnol ogy lets riders
talk to other BOBsters darti ng
through the water nearby, aswel |
astoarmchair dvers boveina
boat or back on shore. Saving
energy from not having to kick,
divers can stay submerged d most
an hour with the BOB. Like mast
modern scuba gear, the BOB
features acomputer that tells
riderswhen to come up and

cal cul ates decompressi on ti mes
for asafereturn to the surface.
OneDigital Day, 1998
www.intel .com/onedigital day

What do applications (“apps”)

like these mean for reliability

requirements of our technology?
16

Inequalities in MIPS (1/4)

°Until now, we’ve only tested equalities
(==and!=in C). General programs need
to test <and > as well.
°Create a MIPS Inequality Instruction:
«“Set on Less Than”
eSyntax: slt regl, reg2,reg3

*Meaning:
if (reg2 < reg3)
regl = 1,

else regl = 0;

*In computereeze, “set” means “set to 1",
“reset” means “set to 0”.

18

Inequalities in MIPS (3/4)

°Final comgliled MIPS code

(fill in the blank):

20

Inequalities in MIPS (4/4)

°Now, we can implement <, but how do
we implement >, <= and >=?

°We could add 3 more instructions, but:
*MIPS goal: Simpler is Better
°Can we implement <=in one or more
instructions using just sl t and the
branches?
°What about >?

°What about >=?

22

What about unsigned numbers?

°there are unsigned inequality
instructions:

sltu,sltiu

°which set result to 1 or 0 depending on
unsigned comparisons

°$s0 = FFFF FFFA,,,, $ 51 = 0000 FFFA,,
°What is value of $t0, $t1?

°slt $t0, $s0, $s1

°sltu $t1, $s0, $s1

25

Example: The C Switch Statement (2/3)

°This is complicated, so simplify.

°Rewrite it as a chain of if-else
statements, which we already know
how to compile:
i f(k==0) f=i+:
else if(k==1) f=g+h;
el se i f(k==2) f=g-h;
else if(k==3) f=i—;

°Use this mapping:
f: $s0, g: $s1, h: $s2, i: $s3, j: $s4, k: $s5

27

Immediates in Inequalities

°There is also an immediate version of sl t
to test against constants: sl ti

eHelpful in for loops

if (g > 1) goto Loop

wo-= 10

23

Example: The C Switch Statement (1/3)

°Choose among four alternatives
depending on whether k has the value
0, 1, 2 or 3. Compile this C code:

switch (k) {
case 0: f=i+j; break; /* k=0*/
case 1: f=g+h; break; /* k=1*/
case 2: f=g-h; break; /* k=2*%/
case 3: f=i—; break; /* k=3*/
}

26

Example: The C Switch Statement (3/3)

°Final comgiled MIPS code
(fill in the blank):

28

Things to Remember (1/2)

°A Decision allows us to decide which
pieces of code to execute at run-time
rather than at compile-time.

°C Decisions are made using conditional
sta}tements withinanif,while,do while
orfor.

°MIPS Decision making instructions are the
conditional branches: beq and bne.

°In order to help the conditional branches
make decisions concerning inequalities,

we introduce a single instruction: “Set on
Less Than"called sl t,slti,sltu,sltui

30

Things to Remember (2/2)

°New Instructions:
beq, bne

J
slt, slti, sltu,

sltiu

31

