
1CS61C L6 Machine Rep

CS61C - Machine Structures

Lecture 6 - Instruction Representation

September 15, 2000

David Patterson

http://www-inst.eecs.berkeley.edu/~cs61c/
2CS61C L6 Machine Rep

Review
° Instructions:

add, addi, sub, lw, sw

beq, bne, j

slt, slti, sltu, sltiu

°C Decisions are made using
conditional statements , MIPS
Decision making instructions are the
conditional branches: beq and bne .

°For inequalities, we introduce a single
instruction: “Set on Less Than”called
slt , slti , sltu , sltui

3CS61C L6 Machine Rep

Overview

° Instructions as Numbers

°R-Format

° I-Format

4CS61C L6 Machine Rep

Instructions as Numbers (1/2)

°Currently all data we work with is in
words (32-bit blocks):

• Each register is a word.
¥lw and sw both access memory one word
at a time.

°So how do we represent instructions?
• Remember: Computer only understands
1s and 0s, so “add $t0,$0,$0 ” is
meaningless.

• MIPS wants simplicity: since data is in
words, make instructions be words...

5CS61C L6 Machine Rep

Instructions as Numbers (2/2)

°One word is 32 bits, so divide
instruction word into “fields”.

°Each field tells computer something
about instruction.

°We could define different fields for
each instruction, but MIPS is based on
simplicity, so define 3 basic types of
instruction formats:

• R-format

• I-format

• J-format

6CS61C L6 Machine Rep

Instruction Formats

°J-format: used for j and jal

° I-format: used for instructions with
immediates, lw and sw (since the offset
counts as an immediate), and the
branches (beq and bne),

° (but not the shift instructions; later)

°R-format: used for all other instructions

° It will soon become clear why the
instructions have been partitioned in
this way.

7CS61C L6 Machine Rep

R-Format Instructions (1/5)
°Define “fields” of the following
number of bits each:

6 5 5 5 65

opcode rs rt rd functshamt

°For simplicity, each field has a name:

° Important: Each field is viewed as a 5-
or 6-bit unsigned integer, not as part
of a 32-bit integer.

• Consequence: 5-bit fields can represent
any number 0-31, while 6-bit fields can
represent any number 0-63.

8CS61C L6 Machine Rep

R-Format Instructions (2/5)

°What do these field integer values tell
us?

¥opcode : partially specifies what instruction
it is (Note: This number is equal to 0 for all
R-Format instructions.)

¥funct : combined with opcode , this number
exactly specifies the instruction

• Question: Why aren’t opcode and funct a
single 12-bit field?

• Answer: We’ll answer this later.

9CS61C L6 Machine Rep

R-Format Instructions (3/5)

°More fields:
¥rs (Source Register): generally used to
specify register containing first operand

¥rt (Target Register): generally used to
specify register containing second
operand (note that name is misleading)

¥rd (Destination Register): generally used
to specify register which will receive
result of computation

10CS61C L6 Machine Rep

R-Format Instructions (4/5)

°Notes about register fields:
• Each register field is exactly 5 bits, which
means that it can specify any unsigned
integer in the range 0-31. Each of these
fields specifies one of the 32 registers by
number.

• The word “generally” was used because
there are exceptions, such as:

- mult and div have nothing important in the
rd field since the dest registers are hi and lo

- mfhi and mflo have nothing important in the
rs and rt fields since the source is
determined by the instruction

11CS61C L6 Machine Rep

R-Format Instructions (5/5)

°Final field:
¥shamt : This field contains the amount a
shift instruction will shift by. Shifting a
32-bit word by more than 31 is useless,
so this field is only 5 bits (so it can
represent the numbers 0-31).

• This field is set to 0 in all but the shift
instructions.

°For a detailed description of field
usage for each instruction, see back
cover of textbook.

12CS61C L6 Machine Rep

R-Format Example (1/2)

°MIPS Instruction:
add $8,$9,$10

opcode = 0 (look up in table)

funct = 32 (look up in table)

rs = 9 (first operand)

rt = 10 (second operand)

rd = 8 (destination)

shamt = 0 (not a shift)

13CS61C L6 Machine Rep

R-Format Example (2/2)

°MIPS Instruction:
add $8,$9,$10

0 9 10 8 320

000000 01001 01010 01000 10000000000

binary representation:

Called a Machine Language Instruction

decimal representation:

14CS61C L6 Machine Rep

I-Format Instructions (1/5)

°What about instructions with
immediates?

• 5-bit field only represents numbers up to
the value 31: immediates may be much
larger than this

• Ideally, MIPS would have only one
instruction format (for simplicity):
unfortunately, we need to compromise

°Define new instruction format that is
partially consistent with R-format:

• First notice that, if instruction has
immediate, then it uses at most 2 registers.

15CS61C L6 Machine Rep

I-Format Instructions (2/5)

°Define “fields” of the following number
of bits each:

6 5 5 16

opcode rs rt immediate

°Again, each field has a name:

°Key Concept: Only one field is
inconsistent with R-format. Most
importantly, opcode is still in same
location.

16CS61C L6 Machine Rep

I-Format Instructions (3/5)

°What do these fields mean?
¥opcode : same as before except that, since
there’s no funct field, opcode uniquely
specifies an I-format instruction

• This also answers question of why
R-format has two 6-bit fields to identify
instruction instead of a single 12-bit field:
in order to be consistent with other
formats.

17CS61C L6 Machine Rep

I-Format Instructions (4/5)

°More fields:
¥rs : specifies the only register operand (if
there is one)

¥rt : specifies register which will receive
result of computation (this is why it’s
called the target register “rt”)

18CS61C L6 Machine Rep

I-Format Instructions (5/5)

°The Immediate Field:
¥addi , slti , slitu , the immediate is
sign-extended to 32 bits. Thus, it’s
treated as a signed integer.

• 16 bits ŁŁŁŁ can be used to represent
immediate up to 216 different values

• This is large enough to handle the offset
in a typical lw or sw, plus a vast majority
of values that will be used in the slti
instruction.

19CS61C L6 Machine Rep

I-Format Example (1/2)

°MIPS Instruction:
addi $21,$22,-50

opcode = 8 (look up in table)

rs = 22 (register containing operand)

rt = 21 (target register)

immediate = -50 (by default, this is decimal)

20CS61C L6 Machine Rep

I-Format Example (2/2)

°MIPS Instruction:
addi $21,$22,-50

8 22 21 -50

001000 10110 10101 1111111111001110

decimal representation:

binary representation:

21CS61C L6 Machine Rep

Administrivia

°Online now
• Project 2, Lab 4

°HW 3 due Monday

°Saving time: use gdb

°Video tapes, but no online course
review

22CS61C L6 Machine Rep

I-Format Problems (1/3)

°Problem 1:
• Chances are that addi , lw , sw and slti
will use immediates small enough to fit in
the immediate field.

• What if too big?
- We need a way to deal with a 32-bit immediate

in any I-format instruction.

23CS61C L6 Machine Rep

I-Format Problems (2/3)

°Solution to Problem 1:
• Handle it in software

• Don’t change the current instructions:
instead, add a new instruction to help out

°New instruction:
lui register, immediate

• stands for Load Upper Immediate

• takes 16-bit immediate and puts these bits
in the upper half (high order half) of the
specified register

• sets lower half to 0s
24CS61C L6 Machine Rep

I-Format Problems (3/3)
°Solution to Problem 1 (continued):

• So how does lui help us?

• Example:
addi $t0,$t0, 0xABABCDCD

becomes:
lui $at, 0xABAB
ori $at, $at, 0xCDCD
add $t0,$t0,$at

• Now each I-format instruction has only a 16-
bit immediate.

• An instruction that must be broken up is
called a pseudoinstruction. (Note that $at
was used in this code.)

25CS61C L6 Machine Rep

Branches: PC-Relative Addressing (1/5)

°Use I-Format
opcode rs rt immediate

¡opcode specifies beq v. bne

¡Rs and Rt specify registers to compare

°What can immediate specify?
¥Immediate is only 16 bits

• PC is 32-bit pointer to memory
• So immediate cannot specify entire
address to branch to.

26CS61C L6 Machine Rep

Branches: PC-Relative Addressing (2/5)

°How do we usually use branches?
• Answer: if-else , while , for

• Loops are generally small: typically up to
50 instructions

• Function calls and unconditional jumps are
done using jump instructions (j and jal),
not the branches.

°Conclusion: Though we may want to
branch to anywhere in memory, a single
branch will generally change the PC by
a very small amount.

27CS61C L6 Machine Rep

Branches: PC-Relative Addressing (3/5)

°Solution: PC-Relative Addressing

°Let the 16-bit immediate field be a
signed two’s complement integer to be
added to the PC if we take the branch.

°Now we can branch +/- 215 bytes from
the PC, which should be enough to
cover any loop.

°Any ideas to further optimize this?

28CS61C L6 Machine Rep

Branches: PC-Relative Addressing (4/5)

°Note: Instructions are words, so
they’re word aligned (byte address is
always a multiple of 4, which means it
ends with 00 in binary).

• So the number of bytes to add to the PC
will always be a multiple of 4.

• So specify the immediate in words.

°Now, we can branch +/- 215 words from
the PC (or +/- 217 bytes), so we can
handle loops 4 times as large.

29CS61C L6 Machine Rep

Branches: PC-Relative Addressing (5/5)

°Final Calculation:
• If we don’t take the branch:

PC = PC + 4

• If we do take the branch:
PC = (PC + 4) + (immediate * 4)

• Observations
- Immediate field specifies the number of

words to jump, which is simply the number of
instructions to jump.

- Immediate field can be positive or negative.

- Due to hardware, add immediate to (PC+4),
not to PC; will be clearer why later in course

30CS61C L6 Machine Rep

Branch Example (1/3)

°MIPS Code:
Loop: beq $9,$0,End

add $8,$8,$10
addi $9,$9,-1
j Loop

End:

°Branch is I-Format:
opcode = 4 (look up in table)

rs = 9 (first operand)

rt = 0 (second operand)

immediate = ???

31CS61C L6 Machine Rep

Branch Example (2/3)

°MIPS Code:
Loop: beq $9,$0,End

addi $8,$8,$10
addi $9,$9,-1
j Loop

End:

¡Immediate Field:
• Number of instructions to add to (or
subtract from) the PC, starting at the
instruction following the branch.

• In this case, immediate = -4

32CS61C L6 Machine Rep

Branch Example (3/3)

°MIPS Code:
Loop: beq $9,$0,End

addi $8,$8,$10
addi $9,$9,-1
j Loop

End:

4 9 0 -4

decimal representation:

binary representation:

000100 01001 00000 1111111111111100

33CS61C L6 Machine Rep

Big Idea: Stored-Program Concept

°Computers built on 2 key principles:
1) Instructions are represented as

numbers.
2) Therefore, entire programs can be

stored in memory to be read or
written just like numbers (data).

°Simplifies SW/HW of computer systems:
•Memory technology for data also used
for programs

34CS61C L6 Machine Rep

Consequence #1: Everything Addressed

°Since all instructions and data are stored
in memory as numbers, everything has a
memory address: instructions, data words

• both branches and jumps use these

°C pointers are just memory addresses:
they can point to anything in memory

• Unconstrained use of addresses can lead to
nasty bugs; up to you in C; limits in Java

°One register keeps address of instruction
being executed: “Program Counter” (PC)

• Basically a pointer to memory: Intel calls it
Instruction Address Pointer, which is better

35CS61C L6 Machine Rep

Consequence #2: Binary Compatibility
°Programs are distributed in binary form

• Programs bound to specific instruction set

• Different version for Macintosh and IBM PC

°New machines want to run old programs
(“binaries”) as well as programs compiled
to new instructions

°Leads to instruction set evolving over time

°Selection of Intel 8086 in 1981 for 1st IBM
PC is major reason latest PCs still use
80x86 instruction set (Pentium II); could
still run program from 1981 PC today

36CS61C L6 Machine Rep

Things to Remember

°Simplifying MIPS: Define instructions to
be same size as data (one word) so that
they can use the same memory (can
use lw and sw).

°Machine Language Instruction: 32 bits
representing a single instruction

opcode rs rt immediate

opcode rs rt rd functshamtR
I

°Computer actually stores programs as
a series of these.

