CS61C - Machine Structures

Lecture 9 - Floating Point, Part I

September 27, 2000 David Patterson

http://www-inst.eecs.berkeley.edu/~cs61c/

CS61C L9 Fl. Pt. © UC Regents

Overview

- ^o Floating Point Numbers
- Motivation: Decimal Scientific Notation
 Binary Scientific Notatioin
- Floating Point Representation inside computer (binary)
 - Greater range, precision
- ^o Decimal to Floating Point conversion, and vice versa
- ^o Big Idea: Type is not associated with data
- °MIPS floating point instructions, registers

Review of Numbers

- ° Computers are made to deal with numbers
- What can we represent in N bits?
 Unsigned integers:
 - 0 to 2^N-1
 - Signed Integers (Two's Complement) -2^(N-1) to 2^(N-1) - 1

CS61C L9 Fl. Pt. © UC Regents

Other Numbers

Scientific Notation Review

mantissa exponent 6.02 x 10²³ decimal point radix (base)

° Normalized form: no leadings 0s (exactly one digit to left of decimal point)

° Alternatives to representing 1/1,000,000,000

0.1 x 10⁻⁸,10.0 x 10⁻¹⁰

• Normalized: 1.0 x 10⁻⁹

Not normalized:

CS61C L9 Fl. Pt. © UC Regents

Scientific Notation for Binary Numbers

Mantissa 1.0_{two} x 2⁻¹ "binary point" radix (base)

^o Computer arithmetic that supports it called <u>floating point</u>, because it represents numbers where binary point is not fixed, as it is for integers

• Declare such variable in C as float

Floating Point Representation (1/2)

^o Multiple of Word Size (32 bits)

31 30 23 22

0.0		
S	Exponent	Significand
1 bi	t 8 bits	23 bits

°S represents Sign Exponent represents y's Significand represents x's

^o Represent numbers as small as 2.0 x 10⁻³⁸ to as large as 2.0 x 10³⁸ Floating Point Representation (2/2)

- ^oWhat if result too large? (> 2.0x10³⁸)
- Overflow!
- Overflow => Exponent larger than represented in 8-bit Exponent field

^oWhat if result too small? (>0, < 2.0x10⁻³⁸)

- Underflow!
- Underflow => Negative exponent larger than represented in 8-bit Exponent field
- ^o How to reduce chances of overflow or underflow?

Double Precision FI. Pt. Representation

^o Next Multiple of Word Size (64 bits)

31 30	20 19 0		
S	Exponent	Significand	
1 bit	11 bits	20 bits	
	Significand (cont'd)		

32 bits • Double Precision (vs. Single Precision)

- C variable declared as double
- Represent numbers almost as small as 2.0 x 10⁻³⁰⁸ to almost as large as 2.0 x 10³⁰⁸

 But primary advantage is greater accuracy due to larger significand

CS61C L9 Fl. Pt. © UC Regents

IEEE 754 Floating Point Standard (2/4)

- ^o Kahan wanted FP numbers to be used even if no FP hardware; e.g., sort records with FP numbers using integer compares
- °Could break FP number into 3 parts: compare signs, then compare exponents, then compare significands
- ^o Wanted it to be faster, single compare if possible, especially if positive numbers
- °Then want order:
- Highest order bit is sign (negative < positive)
- Exponent next, so big exponent => bigger #
- Significand last: exponents same => bigger # 11

IEEE 754 Floating Point Standard (1/4)

° Single Precision, DP similar

- °Sign bit: 1 means negative 0 means positive
- °Significand:
 - To pack more bits, leading 1 implicit for normalized numbers
 - •1 + 23 bits single, 1 + 52 bits double
 - always true: 0 < Significand < 1 (for normalized numbers)
- ° Note: 0 has no leading 1, so reserve exponent value 0 just for number 0

IEEE 754 Floating Point Standard (3/4)

^oNegative Exponent?

•2's comp? 1.0 x 2⁻¹ v. 1.0 x2⁺¹ (1/2 v. 2)

1/2	0	1111 1111	000 0000 0000 0000 0000 0000	
2	0	0000 0001	000 0000 0000 0000 0000 0000	
• This notation using integer compare of 1/2 v. 2 makes 1/2 > 2! ° Instead, pick notation 0000 0001 is most negative, and 1111 1111 is most positive				
• 1.0 x 2 ⁻¹ v. 1.0 x2 ⁺¹ (1/2 v. 2)				
1/	2[0111 111	0 000 0000 0000 0000 0000 0000	
2	[1000 000	0 000 0000 0000 0000 0000 0000	

12

CS61C L9 Fl. Pt. © UC Regent

IEEE 754 Floating Point Standard (4/4)
Called <u>Biased Notation</u> , where bias is number subtract to get real number	;

- IEEE 754 uses bias of 127 for single prec.
 Subtract 127 from Exponent field to get actual value for exponent
- 1023 is bias for double precision ° Summary (single precision):

3 <u>1</u> 30 23	22 0			
S Exponent	Significand			
1 bit 8 bits	23 bits			
° (-1) ^S x (1 + Significand) x 2 ^(Exponent-127)				
Double precision identical, except with exponent bias of 1023 CSACLIPH, PLOUC Regents				

Administrivia

- ^o Need to catchup with Homework
- ^o Reading assignment: Reading 4.8

What's this stuff good for? Mow Lawn?

13

17

- ^o Robot lawn mower: "Robomow RL-500"
- °Surround lawn, trees with perimeter wire
- ^o Sense tall grass to spin blades faster: up to 5800 RPM
- °71 lbs. Slow we if senses object, stop if bumps

° **\$795** See N.Y. Times, May 18, 2000 "Pull Up a Lawn Chair and Watch the Robot Mow the Grass"

Understanding the Significand (1/2)

[°] Method 1 (Fractions):

- In decimal: $0.340_{10} => 340_{10}/1000_{10}$ => $34_{10}/100_{10}$
- In binary: $0.110_2 \Rightarrow 110_2/1000_2 = 6_{10}/8_{10} => 11_2/100_2 = 3_{10}/4_{10}$

14

16

18

 Advantage: less purely numerical, more thought oriented; this method usually helps people understand the meaning of the significand better

^o Method 2 (Place Values):

- · Convert from scientific notation
- In decimal: $1.6732 = (1x10^{0}) + (6x10^{-1}) + (7x10^{-2}) + (3x10^{-3}) + (2x10^{-4})$
- In binary: $1.1001 = (1x2^{0}) + (1x2^{-1}) + (0x2^{-2}) + (0x2^{-3}) + (1x2^{-4})$
- Interpretation of value in each position extends beyond the decimal/binary point
- Advantage: good for quickly calculating significand value; use this method for translating FP numbers

Example: Converting Binary FP to Decimal

• 1 + 1 $x2^{-1}$ + 0 $x2^{-2}$ + 1 $x2^{-3}$ + 0 $x2^{-4}$ + 1 $x2^{-5}$ +... =1+ $2^{-1}+2^{-3}+2^{-5}+2^{-7}+2^{-9}+2^{-14}+2^{-15}+2^{-17}+2^{-22}$ = 1.0 + 0.666115

° Represents: 1.666115_{ten}*2⁻²³ ~ 1.986*10⁻⁷ csc (about 2/10,000,000)

Continuing	Examp	le: Binary	y to ???
------------	-------	------------	----------

0011 0100 0101 0101 0100 0011 0100 0010 ° Convert 2's Comp. Binary to Integer:

 $2^{29}+2^{28}+2^{26}+2^{22}+2^{20}+2^{18}+2^{16}+2^{14}+2^{9}+2^{8}+2^{6}+2^{1}$ = 878,003,010_{ten}

° Convert Binary to Instruction:

 0011
 0100
 0101
 0101
 0100
 0011
 0100
 0010

 13
 2
 21
 17218
 17218
 17218

ori \$s5, \$v0, 17218

° Convert Binary to ASCII:

0011 0100 0101 0101 0100 0011 0100 0010

4	U	С	В
ICLOFI DE QUE Demente			

19

21

23

Converting Decimal to FP (1/3)

°Simple Case: If denominator is an exponent of 2 (2, 4, 8, 16, etc.), then it's easy.

^oShow MIPS representation of -0.75

• -0.75 = -3/4

- $\cdot -11_{two} / 100_{two} = -0.11_{two}$
- Normalized to -1.1_{two} x 2⁻¹
- (-1)^S x (1 + Significand) x 2^(Exponent-127)
- (-1)¹ x (1 + .100 0000 ... 0000) x 2⁽¹²⁶⁻¹²⁷⁾

1 0111 1110 100 0000 0000 0000 0000 0000

CS61C L9 Fl. Pt. © UC Regents

Converting Decimal to FP (3/3)

- Fact: All rational numbers have a repeating pattern when written out in decimal.
- ^o Fact: This still applies in binary.
- ^o To finish conversion:
 - Write out binary number with repeating pattern.
 - Cut it off after correct number of bits (different for single v. double precision).
 - Derive Sign, Exponent and Significand fields.

```
CS61C L9 Fl. Pt. © UC Regents
```

Converting Decimal to FP (2/3)

^oNot So Simple Case: If denominator is not an exponent of 2.

- Then we can't represent number precisely, but that's why we have so many bits in significand: for precision
- Once we have significand, normalizing a number to get the exponent is easy.
- So how do we get the significand of a neverending number?

S61C L9 Fl. Pt. © UC Regents

Hairy Example (1/2)

$^{\circ}$ How to represent 1/3 in MIPS?

```
° 1/3
```

 $= 0.33333..._{10}$ = 0.25 + 0.0625 + 0.015625 + 0.00390625 + 0.0009765625 + ... = 1/4 + 1/16 + 1/64 + 1/256 + 1/1024 + ... = 2⁻² + 2⁻⁴ + 2⁻⁶ + 2⁻⁸ + 2⁻¹⁰ + ... = 0.0101010101... 2 * 2⁰ = 1.0101010101... 2 * 2⁻²

CS61C L9 Fl. Pt. © UC Regents

22

Hairy Example (2/2)

° Sign: 0

[°]Exponent = -2 + 127 = 125₁₀=01111101₂

^oSignificand = 0101010101...

0 0111 1101 0101 0101 0101 0101 0101 0101 010

Representation for +/- Infinity

° In FP, divide by zero should produce +/- infinity, not overflow.

° Why?

25

27

29

- OK to do further computations with infinity e.g., X/0 > Y may be a valid comparison
- Ask math majors

°IEEE 754 represents +/- infinity

 Most positive exponent reserved for infinity

Significands all zeroes

Representation for 0

° Represent 0?

exponent all zeroes

- significand all zeroes too
- What about sign?

° Why two zeroes?

· Helps in some limit comparisons

· Ask math majors

CS61C L9 Fl. Pt. © UC Regents

Special Numbers

^o What have we defined so far? (Single Precision)				
Exponent	Significand	Object		
0	0	0		
0	<u>nonzero</u>	<u>???</u>		
1-254	anything	+/- fl. pt. #		
255	0	+/- infinity		
255	nonzero	<u>???</u>		

° Professor Kahan had clever ideas; "Waste not, want not"

well talk about Exp=0,255 & Sig!=0 later

FP Addition

^o Much more difficult than with integers

- ° Can't just add significands
- ° How do we do it?
 - De-normalize to match exponents
 - · Add significands to get resulting one
 - ·Keep the same exponent
 - Normalize (possibly changing exponent)

^o Note: If signs differ, just perform a subtract instead.

FP Subtraction

° Similar to addition

[°]How do we do it?

- · De-normalize to match exponents
- Subtract significands
- Keep the same exponent
- Normalize (possibly changing exponent)

CS61C L9 Fl. Pt. © UC Regents

26

28

FP Addition/Subtraction

^o Problems in implementing FP add/sub:

 If signs differ for add (or same for sub), what will be the sign of the result?

- [°] Question: How do we integrate this into the integer arithmetic unit?
- ^o Answer: We don't!

MIPS Floating Point Architecture (1/4)

Separate floating point instructions:
 Single Precision:

add.s, sub.s, mul.s, div.s

add.d, sub.d, mul.d, div.d

32

34

^o These instructions are far more complicated than their integer counterparts, so they can take much longer.

MIPS Floating Point Architecture (2/4)

31

33

35

° Problems:

- It's inefficient to have different instructions take vastly differing amounts of time.
- Generally, a particular piece of data will not change from FP to int, or vice versa, within a program. So only one type of instruction will be used on it.
- Some programs do no floating point calculations
- It takes lots of hardware relative to integers to do Floating Point fast

CS61C L9 Fl. Pt. © UC Regents

MIPS Floating Point Architecture (3/4)

- ° 1990 Solution: Make a completely separate chip that handles only FP.
- ^oCoprocessor 1: FP chip
 - contains 32 32-bit registers: \$f0, \$f1, ...
 - \bullet most registers specified in $\,.\,{\rm s}$ and $\,.\,{\rm d}$ instruction refer to this set
 - separate load and store: lwc1 and swc1
 ("load word coprocessor 1", "store ...")
 - Double Precision: by convention, even/odd pair contain one DP FP number: \$f0/\$f1, \$f2/\$f3, ..., \$f30/\$f31

MIPS Floating Point Architecture (4/4)

- ° 1990 Computer actually contains multiple separate chips:
 - Processor: handles all the normal stuff
 - · Coprocessor 1: handles FP and only FP;
 - more coprocessors?... Yes, later
 - · Today, cheap chips may leave out FP HW

Instructions to move data between main processor and coprocessors:

¥mfc0, mtc0, mfc1, mtc1, etc.

^o Appendix pages A-70 to A-74 contain many, many more FP operations.

Things to Remember

- ^o Floating Point numbers *approximate* values that we want to use.
- ^o IEEE 754 Floating Point Standard is most widely accepted attempt to standardize interpretation of such numbers (\$1T)
- °New MIPS registers(\$f0-\$f31), instruct.:
 - Single Precision (32 bits, 2x10⁻³⁸... 2x10³⁸): add.s, sub.s, mul.s, div.s
- Double Precision (64 bits, 2x10⁻³⁰⁸...2x10³⁰⁸): add.d, sub.d, mul.d, div.d

^oType is not associated with data, bits have no meaning unless given in context