
cs 61C L8 Proc II., Arrays and Pointers in C 1 Patterson Fall 00 ©UCB

CS61C - Machine Structures

Lecture 8 - Procedure Conventions part II,
plus, Arrays and Pointers in C

September 22, 2000

Sumeet Shendrikar& Daniel C. Silverstein

http://www-inst.eecs.berkeley.edu/~cs61c/

cs 61C L8 Proc II., Arrays and Pointers in C 2 Patterson Fall 00 ©UCB

Review 1/3
°Big Ideas:

• Follow the procedure conventions and nobody gets
hurt.

• Data is just 1’s and 0’s, what it represents depends on
what you do with it

• Function Call Bookkeeping:
• Caller Saved Registers are saved by the caller, that is,

the function that includes the jal instruction
• Callee Saved Registers are saved by the callee, that is,

the function that includes the jr $ra instruction
• Some functions are both a caller and a callee

cs 61C L8 Proc II., Arrays and Pointers in C 3 Patterson Fall 00 ©UCB

Review 2/3

• Caller Saved Registers:
• Return address $ra
• Arguments $a0, $a1, $a2, $a3
• Return value $v0, $v1
• $t Registers $t0 - $t9

• Callee Saved Registers:
• $s Registers $s0 - $s7

cs 61C L8 Proc II., Arrays and Pointers in C 4 Patterson Fall 00 ©UCB

Review 3/3

0

�
Address

Code Program

Static Variables declared
once per program

Heap
Explicitly created space,
e.g., malloc(); C pointers

Stack
Space for saved
procedure information$sp

stack
pointer

global
pointer
$gp

cs 61C L8 Proc II., Arrays and Pointers in C 5 Patterson Fall 00 ©UCB

Overview

°Why Procedure Conventions?

°Basic Structure of a Function

°Example: Recursive Function

°Administrivia

°Arrays, Pointers, Functions in C

°Example

°Pointers, Arithmetic, and Dereference

°Conclusion
cs 61C L8 Proc II., Arrays and Pointers in C 6 Patterson Fall 00 ©UCB

Why Procedure Conventions? 1/2

°Think of procedure conventions as a
contract between the Caller and the
Callee

• If both parties abide by a contract,
everyone is happy (:))

• If either party breaks a contract, disaster
and litigation result (: O)

°Similarly, if the Caller and Callee obey
the procedure conventions, there are
significant benefits. If they don’t,
disaster and program crashes result

cs 61C L8 Proc II., Arrays and Pointers in C 7 Patterson Fall 00 ©UCB

Why Procedure Conventions? 2/2

°Benefits of Obeying Procedure
Conventions:

• People who have never seen or even
communicated with each other can write
functions that work together

• Recursion functions work correctly

cs 61C L8 Proc II., Arrays and Pointers in C 8 Patterson Fall 00 ©UCB

Basic Structure of a Function

entry_label:
addi $sp,$sp, -framesize
sw $ra, framesize-4($sp)# save $ra
save other regs

...

restore other regs
lw $ra, framesize-4($sp)# restore $ra
addi $sp,$sp, framesize
jr $ra

Epilogue

Prologue

Body
ra

cs 61C L8 Proc II., Arrays and Pointers in C 9 Patterson Fall 00 ©UCB

Example: Fibonacci Numbers 1/

°The Fibonacci numbers are defined as
follows: F(n) = F(n – 1) + F(n – 2), F(0)
and F(1) are defined to be 1

° In scheme, this could be written:

(define (Fib n)
(cond ((= n 0) 1)

((= n 1) 1)
(else (+ (Fib (- n 1))

(Fib (- n 2)))))

cs 61C L8 Proc II., Arrays and Pointers in C 10 Patterson Fall 00 ©UCB

Example: Fibonacci Numbers 2/

°Rewriting this in C we have:

int fib(int n) {
if(n == 0) { return 1; }
if(n == 1) { return 1; }
return (fib(n - 1) + fib(n - 2));

}

cs 61C L8 Proc II., Arrays and Pointers in C 11 Patterson Fall 00 ©UCB

fib:

Space for three words

Save the return address

Save $s0

addi $sp, $sp, -12

sw $ra, 8($sp)

sw $s0, 4($sp)

° Now, let’s translate this to MIPS!

° You will need space for three words on the
stack

° The function will use one $s register, $s0

° Write the Prologue:

Example: Fibonacci Numbers 3/

cs 61C L8 Proc II., Arrays and Pointers in C 12 Patterson Fall 00 ©UCB

fin:

jr $ra_____________

lw $s0, 4($sp)

lw $ra, 8($sp)

addi $sp, $sp, 12

Restore $s0

Restore return address

Pop the stack frame

Return to caller

° Now write the Epilogue:

Example: Fibonacci Numbers 4/

cs 61C L8 Proc II., Arrays and Pointers in C 13 Patterson Fall 00 ©UCB

beq $a0 $zero

beq $a0 $t0

addi $v0, $zero, 1_

_______, _____,_fin

addi $t0, $zero, 1_

_______,______,_fin

Contiued on next slide. . .

$v0 = 1

$t0 = 1

#

° Finally, write the body. The C code is below. Start
by translating the lines indicated in the comments

int fib(int n) {
if(n == 0) { return 1; } /*Translate Me!*/
if(n == 1) { return 1; } /*Translate Me!*/
return (fib(n - 1) + fib(n - 2));

}

__if (n == 0). . .

______ ____________

__if (n == 1). . .

Example: Fibonacci Numbers 5/

cs 61C L8 Proc II., Arrays and Pointers in C 14 Patterson Fall 00 ©UCB

$a0 0($sp)

jal fib

$a0 0($sp)

$a0, -1

Continued on next slide. . .

__Need $a0 after jal

_ fib(n – 1) ______

__Restore $a0______

__$a0 = n – 2_________

$a0 = n - 1

#

#

addi $a0, $a0, -1__

sw____, ___________

lw____,____________

addi $a0, ___,_____

° Almost there, but be careful, this part is tricky!

int fib(int n) {
. . .
return (fib(n - 1) + fib(n - 2));

}

Example: Fibonacci Numbers 6/8

cs 61C L8 Proc II., Arrays and Pointers in C 15 Patterson Fall 00 ©UCB

add $s0,____,______

add $v0, $v0, $s0__

To the epilogue and beyond. . .

_______ $v0 $zero

jal fib

Place fib(n – 1)

somewhere it won’t get

clobbered

__fib(n – 2) __________

__$v0 = fib(n-1) + fib(n-2)

° Remember that $v0 is caller saved!

int fib(int n) {
. . .
return (fib(n - 1) + fib(n - 2));

}

Example: Fibonacci Numbers 7/8

cs 61C L8 Proc II., Arrays and Pointers in C 16 Patterson Fall 00 ©UCB

° Here’s the complete code for reference:

Example: Fibonacci Numbers 8/8

fib:

addi $sp, $sp, -12

sw $ra, 8($sp)

sw $s0, 4($sp)

addi $v0, $zero, 1

beq $a0, $zero, fin

addi $t0, $zero, 1

beq $a0, $t0, fin

addi $a0, $a0, -1

sw $a0, 0($sp)

jal fib

lw $a0, 0($sp)

addi $a0, $a0, -1

add $s0, $v0, $zero

jal fib

add $v0, $v0, $s0

fin:

lw $s0, 4($sp)

lw $ra, 8($sp)

addi $sp, $sp, 12

jr $ra

cs 61C L8 Proc II., Arrays and Pointers in C 17 Patterson Fall 00 ©UCB

Administrivia 1/2

• Most assignments are now submitted
online (even homeworks)!

• Proj2 (sprintf) due date moved to
Sunday (9/24) at midnight

• You voted on this in Wed lecture

• TAs will NOT be in the labs on Sat/Sun so
seek help NOW if you need it.

°Remember that you must use proper
register/proc conventions in Proj2

• Lab4 due by the beginning of your
discussion this week

cs 61C L8 Proc II., Arrays and Pointers in C 18 Patterson Fall 00 ©UCB

Administrivia 2/2

• M’Piero has found Professor
Patterson!

• He’ll be back next week

cs 61C L8 Proc II., Arrays and Pointers in C 19 Patterson Fall 00 ©UCB

Argument Passing Options
°2 choices

• “Call by Value”: pass a copy of the item to
the function/procedure

• “Call by Reference”: pass a pointer to the
item to the function/procedure

°Single word variables passed by value

°Passing an array? e.g., a[100]
• Pascal--call by value--copies 100 words of
a[] onto the stack

• C--call by reference--passes a pointer
(1 word) to the array a[] in a register

cs 61C L8 Proc II., Arrays and Pointers in C 20 Patterson Fall 00 ©UCB

Arrays, Pointers, Functions in C

°4 versions of array function that adds
two arrays and puts sum in a third array
(sumarray)

• Third array is passed to function

• Using a local array (on stack) for result
and passing a pointer to it

• Third array is allocated on heap

• Third array is declared static

°Purpose of example is to show
interaction of C statements, pointers,
and memory allocation

cs 61C L8 Proc II., Arrays and Pointers in C 21 Patterson Fall 00 ©UCB

Calling sumarray, Version 1

int x[100], y[100], z[100];

sumarray(x, y, z);

°C calling convention means above the
same as
sumarray(&x[0], &y[0], &z[0]);

°Really passing pointers to arrays
addi $a0,$gp,0 # x[0] starts at $gp
addi $a1,$gp,400 # y[0] above x[100]
addi $a2,$gp,800 # z[0] above y[100]
jal sumarray

cs 61C L8 Proc II., Arrays and Pointers in C 22 Patterson Fall 00 ©UCB

Version 1: Optimized Compiled Code

void sumarray(int a[],int b[],int c[]) {
int i;

for(i=0;i<100;i=i+1)
c[i] = a[i] + b[i];

}
addi $t0,$a0,400 # beyond end of a[]

Loop:beq $a0,$t0,Exit
lw $t1, 0($a0) # $t1=a[i]
lw $t2, 0($a1) # $t2=b[i]
add $t1,$t1,$t2 # $t1=a[i] + b[i]
sw $t1, 0($a2) # c[i]=a[i] + b[i]
addi $a0,$a0,4 # $a0++
addi $a1,$a1,4 # $a1++
addi $a2,$a2,4 # $a2++
j Loop

Exit:jr $ra

cs 61C L8 Proc II., Arrays and Pointers in C 23 Patterson Fall 00 ©UCB

Version 2 to Fix Weakness of Version 1

°Would like recursion to work
int sumarray(int a[],int b[]);
/* adds 2 arrays and returns sum */

sumarray(x, sumarray(y,z));

°Cannot do this with Version 1 style
solution: what about this

int * sumarray(int a[],int b[]) {
int i, c[100];
for(i=0;i<100;i=i+1)

c[i] = a[i] + b[i];
return c;

}

cs 61C L8 Proc II., Arrays and Pointers in C 24 Patterson Fall 00 ©UCB

Pointers, Arithmetic, and Dereference
int x = 1, y = 2; /* x and y are integer variables */

int z[10]; /* an array of 10 ints, z points to start */

int *p; /* p is a pointer to an int */

x = 21; /* assigns x the new value 21 */

z[0] = 2; z[1] = 3 /* assigns 2 to the first, 3 to the next */

p = &z[0]; /* p refers to the first element of z */

p = z; /* same thing; p[i] == z[i]*/

p = p+1; /* now it points to the next element, z[1] */

p++; /* now it points to the one after that, z[2] */

p = 4; / assigns 4 to there, z[2] == 4*/

p = 3; /* bad idea! Absolute address!!! */

p = &x; /* p points to x, *p == 21 */

z = &y illegal!!!!! array name is not a variable

y:

x:

p:

z[0]

z[1]

1

2

2

2
3
4

cs 61C L8 Proc II., Arrays and Pointers in C 25 Patterson Fall 00 ©UCB

Version 2: Revised Compiled Code
for(i=0;i<100;i=i+1)

c[i] = a[i] + b[i];
return c;}

addi $t0,$a0,400 # beyond end of a[]
addi $sp,$sp,-400# space for c
addi $t3,$sp,0 # ptr for c
addi $v0,$t3,0 # $v0 = &c[0]

Loop:beq $a0,$t0,Exit
lw $t1, 0($a0) # $t1=a[i]
lw $t2, 0($a1) # $t2=b[i]
add $t1,$t1,$t2 # $t1=a[i] + b[i]
sw $t1, 0($t3) # c[i]=a[i] + b[i]
addi $a0,$a0,4 # $a0++
addi $a1,$a1,4 # $a1++
addi $t3,$t3,4 # $t3++
j Loop

Exit:addi $sp,$sp, 400# pop stack
jr $ra

cs 61C L8 Proc II., Arrays and Pointers in C 26 Patterson Fall 00 ©UCB

Weakness of Version 2

°Legal Syntax; What’s Wrong?

°Will work until call
another function
that uses stack

°Won’t be reused instantly
(e.g, add a printf)

°Stack allocated
+ unrestricted pointer is
problem

c[100]
$sp

low

high
Address

stack
grows

cs 61C L8 Proc II., Arrays and Pointers in C 27 Patterson Fall 00 ©UCB

Version 3 to Fix Weakness of Version 2
°Solution: allocate c[] on heap

int * sumarray(int a[],int b[]) {
int i;
int *c;

c = (int *) malloc(100);

for(i=0;i<100;i=i+1)
c[i] = a[i] + b[i];

return c;
}

Code

Static

Heap

Stack

c[100]

°Not reused unless freed
• Can lead to memory leaks

• Java, Scheme have garbage
collectors to reclaim free space

cs 61C L8 Proc II., Arrays and Pointers in C 28 Patterson Fall 00 ©UCB

Version 3: Revised Compiled Code

addi $t0,$a0,400 # beyond end of a[]
addi $sp,$sp,-12 # space for regs
sw $ra, 0($sp) # save $ra
sw $a0, 4($sp) # save 1st arg.
sw $a1, 8($sp) # save 2nd arg.
addi $a0,$zero,400 #
jal malloc
addi $t3,$v0,0 # ptr for c
lw $a0, 4($sp) # restore 1st arg.
lw $a1, 8($sp) # restore 2nd arg.

Loop:beq $a0,$t0,Exit
... (loop as before on prior slide)
j Loop

Exit:lw $ra, 0($sp) # restore $ra
addi $sp,$sp, 12 # pop stack
jr $ra

cs 61C L8 Proc II., Arrays and Pointers in C 29 Patterson Fall 00 ©UCB

Lifetime of storage & scope

°automatic (stack allocated)
• typical local variables of a function

• created upon call, released upon return

• scope is the function

°heap allocated
• created upon malloc, released upon free

• referenced via pointers

°external / static
• exist for entire program

cs 61C L8 Proc II., Arrays and Pointers in C 30 Patterson Fall 00 ©UCB

Version 4 : Alternative to Version 3
°Static declaration

int * sumarray(int a[],int b[]) {
int i;
static int c[100];

for(i=0;i<100;i=i+1)
c[i] = a[i] + b[i];

return c;
}

Code

Static

Heap

Stack

c[100]
°Compiler allocates once for
function, space is reused

• Will be changed next time
sumarray invoked

• Why describe? used in C libraries

cs 61C L8 Proc II., Arrays and Pointers in C 31 Patterson Fall 00 ©UCB

What about Structures?

°Scalars passed by value

°Arrays passed by reference (pointers)

°Structures by value too

°Can think of C passing everything by
value, just that arrays are simply a
notation for pointers and the pointer is
passed by value

cs 61C L8 Proc II., Arrays and Pointers in C 32 Patterson Fall 00 ©UCB

“And in Conclusion …” 1/2
°Procedure Conventions are a contract
between caller and callee functions
• Honor the contract and good fortune will be
your companion for all your days

• And if that’s not a good enough reason, honor
it because it makes it possible for others to
plug their MIPS code into yours without major
retooling. As an added bonus, honoring the
register conventions makes recursion work
automagically!

°Get in the habit of breaking down
assembly functions into a Prologue, Body,
and Epilogue before you write them.

cs 61C L8 Proc II., Arrays and Pointers in C 33 Patterson Fall 00 ©UCB

“And in Conclusion …” 2/2
°C passes arguments by value

° Instead of passing an entire array on
stack, a pointer to the array’s first element
is passed.

