| CS61C - Machine Structures |
| :---: | :---: |
| Lecture 10 - Floating Point, Part II and |
| Miscellaneous |
| September 29, 2000 |
| David Patterson |
| http://www-inst.eecs.berkeley.edu/~cs61c/ |

Overview

${ }^{\circ}$ Special Floating Point Numbers: NaN, Denorms
${ }^{\circ}$ IEEE Rounding modes
${ }^{\circ}$ Floating Point fallacies, hacks
${ }^{\circ}$ Catchup topics:

- Representation of jump, jump and link
- Reverse time travel:

MIPS machine language
-> MIPS assembly language
-> C code

- Logical, shift instructions (time permiting)

Review

${ }^{\circ}$ Floating Point numbers approximate values that we want to use.
${ }^{\circ}$ IEEE 754 Floating Point Standard is most widely accepted attempt to standardize interpretation of such numbers (\$1T)
${ }^{\circ}$ New MIPS registers(\$£0-\$f31), instruct.:

- Single Precision (32 bits, $2 \times 10^{-38} \ldots 2 \times 10^{38}$): add.s, sub.s, mul.s, div.s
- Double Precision (64 bits, $2 \times 10^{-308} \ldots 2 \times 10^{308}$): add.d, sub.d, mul.d, div.d
${ }^{\circ}$ Type is not associated with data, bits have no meaning unless given in context

MIPS Floating Point Architecture (1/2)

${ }^{\circ} 1990$ Solution: Make a completely separate chip that handles only FP.
${ }^{\circ}$ Coprocessor 1: FP chip

- contains 32 32-bit registers: \$f0, \$£1, ...
- most registers specified in . s and .d instruction refer to this set
- separate load and store: lwc1 and swc 1 ("load word coprocessor 1", "store ...")
- Double Precision: by convention, even/odd pair contain one DP FP number: \$£0/\$f1, \$£2/\$£3, ... , \$£30/\$£31

```
MIPS Floating Point Architecture (2/2)
`}1990\mathrm{ Computer actually contains
    multiple separate chips:
        - Processor: handles all the normal stuff
    -Coprocessor 1: handles FP and only FP;
    - more coprocessors?... Yes, later
    -Today, cheap chips may leave out FP HW
    `}\mathrm{ Instructions to move data between
    main processor and coprocessors:
        ¥mfc0, mtc0, mfc1, mtc1, etc.
```

${ }^{\circ}$ Appendix pages A-70 to A-74 contain many, many more FP operations.

Special Numbers

${ }^{\circ}$ What have we defined so far?
(Single Precision)

Exponent	Significand	Object
0	0	0
0	nonzero	$\underline{? ? ?}$
$1-254$	anything	++ - fl. pt. \#
255	0	$+/-$ infinity
255	nonzero	$\underline{? ? ?}$

${ }^{\circ}$ Professor Kahan had clever ideas; "Waste not, want not"

Representation for Not a Number
${ }^{\circ}$ What do I get if I calculate sqrt (-4.0) or 0/0?

- If infinity is not an error, it may be useful not to crash program for these too.
- Called Not a Number (NaN)
- Exponent = 255, Significand nonzero
${ }^{\circ}$ Why is this useful?
- Hope NaNs help with debugging
- They contaminate: op(NaN,X)=NaN
- OK if calculate but don't use it
- Ask math majors

Special Numbers (cont'd)

${ }^{\circ}$ What have we defined so far? (Single Precision)?

Exponent	Significand	Object
0	0	0
0	nonzero	???
$1-254$	anything	+/- fl. pt. \#
255	0	$+/-$ infinity
255	nonzero	NaN

Representation for Denorms (2/2)

${ }^{\circ}$ Solution:

- We still haven't used Exponent $=0$, Significand nonzero
- Denormalized number: no leading 1
- Smallest representable pos num: - $a=2^{-150}$
- Second smallest representable pos num:
- $\mathrm{b}=\mathbf{2}^{-149}$

Rounding
${ }^{\circ}$ When we perform math on real numbers, we have to worry about rounding
${ }^{\circ}$ The actual math carries two extra bits of precision, and then round to get the proper value
${ }^{\circ}$ Rounding also occurs when converting a double to a single precision value, or converting a floating point number to an integer

4 IEEE Rounding Modes

${ }^{\circ}$ Round towards +infinity

- ALWAYS round "up": 2.001 -> 3
- -2.001 ->-2
${ }^{\circ}$ Round towards -infinity
- ALWAYS round "down": 1.999 -> 1,
--1.999->-2
${ }^{\circ}$ Truncate: 2.001 -> 2, -2.001 -> -2
- Just drop the last bits (round towards 0)
${ }^{\circ}$ Round to (nearest) even
- Normal rounding, almost

Round to Even

${ }^{\circ}$ Round like you learned in grade school
${ }^{\circ}$ Except if the value is right on the borderline, in which case we round to the nearest EVEN number

- 2.5 -> 2
- 3.5 -> 4
${ }^{\circ}$ Insures fairness on calculation
- This way, half the time we round up on tie, the other half time we round down
- Ask statistics majors
${ }^{\circ}$ Default C rounding mode; only Java mode

Floating Point Fallacy

${ }^{\circ}$ FP Add, subtract associative: FALSE!

$$
\cdot x=-1.5 \times 10^{38}, y=1.5 \times 10^{38}, \text { and } z=1.0
$$

$\cdot x+(y+z)=-1.5 \times 10^{38}+\left(1.5 \times 10^{38}+1.0\right)$

$$
=-1.5 \times 10^{38}+\left(1.5 \times 10^{38}\right)=0.0
$$

$\cdot(x+y)+z=\left(-1.5 \times 10^{38}+1.5 \times 10^{38}\right)+1.0$ $=(0.0)+1.0=1.0$
${ }^{\circ}$ Therefore, Floating Point add, subtract are not associative!

- Why? FP result approximates real result!
- This exampe: 1.5×10^{38} is so much larger than 1.0 that $1.5 \times 10^{38}+1.0$ in floating point representation is still 1.5×10^{38}

Casting floats to ints and vice versa
i (int) exp

- Coerces and converts it to the nearest integer
- affected by rounding modes
¥i = (int) (3.14159 * f);
i(float) exp
- converts integer to nearest floating point $¥ £=$ f + (float) i;

```
int -> float -> int
if (i == (int)((float) i)) {
    printf( true );
}
\({ }^{\circ}\) Will not always work
\({ }^{\circ}\) Large values of integers don't have exact floating point representations
\({ }^{\circ}\) Similarly, we may round to the wrong value
```

```
float -> int -> float
if (f == (float)((int) f)) {
    printf( true );
}
* Will not always work
* Small values of floating point don't
    have good integer representations
    *}\mathrm{ Also rounding errors
```


Administrivia
 ${ }^{\circ}$ Need to catchup with Homework
 ${ }^{\circ}$ Reading assignment: Reading 4.8

```
J-Format Instructions (1/5)
\({ }^{\circ}\) For branches, we assumed that we won't want to branch too far, so we can specify change in PC.
\({ }^{\circ}\) For general jumps (j and jal), we may jump to anywhere in memory.
\({ }^{\circ}\) Ideally, we could specify a 32-bit memory address to jump to.
\({ }^{\circ}\) Unfortunately, we can't fit both a 6-bit opcode and a 32 -bit address into a single 32-bit word, so we compromise.
```


J-Format Instructions (2/5)

${ }^{\circ}$ Define "fields" of the following number of bits each:

6 bits	26 bits

${ }^{\circ}$ As usual, each field has a name:

opcode	target address

${ }^{\circ}$ Key Concepts

- Keep opcode field identical to \mathbf{R}-format and l-format for consistency.
- Combine all other fields to make room for target address.

J-Format Instructions (4/5)

${ }^{\circ}$ For now, we can specify 28 bits of the 32-bit address.
${ }^{\circ}$ Where do we get the other 4 bits?

- By definition, take the 4 highest order bits from the PC.
- Technically, this means that we cannot jump to anywhere in memory, but it's adequate 99.9999...\% of the time, since programs rarely that long ($>2^{28}$ or 256 MB)
- If we absolutely need to specify a 32-bit address, we can always put it in a register and use the jr instruction.

J-Format Instructions (5/5)
${ }^{\circ}$ Summary:

- New PC = PC[31..28]
|| target address (26 bits)
|| 00
- Note: Il means concatenation 4 bits || 26 bits || 2 bits = 32 -bit address
${ }^{\circ}$ Understand where each part came from!

Decoding Machine Language

${ }^{\circ}$ How do we convert 1s and Os to C code?
${ }^{\circ}$ For each 32 bits:

- Look at opcode value: 0 means R-Format, 2 or 3 mean J-Format, otherwise l-Format.
- Use instruction type to determine which fields exist and convert each field into the decimal equivalent.
- Once we have decimal values, write out MIPS assembly code.
- Logically convert this MIPS code into valid C code.

```
Decoding Example (1/6)
* Here are six machine language
    instructions in hex:
        00001025
        0005402A
        11000003
        00441020
        00441020
        08100001
`
    4,194,304 10 (0x00400000).
* Next step: convert to binary
```

Decoding Example (2/6)
${ }^{\circ}$ Here are the six machine language instructions in binary:

00000000000000000001000000100101 00000000000001010100000000101010 00010001000000000000000000000011 00000000010001000001000000100000 00100000101001011111111111111111 00001000000100000000000000000001
${ }^{\circ}$ Next step: separation of fields \& convert each field to decimal

For all instructions, first 6 bits is opcode, so can easily determine format/instruction

Decoding Example (3/6)						
Decimal representation, in fields: mat:						
R	0	0	0	2	0	37
R	0	0	5	8	0	42
1	4	8	0		+	
R	0	2	4	2	0	32
R	8	5	5		-	
J	2			48		

${ }^{\circ}$ Next step: translate to MIPS
instructions

Decoding Example (4/6)

${ }^{\circ}$ MIPS Assembly (Part 1):

$0 x 00400000$	or	$\$ 2, \$ 0, \$ 0$
$0 x 00400004$	slt	$\$ 8, \$ 0, \$ 5$
$0 x 00400008$	beq	$\$ 8, \$ 0,3$
$0 x 0040000 \mathrm{c}$	add	$\$ 2, \$ 2, \$ 4$
0x00400010	addi	$\$ 5, \$ 5,-1$
$0 x 00400014$	j	$0 x 100001$

Next step: translate to more meaningful instructions (fix the branch/jump and add labels)

- Remember: jump address add 00 to end


```
Decoding Example (6/6)
O
    -Mapping: $v0: product
                                    $a0: mcand
                                    $a1: mplier
    product = 0;
    while (mplier > 0) {
        product += mcand
        mplier -= 1;
}
```

Bitwise Operations (1/2)

- Up until now, we've done arithmetic (add, sub, addi) and memory access (1 w and sw)
${ }^{\circ}$ All of these instructions view contents of register as a single quantity (such as a signed or unsigned integer)
${ }^{\circ}$ New Perspective: View contents of register as 32 bits rather than as a single 32-bit number

Bitwise Operations (2/2)
${ }^{\circ}$ Since registers are composed of 32 bits, we may want to access individual bits rather than the whole.
${ }^{\circ}$ Introduce two new classes of instructions:

- Logical Operators
- Shift Instructions

Logical Operators (1/4)

${ }^{\circ}$ How many of you have taken Math 55 ?
${ }^{\circ}$ Two basic logical operators:

- AND: outputs 1 only if both inputs are 1
- OR: outputs 1 if at least one input is 1
${ }^{\circ}$ In general, can define them to accept >2 inputs, but in the case of MIPS assembly, both of these accept exactly 2 inputs and produce 1 output
- Again, rigid syntax, simpler hardware

Logical Operators (2/4)
${ }^{\circ}$ Truth Table: standard table listing all possible combinations of inputs and resultant output for each
${ }^{\circ}$ Truth Table for AND and OR

A	B	AND	OR
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

Logical Operators (3/4)

${ }^{\circ}$ Logical Instruction Syntax:
1 2,3,4

- where

1) operation name
2) register that will receive value
3) first operand (register)
4) second operand (register) or immediate (numerical constant)

Logical Operators (4/4)

${ }^{\circ}$ Instruction Names:
¥and, or: Both of these expect the third argument to be a register
¥andi, ori: Both of these expect the third argument to be an immediate
${ }^{\circ}$ MIPS Logical Operators are all bitwise, meaning that bit 0 of the output is produced by the respective bit 0's of the inputs, bit 1 by the bit 1's, etc.

Shift Instructions (1/4)
 ${ }^{\circ}$ Move (shift) all the bits in a word to the
 left or right by a number of bits, filling the emptied bits with 0 s .
 - Example: shift right by 8 bits 00010010001101000101011001111000 00000000000100100011010001010110
 -Example: shift left by 8 bits 00010010001101000101011001111000 00110100010101100111100000000000

Shift Instructions (2/4)

${ }^{\circ}$ Shift Instruction Syntax:
1 2,3,4

- where

1) operation name
2) register that will receive value
3) first operand (register)
4) second operand (register)

Shift Instructions (3/4)

${ }^{\circ}$ MIPS has three shift instructions:

1. sll (shift left logical): shifts left and fills emptied bits with 0s
2. srl (shift right logical): shifts right and fills emptied bits with 0 s
3. sra (shift right arithmetic): shifts right and fills emptied bits by sign extending

Uses for Logical Operators (1/3)
${ }^{\circ}$ Note that anding a bit with 0 produces a 0 at the output while anding a bit with 1 produces the original bit.
${ }^{\circ}$ This can be used to create a mask.

- Example:

10110110101001000011110110011010
Mask: 00000000000000000000111111111111

- The result of anding these two is: 00000000000000000000110110011010

Uses for Logical Operators (2/3)
${ }^{\circ}$ The second bitstring in the example is called a mask. It is used to isolate the rightmost 12 bits of the first bitstring by masking out the rest of the string (e.g. setting it to all 0 s).
${ }^{\circ}$ Thus, the and operator can be used to set certain portions of a bitstring to 0 s , while leaving the rest alone.

- In particular, if the first bitstring in the above example were in $\$ t 0$, then the following instruction would mask it:

```
andi $t0,$t0,0xFFF
```

Uses for Logical Operators (3/3)
${ }^{\circ}$ Similarly, note that oring a bit with 1 produces a 1 at the output while oring a bit with 0 produces the original bit.
${ }^{\circ}$ This can be used to force certain bits of a string to 1 s .

- For example, if \$t0 contains 0×12345678, then after this instruction:
ori $\$ \mathrm{ta}, \$ \mathrm{to}, 0 \times \mathrm{FFFF}$
- ... \$t0 contains 0×1234 FFFF (e.g. the high-order 16 bits are untouched, while the low-order 16 bits are forced to 1 s).

Uses for Shift Instructions (1/5)
${ }^{\circ}$ Suppose we want to isolate byte 0 (rightmost 8 bits) of a word in $\$$ to. Simply use:

```
andi $t0,$t0,0xFF
```

${ }^{\circ}$ Suppose we want to isolate byte 1 (bit 15 to bit 8) of a word in $\$ t 0$. We can use:
andi $\$$ to, \$to, 0xFF00
but then we still need to shift to the right by 8 bits...

```
Uses for Shift Instructions (2/5)
}\mp@subsup{}{}{\circ}\mathrm{ Instead, use:
sll $t0,$t0,16
```

00010010001101000101011001111000

01010110011110000000000000000000 00000000000000000000000001010110

Uses for Shift Instructions (3/5)
${ }^{\circ}$ In decimal:

- Multiplying by 10 is same as shifting left by 1 :
- $714_{10} \times 10_{10}=7140_{10}$
- $56_{10} \times 10_{10}=560_{10}$
- Multiplying by 100 is same as shifting left by 2 :
- $714_{10} \times 100_{10}=71400_{10}$
- $56_{10} \times 100_{10}=5600_{10}$
- Multiplying by 10^{n} is same as shifting left by n

Uses for Shift Instructions (4/5)
${ }^{\circ}$ In binary:

- Multiplying by 2 is same as shifting left by 1 :
- $11_{2} \times 10_{2}=110_{2}$
- $1010_{2} \times 10_{2}=10100_{2}$
- Multiplying by 4 is same as shifting left by 2 :
- $11_{2} \times 100_{2}=1100_{2}$
- $1010_{2} \times 100_{2}=101000_{2}$
- Multiplying by 2^{2} is same as shifting left by n

Uses for Shift Instructions (5/5)
${ }^{\circ}$ Since shifting is so much faster than multiplication (you can imagine how complicated multiplication is), a good compiler usually notices when C code multiplies by a power of 2 and compiles it to a shift instruction:
a *= 8; (inC)
would compile to:
sll $\$ s 0, \$ s 0,3$ (in MIPS)

Things to Remember (1/3)
${ }^{\circ}$ IEEE 754 Floating Point Standard: Kahan pack as much in as could get away with
$\cdot+/$ infinity, Not-a-Number (Nan), Denorms
-4 rounding modes
${ }^{\circ}$ Stored Program Concept: Both data and actual code (instructions) are stored in the same memory.
${ }^{\circ}$ Type is not associated with data, bits have no meaning unless given in context

Things to Remember (2/3)
${ }^{\circ}$ Machine Language Instruction: 32 bits representing a single MIPS instruction

R	opcode	rs	rt	rd	shamt	funct
I	opcode	rs	rt	immediate		
J	opco	target addres				

${ }^{\circ}$ Instructions formats are kept as similar as possible.
${ }^{\circ}$ Branches and Jumps were optimized for greater branch distance and hence strange, so clear these up in your mind now.

Things to Remember (3/3)
${ }^{\circ}$ New Instructions:

```
and, andi, or, ori
sll, srl, sra
```

