CS61C - Machine Structures

Lecture 10 - Floating Point, Part Il and
Miscellaneous

September 29, 2000
David Patterson

http://www-inst.eecs.berkeley.edu/~cs61c/

Review

°Floating Point numbers approximate
values that we want to use.

°IEEE 754 Floating Point Standard is most
widely accepted attempt to standardize
interpretation of such humbers ($1T)

°New MIPS registers(s£0-3£31), instruct.:
- Single Precision (32 bits, 2x10-38... 2x1038):

add.s, sub.s, mul.s, div.s

- Double Precision (64 bits , 2x10-3%8_..2x10308):
add.d, sub.d, mul.d, div.d

°Type is not associated with data, bits
have no meaning unless given in context

2

Overview

°Special Floating Point Numbers: NaN,
Denorms

°IEEE Rounding modes
°Floating Point fallacies, hacks

°Catchup topics:
* Representation of jump, jump and link

* Reverse time travel:
MIPS machine language
-> MIPS assembly language
-> C code

* Logical, shift instructions (time permiting)

MIPS Floating Point Architecture (1/2)

°1990 Solution: Make a completel
separate chip that handles only FP.
°Coprocessor 1: FP chip
« contains 32 32-bit registers: $fo0, $f1, ...

* most registers specified in .s and .d
instruction refer to this set

+ separate load and store: 1wc1 and swcl
(“load word coprocessor 17, “store ...”)

* Double Precision: by convention,
even/odd pair contain one DP FP number:
$f0/$f1, $£2/$£3, ..., SE30/$£31

MIPS Floating Point Architecture (2/2)
°1990 Computer actually contains
multiple separate chips:
* Processor: handles all the normal stuff
» Coprocessor 1: handles FP and only FP;
* more coprocessors?... Yes, later
* Today, cheap chips may leave out FP HW
°Instructions to move data between
main processor and coprocessors:
¥mfc0, mtc0, mfcl, mtcl, etc.

° Appendix pages A-70 to A-74 contain
many, many more FP operations.

Special Numbers

°What have we defined so far?
(Single Precision)

Exponent  Significand Object

0 0 0

0 nonzero 2?2?

1-254 anything +/- fl. pt. #
255 0 +/- infinity
255 nonzero 2?2?

°Professor Kahan had clever ideas;
“Waste not, want not”




Representation for Not a Number

°What do | get if | calculate
sgrt(-4.0)or0/0?

«If infinity is not an error, it may be useful
not to crash program for these too.

+ Called Not a Number (NaN)

* Exponent = 255, Significand nonzero
°Why is this useful?

*Hope NaNs help with debugging

* They contaminate: op(NaN,X) = NaN

+ OK if calculate but don’t use it

» Ask math majors

Special Numbers (cont’d)

°What have we defined so far?
(Single Precision)?

Exponent  Significand Object

0 0 0

0 nonzero 2?2?

1-254 anything +/- fl. pt. #
255 0 +/- infinity
255 nonzero NaN

Representation for Denorms (1/2)

°Problem: There’s a gap among
representable FP nhumbers around 0

* Smallest representable pos num:
- a=1.0..,*2127 =217
» Second smallest representable pos num:
- b=1.000......1 , * 2127 = 2127 4 2-150
egq-0=2127
. b -a-= 2-150

Gap! Gap!
p Pb

-w«www@%w
0~a *

Representation for Denorms (2/2)

°Solution:

» We still haven’t used Exponent =0,
Significand nonzero

* Denormalized number: no leading 1

* Smallest representable pos hum:
- a=2"150

» Second smallest representable pos num:

- b=21°

-w«w—» +00 @

10

Rounding

°When we perform math on real
numbers, we have to worry about
rounding

°The actual math carries two extra bits
of precision, and then round to get the
proper value

°Rounding also occurs when
converting a double to a single
recision value, or converting a
loating point number to an integer

4 |EEE Rounding Modes
°Round towards +infinity
* ALWAYS round “up”: 2.001 -> 3
+-2.001 -> -2
°Round towards -infinity
*« ALWAYS round “down”: 1.999 -> 1,
*-1.999 -> -2
°Truncate: 2.001 -> 2, -2.001 -> -2
« Just drop the last bits (round towards 0)

°Round to (nearest) even
* Normal rounding, almost




Round to Even
°Round like you learned in grade school
°Except if the value is right on the

borderline, in which case we round to the
nearest EVEN number

*25->2
*35->4

°Insures fairness on calculation

* This way, half the time we round up on tie,
the other half time we round down

« Ask statistics majors
°Default C rounding mode; only Java mode

Floating Point Fallacy

°FP Add, subtract associative: FALSE!
*x=—15x10%8y=15x10%,andz=1.0

X+(y+2) —1.5x1038 + (1.5x10% + 1.0)
—1.5x10% + (1.5x10%) = 0.0

*(x+y)+z =(-1.5x10% + 1.5x10%8) + 1.0
=(0.0)+1.0=1.0

°Therefore, Floating Point add, subtract
are not associative!
*Why? FP result approximates real result!

- This exampe: 1.5 x 1038 is so much larger
than 1.0 that 1.5 x 103 + 1.0 in floating
point representation is still 1.5 x 1038

Casting floats to ints and vice versa

i (int) exp
» Coerces and converts it to the nearest

integer
- affected by rounding modes
¥i = (int) (3.14159 * f);

i (float) exp
« converts integer to nearest floating point
¥f = £ + (float) 1i;

int -> float -> int

if (i == (int) ((float) 1)) {
printf ( true ) ;

}

°Will not always work

°Large values of integers don’t have
exact floating point representations

°Similarly, we may round to the wrong
value

float -> int -> float

if (f == (float) ((int) f£)) {
printf ( true ) ;

}

°Will not always work

°Small values of floating point don’t
have good integer representations

°Also rounding errors

Administrivia

°Need to catchup with Homework
°Reading assignment: Reading 4.8




J-Format Instructions (1/5)

°For branches, we assumed that we
won’t want to branch too far, so we
can specify change in PC.

°For general jumps (j and jal), we may
jump to anywhere in memory.

°ldeally, we could specify a 32-bit
memory address to jump to.

°Unfortunately, we can’t fit both a 6-bit
opcode and a 32-bit address into a _
single 32-bit word, so we compromise.

J-Format Instructions (2/5)

°Define “fields” of the following
number of bits each:

| 6 bits| 26 bits |
°As usual, each field has a name:
Iopcodel target address I

°Key Concepts

* Keep opcode field identical to R-format
and I-format for consistency.

« Combine all other fields to make room
for target address.

20

J-Format Instructions (3/5)

°For now, we can specify 26 bits of the
32-bit bit address.
°Optimization:

* Note that, just like with branches, jumps
will only jump to word aligned addresses
(since all instructions are one word long),
so last two bits are always 00 (in binary).

*So let’s just take this for granted and not
even specify them.

+=> 26 bits supplies a 28-bit byte address

J-Format Instructions (5/5)

°Summary:

*New PC = PC[31..28]
|| target address (26 bits)
[l 00

*Note: Il means concatenation
4 bits || 26 bits || 2 bits = 32-bit address

°Understand where each part came
from!

J-Format Instructions (4/5)

°For now, we can specify 28 bits of the
32-bit address.

°Where do we get the other 4 bits?

* By definition, take the 4 highest order bits

from the PC.

* Technically, this means that we cannot
jump to anywhere in memory, but it’s
adequate 99.9999...% of the time, since
programs rarely that long (> 228 or 256 MB

« If we absolutely need to specify a 32-bit
address, we can always put it in a register
and use the jr instruction.

)

Decoding Machine Language

°How do we convert 1s and 0s to C code?
°For each 32 bits:

*Look at opcode value: 0 means R-Format,
2 or 3 mean J-Format, otherwise I-Format.

+» Use instruction type to determine which
fields exist and convert each field into the
decimal equivalent.

*Once we have decimal values, write out
MIPS assembly code.

* Logically convert this MIPS code into valid
C code.




Decoding Example (1/6)

°Here are six machine language
instructions in hex:

00001025
0005402A
11000003
00441020
20A5FFFF
08100001

°Let the first instruction be at address
4,194,304, (0x00400000).

°Next step: convert to binary

Decoding Example (2/6)

°Here are the six machine language
instructions in binary:

00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111
00001000000100000000000000000001

°Next step: separation of fields &
convert each field to decimal

« For all instructions, first 6 bits is opcode,
so can easily determine format/instruction

Decoding Example (3/6)

°Decimal representation, in fields:

Format:

«ITVIV—T

0 0 0 0 37
0 0 5 0 42
4 8 0 +3

0 2 4 2 0 32
8 5 5 -1

2 1,048,577

°Next step: translate to MIPS
instructions

Decoding Example (4/6)

°MIPS Assembly (Part 1):

0x00400000 or $2,80,%0
0x00400004 slt  $8,%0,85
0x00400008 beq  $8,%0,3

0x0040000c add  $2,$2,84
0x00400010 addi $5,%5,-1
0x00400014 j 0x100001

°Next step: translate to more
meaningful instructions (fix the
branch/jump and add labels)

* Remember: jump address add 00 to end

Decoding Example (5/6)
°MIPS Assembly (Part 2):

or sSv0, $0,$80
Loop: slt st0,$0,%a1l
beqg $t0,$0,Fin
add sv0,sv0,$a0
addi s$al,sal,-1
j Loop
Fin:

°Next step: translate to C code (be
creative!

Decoding Example (6/6)

°C code:
*Mapping: $vO0: product
$a0: mcand
$a1: mplier

product = 0;

while (mplier > 0) {
product += mcand;
mplier -= 1;

30




Bitwise Operations (1/2)

°Up until now, we’ve done arithmetic
(add, sub, addi ) and memory
access (1w and sw)

°All of these instructions view contents
of register as a single quantity (such
as a signed or unsigned integer)

°New Perspective: View contents of
register as 32 bits rather than as a
single 32-bit number

Bitwise Operations (2/2)

°Since registers are composed of 32
bits, we may want to access individual
bits rather than the whole.

°Introduce two new classes of
instructions:
* Logical Operators
+ Shift Instructions

Logical Operators (1/4)

°How many of you have taken Math 55?

°Two basic logical operators:

* AND: outputs 1 only if both inputs are 1
*OR: outputs 1 if at least one input is 1
°In general, can define them to accept

>2 inputs, but in the case of MIPS

assembly, both of these accept exactly
2 inputs and produce 1 output

+ Again, rigid syntax, simpler hardware

Logical Operators (2/4)

°Truth Table: standard table listing all
possible combinations of inputs and
resultant output for each

°Truth Table for AND and OR
A B AND OR

- - 0 O
- O = O
- O O O
N =

Logical Operators (3/4)

°Logical Instruction Syntax:
1 234
*where
1) operation name
2) register that will receive value
3) first operand (register)

4) second operand (register) or
immediate (numerical constant)

Logical Operators (4/4)

°Instruction Names:

¥and, or: Both of these expect the third
argument to be a register

¥andi, ori: Both of these expect the third
argument to be an immediate

°MIPS Logical O?erators are all bitwise,
meaning that bit 0 of the output is
Proquced bg_the respective bit 0’s of
he inputs, bit 1 by the bit 1’s, etc.




Shift Instructions (1/4)

°Move (shift) all the bits in a word to the
left or right by a number of bits, filling
the emptied bits with 0s.

« Example: shift right by 8 bits

|0001 0010 0011 0100 0101 0110/0111 1000

0000 0000{0001 0010 0011 0100 0101 0110|
« Example: shift left by 8 bits

0001 0010/0011 0100 0101 0110 0111 1000

|0011 0100 0101 0110 0111 1000/0000 0000

Shift Instructions (2/4)

°Shift Instruction Syntax:
1 234
*where
1) operation name
2) register that will receive value
3) first operand (register)
4) second operand (register)

Shift Instructions (3/4)

°MIPS has three shift instructions:

1. s11 (shift left logical): shifts left and fills
emptied bits with Os

2. sr1 (shift right logical): shifts right and
fills emptied bits with 0s

3. sra (shift right arithmetic): shifts right
and fills emptied bits by sigh extending

Shift Instructions (4/4)
°Example: shift right arith by 8 bits

001 0010 0011 0100 0101 0110J0111 1000

0000 00000001 0010 0011 0100 0101 0110]
°Example: shift right arith by 8 bits

1001 0010 0011 0100 0101 0110j0111 1000

1111 1171[7007 0010 0011 0100 0101 0110

40

Uses for Logical Operators (1/3)

°Note that anding a bit with 0 produces a
0 at the output while anding a bit with 1
produces the original bit.

°This can be used to create a mask.
* Example:
1011 0110 1010 0100 0011 1101 1001 1010

Mask: 0000 0000 0000 0000 00001111 1111 1111]

* The result of anding these two is:
0000 0000 0000 0000 0000{1101 1001 1010

41

Uses for Logical Operators (2/3)

°The second bitstring in the example is
called a mask. It is used to isolate the
rightmost 12 bits of the first bitstring
by masking out the rest of the string
(e.g. setting it to all 0s).

°Thus, the and operator can be used to
set certain portions of a bitstring to 0s,
while leaving the rest alone.

«In particular, if the first bitstring in the
above example were in $t0, then the
following instruction would mask it:

andi $t0,st0,O0xFFF




Uses for Logical Operators (3/3)

°Similarly, note that oring a bit with 1
produces a 1 at the output while oring
a bit with 0 produces the original bit.

°This can be used to force certain bits
of a string to 1s.

*For example, if $t0 contains 0x12345678,
then after this instruction:

ori  $t0, $t0, OxFFFF

* ... $10 contains 0x1234FFFF (e.g. the
high-order 16 bits are untouched, while
the low-order 16 bits are forced to 1s).

43

Uses for Shift Instructions (1/5)

°Suppose we want to isolate byte 0
g_ightmost 8 bits) of a word in $t0.
imply use:

andi $t0,st0, OXFF
°Sqrpose we want to isolate bxte 1
(bit 15 to bit 8) of a word in $t0. We
can use:

andi St0,$t0,0xFF00

but then we still need to shift to the
right by 8 bits...

Uses for Shift Instructions (2/5)

°Instead, use:

sll  $to, $to, 16
srl st0, $t0,24

0001 0010 0011 0100[0101 0110 0111 1000]

[o101 0110:0111 10000000 0000 0000 0000

—

0000 0000 0000 0000 0000 0000|0101 0110

>

45

Uses for Shift Instructions (3/5)

°In decimal:
» Multiplying by 10 is same as shifting left
by 1:
- 714,40 x 10,9 = 71404,
- 5649x 104 =5604,
» Multiplying by 100 is same as shifting left
by 2:
- 714, x 100,, = 71400,
- 564X 100, = 5600,,
. allultiplying by 10" is same as shifting left
y n

Uses for Shift Instructions (4/5)
°In binary:
» Multiplying by 2 is same as shifting left
by 1:
- 11,x10,=110,
- 1010, x 10, = 10100,
» Multiplying by 4 is same as shifting left
by 2:
- 11,x100, = 1100,
- 1010, x 100, = 101000,
. allultiplying by 2" is same as shifting left
y n

47

Uses for Shift Instructions (5/5)

°Since shifting is so much faster than
multiplication (you can imagine how
complicated multiplication Is), a good
compiler usually notices when C code
multiplies by a power of 2 and
compiles it to a shift instruction:

a *= 8; (inC)
would compile to:
sll $s0,%$s0,3 (in MIPS)




Things to Remember (1/3)

°IEEE 754 Floating Point Standard:
Kahan pack as much in as could get
away with

* +/- infinity, Not-a-Number (Nan), Denorms
*4 rounding modes
°Stored Program Concept: Both data and

actual code (instructions) are stored in
the same memory.

°Type is not associated with data, bits
have no meaning unless given in
context

49

Things to Remember (2/3)

°Machine Language Instruction: 32 bits
representing a single MIPS instruction

R opcode rs rt rd | shamt | funct
I | opcode rs rt immediate
J opcode target address

°Instructions formats are kept as similar
as possible.

°Branches and Jumps were optimized
for greater branch distance and hence
strange, so clear these up in your mind
now.

Things to Remember (3/3)

°New Instructions:
and, andi, or, ori

sll, srl, sra




