CS61C - Machine Structures

Lecture 9 - Floating Point, Part I
September 27, 2000
David Patterson
http://www-inst.eecs.berkeley.edu/~cs61c/

Review of Numbers
${ }^{\circ}$ Computers are made to deal with numbers
${ }^{\circ}$ What can we represent in N bits?

- Unsigned integers:

0 to $2^{\mathrm{N}}-1$

- Signed Integers (Two's Complement)
$-2^{(N-1)}$ to $2^{(N-1)}-1$

Stic L9p. p. © UCCRequts

Scientific Notation Review

${ }^{\circ}$ Normalized form: no leadings Os
(exactly one digit to left of decimal point)
${ }^{\circ}$ Alternatives to representing $1 / 1,000,000,000$

$$
\begin{array}{ll}
\text { - Normalized: } & 1.0 \times 10^{-9} \\
\text { - Not normalized: } & 0.1 \times 10^{-8}, 10.0 \times 10^{-10}
\end{array}
$$

Overview

${ }^{\circ}$ Floating Point Numbers
${ }^{\circ}$ Motivation: Decimal Scientific Notation

- Binary Scientific Notatioin
${ }^{\circ}$ Floating Point Representation inside computer (binary)
- Greater range, precision
${ }^{\circ}$ Decimal to Floating Point conversion, and vice versa
${ }^{\circ}$ Big Idea: Type is not associated with data ${ }^{\circ}$ MIPS floating point instructions, registers

Other Numbers
${ }^{\circ}$ What about other numbers?

- Very large numbers? (seconds/century) $3,155,760,000_{10}\left(3.15576_{10} \times 10^{9}\right)$
- Very small numbers? (atomic diameter) $0.00000001_{10}\left(1.0_{10} \times 10^{-8}\right)$
- Rationals (repeating pattern) 2/3 (0.666666666...)
- Irrationals

$$
2^{1 / 2}
$$

(1.414213562373. . .)

- Transcendentals e (2.718...), π (3.141...)
${ }^{\circ}$ All represented in scientific notation

Scientific Notation for Binary Numbers

${ }^{\circ}$ Computer arithmetic that supports it called floating point, because it represents numbers where binary point is not fixed, as it is for integers

- Declare such variable in \mathbf{C} as $f l o a t$

Floating Point Representation (1/2)	
Normal format: +1.xxxxxxxxxx ${ }_{\text {two }}{ }^{*} \mathbf{2 y y y}^{\text {yyy }}{ }_{\text {two }}$ Multiple of Word Size (32 bits)	
$\begin{array}{r\|r} 3130 \\ \hline \text { S } & \text { Exponent } \\ \hline \end{array}$	Significand
1 bit 8 bits	23 bits
S represen Exponent Significand	ts y's nts x's
${ }^{\circ}$ Represent $2.0 \times 10^{-38} t$	as small as as 2.0×10^{38}

Double Precision FI. Pt. Representation
${ }^{\circ}$ Next Multiple of Word Size (64 bits)

${ }^{\circ}$ Double Precision (vs. Single Precision)

- C variable declared as double
- Represent numbers almost as small as 2.0×10^{-308} to almost as large as 2.0×10^{308}
- But primary advantage is greater accuracy due to larger significand

IEEE 754 Floating Point Standard (2/4)
${ }^{\circ}$ Kahan wanted FP numbers to be used even if no FP hardware; e.g., sort records with FP numbers using integer compares
${ }^{\circ}$ Could break FP number into 3 parts: compare signs, then compare exponents, then compare significands
${ }^{\circ}$ Wanted it to be faster, single compare if possible, especially if positive numbers
${ }^{\circ}$ Then want order:

- Highest order bit is sign (negative < positive)
- Exponent next, so big exponent => bigger \#
- Significand last: exponents same => bigger \# ${ }_{11}$

Floating Point Representation (2/2)
${ }^{\circ}$ What if result too large? ($>2.0 \times 10^{38}$)

- Overflow!
- Overflow => Exponent larger than represented in 8-bit Exponent field
${ }^{\circ}$ What if result too small? ($>0,<2.0 \times 10^{-38}$) - Underflow!
- Underflow => Negative exponent larger than represented in 8-bit Exponent field
${ }^{\circ}$ How to reduce chances of overflow or underflow?

IEEE 754 Floating Point Standard (1/4)
${ }^{\circ}$ Single Precision, DP similar
${ }^{\circ}$ Sign bit: $\quad 1$ means negative
${ }^{\circ}$ Significand:

- To pack more bits, leading 1 implicit for normalized numbers
$\cdot 1+23$ bits single, $1+52$ bits double
- always true: 0 < Significand < 1 (for normalized numbers)
${ }^{\circ}$ Note: 0 has no leading 1, so reserve exponent value 0 just for number 0

IEEE 754 Floating Point Standard (3/4)
${ }^{\circ}$ Negative Exponent?

- 2 's comp? 1.0×2^{-1} v. $1.0 \times 2^{+1}(1 / 2 \mathrm{v} 2$.

$1 / 2$	0	11111111	00000000000000000000000
	0000000	0000000000000000000	

2 | 0 | 0000 | 0001 | 000 |
| :--- | :--- | :--- | :--- |

- This notation using integer compare of 1/2 v. 2 makes $1 / 2>2$!
${ }^{\circ}$ Instead, pick notation 00000001 is most negative, and 11111111 is most positive

$$
\cdot 1.0 \times 2^{-1} \text { v. } 1.0 \times 2^{+1}(1 / 2 \mathrm{v} .2)
$$

$1 / 2000111111000000000000000000000000$

| 0 | 10000000 | 00000000000000000000000 |
| :--- | :--- | :--- | :--- | :--- |

IEEE 754 Floating Point Standard (4/4)
${ }^{\circ}$ Called Biased Notation, where bias is number subtract to get real number

- IEEE 754 uses bias of 127 for single prec.
- Subtract 127 from Exponent field to get actual value for exponent
- 1023 is bias for double precision
 exponent bias of 1023

What's this stuff good for? Mow Lawn?
Robot lawn mower: "Robomow RL-500"
${ }^{\circ}$ Surround lawn, trees with perimeter wire
${ }^{\circ}$ Sense tall grass to spin blades faster: up to 5800 RPM

Understanding the Significand (2/2)

${ }^{\circ}$ Method 2 (Place Values):

- Convert from scientific notation
- In decimal: $1.6732=\left(1 \times 10^{0}\right)+\left(6 \times 10^{-1}\right)+$ $\left(7 \times 10^{-2}\right)+\left(3 \times 10^{-3}\right)+\left(2 \times 10^{-4}\right)$
- In binary: $\quad 1.1001=\left(1 \times 2^{0}\right)+\left(1 \times 2^{-1}\right)+$ $\left(0 \times 2^{-2}\right)+\left(0 \times 2^{-3}\right)+\left(1 \times 2^{-4}\right)$
- Interpretation of value in each position extends beyond the decimal/binary point
- Advantage: good for quickly calculating significand value; use this method for translating FP numbers

Administrivia

${ }^{\circ}$ Need to catchup with Homework
${ }^{\circ}$ Reading assignment: Reading 4.8

CS61C L9F. P. © UC Regents

Understanding the Significand (1/2)
${ }^{\circ}$ Method 1 (Fractions):

- In decimal: $\begin{aligned} 0.340_{10} & =>340_{10} / \mathbf{1 0 0 0}_{10} \\ =>~ & 34_{10} / 100_{10}\end{aligned}$
-In binary: $\begin{aligned} 0^{2.110} & =>110 / 1000_{2}=6_{10} / 8_{10} \\ & =>11_{2} / 100_{2}=3_{10} / 4_{10}\end{aligned}$
- Advantage: less purely numerical, more thought oriented; this method usually helps people understand the meaning of the significand better

Example: Converting Binary FP to Decimal

| 0 | $01101000 \mid 10101010100001101000010$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{\circ}$ Represents: $1.666115_{\text {ten }}{ }^{*} 2^{-23} \sim 1.986^{\star} 10^{-7}$ (about 2/10,000,000)

Continuing Example: Binary to ??? 00110100010101010100001101000010
${ }^{\circ}$ Convert 2's Comp. Binary to Integer: $2^{29}+2^{28}+2^{26}+2^{22}+2^{20}+2^{18}+2^{16}+2^{14}+2^{9}+2^{8}+2^{6}+2^{1}$ $=878,003,010_{\text {ten }}$
${ }^{\circ}$ Convert Binary to Instruction:

13	2	21	17218

ori \$s5, \$v0, 17218

${ }^{\circ}$ Convert Binary to ASCII:	00110100010101010100001101000010

Converting Decimal to FP (1/3)

${ }^{\circ}$ Simple Case: If denominator is an exponent of $2(2,4,8,16$, etc.), then it's easy.
${ }^{\circ}$ Show MIPS representation of $\mathbf{- 0 . 7 5}$
$-0.75=-3 / 4$

- $-11_{\text {two }} / 100_{\text {two }}=-0.11_{\text {two }}$
- Normalized to $-1.1_{\text {two }} \times 2^{-1}$
$\cdot(-1)^{\mathrm{S}} \times\left(1+\right.$ Significand) $\times 2^{(\text {Exponent-127 })}$
$\cdot(-1)^{1} \times(1+.1000000 \ldots 0000) \times 2^{(126-127)}$
1|01111110[10000000000000000000000

Converting Decimal to FP (3/3)

${ }^{\circ}$ Fact: All rational numbers have a repeating pattern when written out in decimal.
${ }^{\circ}$ Fact: This still applies in binary.
${ }^{\circ}$ To finish conversion:

- Write out binary number with repeating pattern.
- Cut it off after correct number of bits (different for single v. double precision).
- Derive Sign, Exponent and Significand fields.

Big Idea: Type not associated with Data 00110100010101010100001101000010
${ }^{\circ}$ What does bit pattern mean:
-1.986 *10-7? 878,003,010? "4UCB"? ori \$s5, \$v0, 17218?
${ }^{\circ}$ Data can be anything; operation of instruction that accesses operand determines its type!

- Side-effect of stored program concept: instructions stored as numbers
${ }^{\circ}$ Power/danger of unrestricted addresses/ pointers: use ASCII as FI. Pt., instructions as data, integers as instructions, ...
(Leads to security holes in programs)

Converting Decimal to FP (2/3)

${ }^{\circ}$ Not So Simple Case: If denominator is not an exponent of 2.
-Then we can't represent number precisely, but that's why we have so many bits in significand: for precision

- Once we have significand, normalizing a number to get the exponent is easy.
- So how do we get the significand of a neverending number?

```
CS6C L9 F. P.O UC Regents
```

Hairy Example (1/2)
${ }^{\circ}$ How to represent $1 / 3$ in MIPS?
${ }^{\circ} 1 / 3$
$=0.33333 \ldots{ }_{10}$
$=0.25+0.0625+0.015625+0.00390625+$ $0.0009765625+\ldots$
$=1 / 4+1 / 16+1 / 64+1 / 256+1 / 1024+\ldots$
$=2^{-2}+2^{-4}+2^{-6}+2^{-8}+2^{-10}+\ldots$
$=0.0101010101 \ldots{ }^{*}{ }^{*} 2^{0}$
$=1.0101010101 \ldots{ }_{2}^{*} 2^{-2}$

Hairy Example (2/2)
${ }^{\circ}$ Sign: 0
${ }^{\circ}$ Exponent $=\mathbf{- 2}+127=\mathbf{1 2 5}_{10}=01111101_{2}$
${ }^{\circ}$ Significand $=0101010101$...

| 0 | 01111101 | 01010101010101010101010 |
| :--- | :--- | :--- | :--- |

Representation for 0
${ }^{\circ}$ Represent 0 ?

- exponent all zeroes
- significand all zeroes too
-What about sign?
$¥+0: 00000000000000000000000000000000$
$¥-0: 100000000 \quad 00000000000000000000000$
${ }^{\circ}$ Why two zeroes?
- Helps in some limit comparisons
- Ask math majors

FP Addition
${ }^{\circ}$ Much more difficult than with integers
${ }^{\circ}$ Can't just add significands
${ }^{\circ}$ How do we do it?

- De-normalize to match exponents
- Add significands to get resulting one
- Keep the same exponent
- Normalize (possibly changing exponent)
${ }^{\circ}$ Note: If signs differ, just perform a subtract instead.

Representation for +/- Infinity
${ }^{\circ}$ In FP, divide by zero should produce +/- infinity, not overflow.
${ }^{\circ}$ Why?

- OK to do further computations with infinity e.g., X/0 > Y may be a valid comparison
- Ask math majors
${ }^{\circ}$ IEEE 754 represents +/- infinity
- Most positive exponent reserved for infinity
- Significands all zeroes

Special Numbers

${ }^{\circ}$ What have we defined so far? (Single Precision)

Exponent	Significand	Object
0	0	0
0	nonzero	???
1-254	anything	+/- fl. pt. \#
255	0	+/- infinity
255	$\underline{\text { nonzero }}$	$\underline{? ? ?}$

${ }^{\circ}$ "Professor Kahan had clever ideas; "Waste not, want not"

- well talk about Exp=0,255 \& Sig!=0 later

FP Subtraction

${ }^{\circ}$ Similar to addition

${ }^{\circ}$ How do we do it?

- De-normalize to match exponents
- Subtract significands
- Keep the same exponent
- Normalize (possibly changing exponent)

FP Addition/Subtraction

${ }^{\circ}$ Problems in implementing FP add/sub:

- If signs differ for add (or same for sub), what will be the sign of the result?
${ }^{\circ}$ Question: How do we integrate this into the integer arithmetic unit?
${ }^{\circ}$ Answer: We don't!

MIPS Floating Point Architecture (1/4)
${ }^{\circ}$ Separate floating point instructions:

- Single Precision:
add.s, sub.s, mul.s, div.s
- Double Precision:
add.d, sub.d, mul.d, div.d
${ }^{\circ}$ These instructions are far more complicated than their integer counterparts, so they can take much longer.

MIPS Floating Point Architecture (2/4)

${ }^{\circ}$ Problems:

- It's inefficient to have different instructions take vastly differing amounts of time.
- Generally, a particular piece of data will not change from FP to int, or vice versa, within a program. So only one type of instruction will be used on it.
- Some programs do no floating point calculations
- It takes lots of hardware relative to integers to do Floating Point fast

MIPS Floating Point Architecture (4/4)
${ }^{\circ} 1990$ Computer actually contains multiple separate chips:

- Processor: handles all the normal stuff
- Coprocessor 1: handles FP and only FP;
- more coprocessors?... Yes, later
- Today, cheap chips may leave out FP HW
${ }^{\circ}$ Instructions to move data between main processor and coprocessors:
$¥ m f c 0, m t c 0, m f c 1, m t c 1$, etc.
${ }^{\circ}$ Appendix pages A-70 to A-74 contain many, many more FP operations.

MIPS Floating Point Architecture (3/4)

- 1990 Solution: Make a completely separate chip that handles only FP.
${ }^{\circ}$ Coprocessor 1: FP chip
- contains 32 32-bit registers: \$f0, \$£1, ...
- most registers specified in . s and .d instruction refer to this set
- separate load and store: 1 wc 1 and swc 1 ("load word coprocessor 1", "store ...")
- Double Precision: by convention, even/odd pair contain one DP FP number: \$f0/\$f1, \$£2/\$f3, ..., \$£30/\$f31

Things to Remember
${ }^{\circ}$ Floating Point numbers approximate values that we want to use.
${ }^{\circ}$ IEEE 754 Floating Point Standard is most widely accepted attempt to standardize interpretation of such numbers (\$1T)
${ }^{\circ}$ New MIPS registers(\$£0-\$£31), instruct.: - Single Precision (32 bits, $2 \times 10^{-38} \ldots 2 \times 10^{38}$): add.s, sub.s, mul.s, div.s

- Double Precision (64 bits, $2 \times 10^{-308} \ldots 2 \times 10^{308}$): add. d, sub.d, mul.d, div.d
${ }^{\circ}$ Type is not associated with data, bits have no meaning unless given in context

