
1CS61C L9 Fl. Pt. © UC Regents

CS61C - Machine Structures

Lecture 9 - Floating Point, Part I

September 27, 2000

David Patterson

http://www-inst.eecs.berkeley.edu/~cs61c/
2CS61C L9 Fl. Pt. © UC Regents

Overview

°Floating Point Numbers

°Motivation: Decimal Scientific Notation
• Binary Scientific Notatioin

°Floating Point Representation inside
computer (binary)

• Greater range, precision

°Decimal to Floating Point conversion, and
vice versa

°Big Idea: Type is not associated with data

°MIPS floating point instructions, registers

3CS61C L9 Fl. Pt. © UC Regents

Review of Numbers

°Computers are made to deal with
numbers

°What can we represent in N bits?
• Unsigned integers:

0 to 2N - 1

• Signed Integers (Two’s Complement)

-2(N-1) to 2(N-1) - 1

4CS61C L9 Fl. Pt. © UC Regents

Other Numbers

°What about other numbers?
• Very large numbers? (seconds/century)

3,155,760,00010 (3.1557610 x 109)

• Very small numbers? (atomic diameter)
0.0000000110 (1.010 x 10-8)

• Rationals (repeating pattern)
2/3 (0.666666666. . .)

• Irrationals
21/2 (1.414213562373. . .)

• Transcendentals
e (2.718...), π (3.141...)

°All represented in scientific notation

5CS61C L9 Fl. Pt. © UC Regents

Scientific Notation Review

6.02 x 1023

radix (base)decimal point

mantissa exponent

° Normalized form: no leadings 0s
(exactly one digit to left of decimal point)

° Alternatives to representing 1/1,000,000,000

• Normalized: 1.0 x 10-9

• Not normalized: 0.1 x 10-8,10.0 x 10-10

6CS61C L9 Fl. Pt. © UC Regents

Scientific Notation for Binary Numbers

1.0two x 2-1

radix (base)“binary point”

Mantissa exponent

°Computer arithmetic that supports it
called floating point, because it
represents numbers where binary point
is not fixed, as it is for integers

• Declare such variable in C as float

7CS61C L9 Fl. Pt. © UC Regents

Floating Point Representation (1/2)

°Normal format: +1.xxxxxxxxxxtwo*2yyyytwo

°Multiple of Word Size (32 bits)

031
S Exponent
30 23 22

Significand

1 bit 8 bits 23 bits

°S represents Sign
Exponent represents y’s
Significand represents x’s

°Represent numbers as small as
2.0 x 10-38 to as large as 2.0 x 1038

8CS61C L9 Fl. Pt. © UC Regents

Floating Point Representation (2/2)

°What if result too large? (> 2.0x1038)
• Overflow!

• Overflow => Exponent larger than
represented in 8-bit Exponent field

°What if result too small? (>0, < 2.0x10-38)
• Underflow!

• Underflow => Negative exponent larger than
represented in 8-bit Exponent field

°How to reduce chances of overflow or
underflow?

9CS61C L9 Fl. Pt. © UC Regents

Double Precision Fl. Pt. Representation

°Next Multiple of Word Size (64 bits)

°Double Precision (vs. Single Precision)
• C variable declared as double

• Represent numbers almost as small as
2.0 x 10-308 to almost as large as 2.0 x 10308

• But primary advantage is greater accuracy
due to larger significand

031
S Exponent

30 20 19
Significand

1 bit 11 bits 20 bits
Significand (cont’d)

32 bits

10CS61C L9 Fl. Pt. © UC Regents

IEEE 754 Floating Point Standard (1/4)
°Single Precision, DP similar

°Sign bit: 1 means negative
0 means positive

°Significand:
• To pack more bits, leading 1 implicit for
normalized numbers

• 1 + 23 bits single, 1 + 52 bits double

• always true: 0 < Significand < 1
(for normalized numbers)

°Note: 0 has no leading 1, so reserve
exponent value 0 just for number 0

11CS61C L9 Fl. Pt. © UC Regents

IEEE 754 Floating Point Standard (2/4)
°Kahan wanted FP numbers to be used
even if no FP hardware; e.g., sort records
with FP numbers using integer compares

°Could break FP number into 3 parts:
compare signs, then compare exponents,
then compare significands

°Wanted it to be faster, single compare if
possible, especially if positive numbers

°Then want order:
• Highest order bit is sign (negative < positive)

• Exponent next, so big exponent => bigger #

• Significand last: exponents same => bigger # 12CS61C L9 Fl. Pt. © UC Regents

IEEE 754 Floating Point Standard (3/4)

°Negative Exponent?
• 2’s comp? 1.0 x 2-1 v. 1.0 x2+1 (1/2 v. 2)

0 1111 1111 000 0000 0000 0000 0000 00001/2
0 0000 0001 000 0000 0000 0000 0000 00002
• This notation using integer compare of
1/2 v. 2 makes 1/2 > 2!

° Instead, pick notation 0000 0001 is most
negative, and 1111 1111 is most positive
• 1.0 x 2-1 v. 1.0 x2+1 (1/2 v. 2)

1/2 0 0111 1110 000 0000 0000 0000 0000 0000

0 1000 0000 000 0000 0000 0000 0000 00002

13CS61C L9 Fl. Pt. © UC Regents

IEEE 754 Floating Point Standard (4/4)
°Called Biased Notation, where bias is
number subtract to get real number
• IEEE 754 uses bias of 127 for single prec.

• Subtract 127 from Exponent field to get
actual value for exponent

• 1023 is bias for double precision
°Summary (single precision):

031
S Exponent
30 23 22

Significand

1 bit 8 bits 23 bits
° (-1)S x (1 + Significand) x 2(Exponent-127)

• Double precision identical, except with
exponent bias of 1023

14CS61C L9 Fl. Pt. © UC Regents

Administrivia

°Need to catchup with Homework

°Reading assignment: Reading 4.8

15CS61C L9 Fl. Pt. © UC Regents

See N.Y.Times,
May 18, 2000
“Pull Up a Lawn Chair
and Watch the Robot
Mow the Grass”

What’s this stuff good for? Mow Lawn?
°Robot lawn mower: “Robomow RL-500”

°Surround lawn, trees with perimeter wire

°Sense tall grass to spin blades faster:
up to 5800 RPM

°71 lbs. Slow
if senses
object, stop
if bumps

°$795

16CS61C L9 Fl. Pt. © UC Regents

Understanding the Significand (1/2)

°Method 1 (Fractions):
• In decimal: 0.34010 => 34010/100010

 => 3410/10010

• In binary: 0.1102 => 1102/10002 = 610/810
 => 112/1002 = 310/410

• Advantage: less purely numerical, more
thought oriented; this method usually
helps people understand the meaning of
the significand better

17CS61C L9 Fl. Pt. © UC Regents

Understanding the Significand (2/2)

°Method 2 (Place Values):
• Convert from scientific notation

• In decimal: 1.6732 = (1x100) + (6x10-1) +
(7x10-2) + (3x10-3) + (2x10-4)

• In binary: 1.1001 = (1x20) + (1x2-1) +
(0x2-2) + (0x2-3) + (1x2-4)

• Interpretation of value in each position
extends beyond the decimal/binary point

• Advantage: good for quickly calculating
significand value; use this method for
translating FP numbers

18CS61C L9 Fl. Pt. © UC Regents

Example: Converting Binary FP to Decimal

°Sign: 0 => positive

°Exponent:
• 0110 1000two = 104ten

• Bias adjustment: 104 - 127 = -23

°Significand:
• 1 + 1x2-1+ 0x2-2 + 1x2-3 + 0x2-4 + 1x2-5 +...
=1+2-1+2-3 +2-5 +2-7 +2-9 +2-14 +2-15 +2-17 +2-22

= 1.0 + 0.666115

0 0110 1000 101 0101 0100 0011 0100 0010

°Represents: 1.666115ten*2-23 ~ 1.986*10-7

(about 2/10,000,000)

19CS61C L9 Fl. Pt. © UC Regents

Continuing Example: Binary to ???

° Convert 2’s Comp. Binary to Integer:

0011 0100 0101 0101 0100 0011 0100 0010

0011 0100 0101 0101 0100 0011 0100 0010

13 2 1721821

0011 0100 0101 0101 0100 0011 0100 0010

4 U C B

ori $s5, $v0, 17218

° Convert Binary to Instruction:

° Convert Binary to ASCII:

229+228+226+222+220+218+216+214+29+28+26+ 21
 = 878,003,010ten

20CS61C L9 Fl. Pt. © UC Regents

Big Idea: Type not associated with Data

° What does bit pattern mean:
• 1.986 *10-7? 878,003,010? “4UCB”?
ori $s5, $v0, 17218?

° Data can be anything; operation of instruction
that accesses operand determines its type!

• Side-effect of stored program concept:
instructions stored as numbers

° Power/danger of unrestricted addresses/
pointers: use ASCII as Fl. Pt., instructions as
data, integers as instructions, ...
(Leads to security holes in programs)

0011 0100 0101 0101 0100 0011 0100 0010

21CS61C L9 Fl. Pt. © UC Regents

Converting Decimal to FP (1/3)

°Simple Case: If denominator is an
exponent of 2 (2, 4, 8, 16, etc.), then
it’s easy.

°Show MIPS representation of -0.75
• -0.75 = -3/4

• -11two/100two = -0.11two

• Normalized to -1.1two x 2-1

• (-1)S x (1 + Significand) x 2(Exponent-127)

• (-1)1 x (1 + .100 0000 ... 0000) x 2(126-127)

1 0111 1110 100 0000 0000 0000 0000 0000

22CS61C L9 Fl. Pt. © UC Regents

Converting Decimal to FP (2/3)

°Not So Simple Case: If denominator is
not an exponent of 2.

• Then we can’t represent number precisely,
but that’s why we have so many bits in
significand: for precision

• Once we have significand, normalizing a
number to get the exponent is easy.

• So how do we get the significand of a
neverending number?

23CS61C L9 Fl. Pt. © UC Regents

Converting Decimal to FP (3/3)

°Fact: All rational numbers have a
repeating pattern when written out in
decimal.

°Fact: This still applies in binary.

°To finish conversion:
• Write out binary number with repeating
pattern.

• Cut it off after correct number of bits
(different for single v. double precision).

• Derive Sign, Exponent and Significand
fields.

24CS61C L9 Fl. Pt. © UC Regents

Hairy Example (1/2)

°How to represent 1/3 in MIPS?

°1/3
= 0.33333…10

= 0.25 + 0.0625 + 0.015625 + 0.00390625 +
0.0009765625 + …

= 1/4 + 1/16 + 1/64 + 1/256 + 1/1024 + …

= 2-2 + 2-4 + 2-6 + 2-8 + 2-10 + …

= 0.0101010101… 2 * 20

= 1.0101010101… 2 * 2-2

25CS61C L9 Fl. Pt. © UC Regents

Hairy Example (2/2)

°Sign: 0

°Exponent = -2 + 127 = 12510=011111012

°Significand = 0101010101…

0 0111 1101 0101 0101 0101 0101 0101 010

26CS61C L9 Fl. Pt. © UC Regents

Representation for +/- Infinity

° In FP, divide by zero should produce
+/- infinity, not overflow.

°Why?
• OK to do further computations with
infinity e.g., X/0 > Y may be a valid
comparison

• Ask math majors

° IEEE 754 represents +/- infinity
• Most positive exponent reserved for
infinity

• Significands all zeroes

27CS61C L9 Fl. Pt. © UC Regents

Representation for 0

°Represent 0?
• exponent all zeroes

• significand all zeroes too

• What about sign?
¥+0: 0 00000000 00000000000000000000000

¥-0: 1 00000000 00000000000000000000000

°Why two zeroes?
• Helps in some limit comparisons

• Ask math majors

28CS61C L9 Fl. Pt. © UC Regents

Special Numbers

°What have we defined so far?
(Single Precision)

Exponent Significand Object

0 0 0

0 nonzero ???

1-254 anything +/- fl. pt. #

255 0 +/- infinity

255 nonzero ???

°Professor Kahan had clever ideas;
“Waste not, want not”

• well talk about Exp=0,255 & Sig!=0 later

29CS61C L9 Fl. Pt. © UC Regents

FP Addition

°Much more difficult than with integers

°Can’t just add significands

°How do we do it?
• De-normalize to match exponents

• Add significands to get resulting one

• Keep the same exponent

• Normalize (possibly changing exponent)

°Note: If signs differ, just perform a
subtract instead.

30CS61C L9 Fl. Pt. © UC Regents

FP Subtraction

°Similar to addition

°How do we do it?
• De-normalize to match exponents

• Subtract significands

• Keep the same exponent

• Normalize (possibly changing exponent)

31CS61C L9 Fl. Pt. © UC Regents

FP Addition/Subtraction

°Problems in implementing FP add/sub:
• If signs differ for add (or same for sub),
what will be the sign of the result?

°Question: How do we integrate this
into the integer arithmetic unit?

°Answer: We don’t!

32CS61C L9 Fl. Pt. © UC Regents

MIPS Floating Point Architecture (1/4)

°Separate floating point instructions:
• Single Precision:

add.s, sub.s, mul.s, div.s

• Double Precision:
add.d, sub.d, mul.d, div.d

°These instructions are far more
complicated than their integer
counterparts, so they can take much
longer.

33CS61C L9 Fl. Pt. © UC Regents

MIPS Floating Point Architecture (2/4)

°Problems:
• It’s inefficient to have different
instructions take vastly differing
amounts of time.

• Generally, a particular piece of data will
not change from FP to int, or vice versa,
within a program. So only one type of
instruction will be used on it.

• Some programs do no floating point
calculations

• It takes lots of hardware relative to
integers to do Floating Point fast

34CS61C L9 Fl. Pt. © UC Regents

MIPS Floating Point Architecture (3/4)

°1990 Solution: Make a completely
separate chip that handles only FP.

°Coprocessor 1: FP chip
• contains 32 32-bit registers: $f0, $f1, …

• most registers specified in .s and .d
instruction refer to this set

• separate load and store: lwc1 and swc1
(“load word coprocessor 1”, “store …”)

• Double Precision: by convention,
even/odd pair contain one DP FP number:
$f0/$f1, $f2/$f3, … , $f30/$f31

35CS61C L9 Fl. Pt. © UC Regents

MIPS Floating Point Architecture (4/4)

°1990 Computer actually contains
multiple separate chips:

• Processor: handles all the normal stuff

• Coprocessor 1: handles FP and only FP;

• more coprocessors?… Yes, later

• Today, cheap chips may leave out FP HW

° Instructions to move data between
main processor and coprocessors:
¥mfc0, mtc0, mfc1, mtc1, etc.

°Appendix pages A-70 to A-74 contain
many, many more FP operations.

36CS61C L9 Fl. Pt. © UC Regents

Things to Remember
°Floating Point numbers approximate
values that we want to use.

° IEEE 754 Floating Point Standard is most
widely accepted attempt to standardize
interpretation of such numbers ($1T)

°New MIPS registers($f0-$f31), instruct.:
• Single Precision (32 bits, 2x10-38… 2x1038):

add.s, sub.s, mul.s, div.s

• Double Precision (64 bits , 2x10-308…2x10308):
add.d, sub.d, mul.d, div.d

°Type is not associated with data, bits
have no meaning unless given in context

