
1CS61C L10 Fl. Pt. © UC Regents

CS61C - Machine Structures

Lecture 10 - Floating Point, Part II and
Miscellaneous

September 29, 2000

David Patterson

http://www-inst.eecs.berkeley.edu/~cs61c/
2CS61C L10 Fl. Pt. © UC Regents

Review
°Floating Point numbers approximate
values that we want to use.

° IEEE 754 Floating Point Standard is most
widely accepted attempt to standardize
interpretation of such numbers ($1T)

°New MIPS registers($f0-$f31), instruct.:
• Single Precision (32 bits, 2x10-38… 2x1038):

add.s, sub.s, mul.s, div.s

• Double Precision (64 bits , 2x10-308…2x10308):
add.d, sub.d, mul.d, div.d

°Type is not associated with data, bits
have no meaning unless given in context

3CS61C L10 Fl. Pt. © UC Regents

Overview

°Special Floating Point Numbers: NaN,
Denorms

° IEEE Rounding modes

°Floating Point fallacies, hacks

°Catchup topics:
• Representation of jump, jump and link

• Reverse time travel:
MIPS machine language
-> MIPS assembly language
-> C code

• Logical, shift instructions (time permiting)
4CS61C L10 Fl. Pt. © UC Regents

MIPS Floating Point Architecture (1/2)

°1990 Solution: Make a completely
separate chip that handles only FP.

°Coprocessor 1: FP chip
• contains 32 32-bit registers: $f0, $f1, …

• most registers specified in .s and .d
instruction refer to this set

• separate load and store: lwc1 and swc1
(“load word coprocessor 1”, “store …”)

• Double Precision: by convention,
even/odd pair contain one DP FP number:
$f0/$f1, $f2/$f3, … , $f30/$f31

5CS61C L10 Fl. Pt. © UC Regents

MIPS Floating Point Architecture (2/2)

°1990 Computer actually contains
multiple separate chips:

• Processor: handles all the normal stuff

• Coprocessor 1: handles FP and only FP;

• more coprocessors?… Yes, later

• Today, cheap chips may leave out FP HW

° Instructions to move data between
main processor and coprocessors:
¥mfc0, mtc0, mfc1, mtc1, etc.

°Appendix pages A-70 to A-74 contain
many, many more FP operations.

6CS61C L10 Fl. Pt. © UC Regents

Special Numbers

°What have we defined so far?
(Single Precision)

Exponent Significand Object

0 0 0

0 nonzero ???

1-254 anything +/- fl. pt. #

255 0 +/- infinity

255 nonzero ???

°Professor Kahan had clever ideas;
“Waste not, want not”

7CS61C L10 Fl. Pt. © UC Regents

Representation for Not a Number

°What do I get if I calculate
sqrt(-4.0)or 0/0?

• If infinity is not an error, it may be useful
not to crash program for these too.

• Called Not a Number (NaN)

• Exponent = 255, Significand nonzero

° Why is this useful?

• Hope NaNs help with debugging

• They contaminate: op(NaN,X) = NaN

• OK if calculate but don’t use it

• Ask math majors
8CS61C L10 Fl. Pt. © UC Regents

Special Numbers (cont’d)

°What have we defined so far?
(Single Precision)?

Exponent Significand Object

0 0 0

0 nonzero ???

1-254 anything +/- fl. pt. #

255 0 +/- infinity

255 nonzero NaN

9CS61C L10 Fl. Pt. © UC Regents

Representation for Denorms (1/2)
°Problem: There’s a gap among
representable FP numbers around 0

• Smallest representable pos num:
- a = 1.0… 2 * 2-127 = 2-127

• Second smallest representable pos num:
- b = 1.000……1 2 * 2-127 = 2-127 + 2-150

• a - 0 = 2-127

• b - a = 2-150

b

a0
+-

Gap!Gap!

10CS61C L10 Fl. Pt. © UC Regents

Representation for Denorms (2/2)

°Solution:
• We still haven’t used Exponent = 0,
Significand nonzero

• Denormalized number: no leading 1

• Smallest representable pos num:
- a = 2-150

• Second smallest representable pos num:
- b = 2-149

0
+-

11CS61C L10 Fl. Pt. © UC Regents

Rounding

°When we perform math on real
numbers, we have to worry about
rounding

°The actual math carries two extra bits
of precision, and then round to get the
proper value

°Rounding also occurs when
converting a double to a single
precision value, or converting a
floating point number to an integer

12CS61C L10 Fl. Pt. © UC Regents

4 IEEE Rounding Modes

°Round towards +infinity
• ALWAYS round “up”: 2.001 -> 3

• -2.001 -> -2

°Round towards -infinity
• ALWAYS round “down”: 1.999 -> 1,

• -1.999 -> -2

°Truncate: 2.001 -> 2, -2.001 -> -2
• Just drop the last bits (round towards 0)

°Round to (nearest) even
• Normal rounding, almost

13CS61C L10 Fl. Pt. © UC Regents

Round to Even
°Round like you learned in grade school

°Except if the value is right on the
borderline, in which case we round to the
nearest EVEN number

• 2.5 -> 2

• 3.5 -> 4

° Insures fairness on calculation
• This way, half the time we round up on tie,
the other half time we round down

• Ask statistics majors

°Default C rounding mode; only Java mode
14CS61C L10 Fl. Pt. © UC Regents

Floating Point Fallacy

°FP Add, subtract associative: FALSE!
• x = – 1.5 x 1038, y = 1.5 x 1038, and z = 1.0

• x + (y + z) = –1.5x1038 + (1.5x1038 + 1.0)
= –1.5x1038 + (1.5x1038) = 0.0

• (x + y) + z = (–1.5x1038 + 1.5x1038) + 1.0
= (0.0) + 1.0 = 1.0

°Therefore, Floating Point add, subtract
are not associative!

• Why? FP result approximates real result!

• This exampe: 1.5 x 1038 is so much larger
than 1.0 that 1.5 x 1038 + 1.0 in floating
point representation is still 1.5 x 1038

15CS61C L10 Fl. Pt. © UC Regents

Casting floats to ints and vice versa

¡(int) exp

• Coerces and converts it to the nearest
integer

• affected by rounding modes
¥i = (int) (3.14159 * f);

¡(float) exp

• converts integer to nearest floating point
¥f = f + (float) i;

16CS61C L10 Fl. Pt. © UC Regents

int -> float -> int

°Will not always work

°Large values of integers don’t have
exact floating point representations

°Similarly, we may round to the wrong
value

if (i == (int)((float) i)) {

 printf(true);

}

17CS61C L10 Fl. Pt. © UC Regents

float -> int -> float

°Will not always work

°Small values of floating point don’t
have good integer representations

°Also rounding errors

if (f == (float)((int) f)) {

 printf(true);

}

18CS61C L10 Fl. Pt. © UC Regents

Administrivia

°Need to catchup with Homework

°Reading assignment: Reading 4.8

19CS61C L10 Fl. Pt. © UC Regents

J-Format Instructions (1/5)

°For branches, we assumed that we
won’t want to branch too far, so we
can specify change in PC.

°For general jumps (j and jal), we may
jump to anywhere in memory.

° Ideally, we could specify a 32-bit
memory address to jump to.

°Unfortunately, we can’t fit both a 6-bit
opcode and a 32-bit address into a
single 32-bit word, so we compromise.

20CS61C L10 Fl. Pt. © UC Regents

J-Format Instructions (2/5)

°Define “fields” of the following
number of bits each:

6 bits 26 bits

opcode target address

°As usual, each field has a name:

°Key Concepts
• Keep opcode field identical to R-format
and I-format for consistency.

• Combine all other fields to make room
for target address.

21CS61C L10 Fl. Pt. © UC Regents

J-Format Instructions (3/5)

°For now, we can specify 26 bits of the
32-bit bit address.

°Optimization:
• Note that, just like with branches, jumps
will only jump to word aligned addresses
(since all instructions are one word long),
so last two bits are always 00 (in binary).

• So let’s just take this for granted and not
even specify them.

• => 26 bits supplies a 28-bit byte address

22CS61C L10 Fl. Pt. © UC Regents

J-Format Instructions (4/5)

°For now, we can specify 28 bits of the
32-bit address.

°Where do we get the other 4 bits?
• By definition, take the 4 highest order bits
from the PC.

• Technically, this means that we cannot
jump to anywhere in memory, but it’s
adequate 99.9999…% of the time, since
programs rarely that long (> 228 or 256 MB)

• If we absolutely need to specify a 32-bit
address, we can always put it in a register
and use the jr instruction.

23CS61C L10 Fl. Pt. © UC Regents

J-Format Instructions (5/5)

°Summary:
• New PC = PC[31..28]

|| target address (26 bits)
|| 00

• Note: II means concatenation
4 bits || 26 bits || 2 bits = 32-bit address

°Understand where each part came
from!

24CS61C L10 Fl. Pt. © UC Regents

Decoding Machine Language

°How do we convert 1s and 0s to C code?

°For each 32 bits:
• Look at opcode value: 0 means R-Format,
2 or 3 mean J-Format, otherwise I-Format.

• Use instruction type to determine which
fields exist and convert each field into the
decimal equivalent.

• Once we have decimal values, write out
MIPS assembly code.

• Logically convert this MIPS code into valid
C code.

25CS61C L10 Fl. Pt. © UC Regents

Decoding Example (1/6)

°Here are six machine language
instructions in hex:

00001025
0005402A
11000003
00441020
20A5FFFF
08100001

°Let the first instruction be at address
4,194,30410 (0x00400000).

°Next step: convert to binary

26CS61C L10 Fl. Pt. © UC Regents

Decoding Example (2/6)

°Here are the six machine language
instructions in binary:
 00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111
00001000000100000000000000000001

°Next step: separation of fields &
convert each field to decimal

• For all instructions, first 6 bits is opcode,
so can easily determine format/instruction

27CS61C L10 Fl. Pt. © UC Regents

Decoding Example (3/6)

°Decimal representation, in fields:

0 0 0 2 370

0 0 5 8 420
4 8 0 +3
0 2 4 2 320
8 5 5 -1
2 1,048,577

°Next step: translate to MIPS
instructions

R
R
I
R
R
J

Format:

28CS61C L10 Fl. Pt. © UC Regents

Decoding Example (4/6)

°MIPS Assembly (Part 1):
0x00400000 or $2,$0,$0
0x00400004 slt $8,$0,$5
0x00400008 beq $8,$0,3
0x0040000c add $2,$2,$4
0x00400010 addi $5,$5,-1
0x00400014 j 0x100001

°Next step: translate to more
meaningful instructions (fix the
branch/jump and add labels)

• Remember: jump address add 00 to end

29CS61C L10 Fl. Pt. © UC Regents

Decoding Example (5/6)

°MIPS Assembly (Part 2):

or $v0,$0,$0
Loop: slt $t0,$0,$a1

beq $t0,$0,Fin
add $v0,$v0,$a0
addi $a1,$a1,-1
j Loop

Fin:

°Next step: translate to C code (be
creative!)

30CS61C L10 Fl. Pt. © UC Regents

Decoding Example (6/6)

°C code:
• Mapping: $v0: product

$a0: mcand
$a1: mplier

product = 0;
while (mplier > 0) {

product += mcand;
 mplier -= 1;
}

31CS61C L10 Fl. Pt. © UC Regents

Bitwise Operations (1/2)

°Up until now, we’ve done arithmetic
(add, sub, addi) and memory
access (lw and sw)

°All of these instructions view contents
of register as a single quantity (such
as a signed or unsigned integer)

°New Perspective: View contents of
register as 32 bits rather than as a
single 32-bit number

32CS61C L10 Fl. Pt. © UC Regents

Bitwise Operations (2/2)

°Since registers are composed of 32
bits, we may want to access individual
bits rather than the whole.

° Introduce two new classes of
instructions:

• Logical Operators

• Shift Instructions

33CS61C L10 Fl. Pt. © UC Regents

Logical Operators (1/4)

°How many of you have taken Math 55?

°Two basic logical operators:
• AND: outputs 1 only if both inputs are 1

• OR: outputs 1 if at least one input is 1

° In general, can define them to accept
>2 inputs, but in the case of MIPS
assembly, both of these accept exactly
2 inputs and produce 1 output

• Again, rigid syntax, simpler hardware

34CS61C L10 Fl. Pt. © UC Regents

Logical Operators (2/4)

°Truth Table: standard table listing all
possible combinations of inputs and
resultant output for each

°Truth Table for AND and OR
 A B AND OR

0 0

0 1

1 0

1 1

0

0

0

0
1

1

11

35CS61C L10 Fl. Pt. © UC Regents

Logical Operators (3/4)

°Logical Instruction Syntax:
1 2,3,4

• where

1) operation name

2) register that will receive value

3) first operand (register)

4) second operand (register) or
immediate (numerical constant)

36CS61C L10 Fl. Pt. © UC Regents

Logical Operators (4/4)

° Instruction Names:
¥and, or: Both of these expect the third
argument to be a register

¥andi, ori: Both of these expect the third
argument to be an immediate

°MIPS Logical Operators are all bitwise,
meaning that bit 0 of the output is
produced by the respective bit 0’s of
the inputs, bit 1 by the bit 1’s, etc.

37CS61C L10 Fl. Pt. © UC Regents

Shift Instructions (1/4)

°Move (shift) all the bits in a word to the
left or right by a number of bits, filling
the emptied bits with 0s.

• Example: shift right by 8 bits

0001 0010 0011 0100 0101 0110 0111 1000

0000 0000 0001 0010 0011 0100 0101 0110

• Example: shift left by 8 bits

0001 0010 0011 0100 0101 0110 0111 1000

0011 0100 0101 0110 0111 1000 0000 0000
38CS61C L10 Fl. Pt. © UC Regents

Shift Instructions (2/4)

°Shift Instruction Syntax:
1 2,3,4

• where

1) operation name

2) register that will receive value

3) first operand (register)

4) second operand (register)

39CS61C L10 Fl. Pt. © UC Regents

Shift Instructions (3/4)

°MIPS has three shift instructions:
1. sll (shift left logical): shifts left and fills
emptied bits with 0s

2. srl (shift right logical): shifts right and
fills emptied bits with 0s

3. sra (shift right arithmetic): shifts right
and fills emptied bits by sign extending

40CS61C L10 Fl. Pt. © UC Regents

Shift Instructions (4/4)

°Example: shift right arith by 8 bits
0001 0010 0011 0100 0101 0110 0111 1000

0000 0000 0001 0010 0011 0100 0101 0110

°Example: shift right arith by 8 bits
1001 0010 0011 0100 0101 0110 0111 1000

1111 1111 1001 0010 0011 0100 0101 0110

41CS61C L10 Fl. Pt. © UC Regents

Uses for Logical Operators (1/3)

°Note that anding a bit with 0 produces a
0 at the output while anding a bit with 1
produces the original bit.

°This can be used to create a mask.
• Example:

1011 0110 1010 0100 0011 1101 1001 1010

0000 0000 0000 0000 0000 1111 1111 1111
• The result of anding these two is:

0000 0000 0000 0000 0000 1101 1001 1010

Mask:

42CS61C L10 Fl. Pt. © UC Regents

Uses for Logical Operators (2/3)

°The second bitstring in the example is
called a mask. It is used to isolate the
rightmost 12 bits of the first bitstring
by masking out the rest of the string
(e.g. setting it to all 0s).

°Thus, the and operator can be used to
set certain portions of a bitstring to 0s,
while leaving the rest alone.

• In particular, if the first bitstring in the
above example were in $t0, then the
following instruction would mask it:

andi $t0,$t0,0xFFF

43CS61C L10 Fl. Pt. © UC Regents

Uses for Logical Operators (3/3)

°Similarly, note that oring a bit with 1
produces a 1 at the output while oring
a bit with 0 produces the original bit.

°This can be used to force certain bits
of a string to 1s.

• For example, if $t0 contains 0x12345678,
then after this instruction:

ori $t0, $t0, 0xFFFF

• … $t0 contains 0x1234FFFF (e.g. the
high-order 16 bits are untouched, while
the low-order 16 bits are forced to 1s).

44CS61C L10 Fl. Pt. © UC Regents

Uses for Shift Instructions (1/5)

°Suppose we want to isolate byte 0
(rightmost 8 bits) of a word in $t0.
Simply use:

andi $t0,$t0,0xFF

°Suppose we want to isolate byte 1
(bit 15 to bit 8) of a word in $t0. We
can use:

 andi $t0,$t0,0xFF00

but then we still need to shift to the
right by 8 bits...

45CS61C L10 Fl. Pt. © UC Regents

Uses for Shift Instructions (2/5)

° Instead, use:
sll $t0,$t0,16
srl $t0,$t0,24

0001 0010 0011 0100 0101 0110 0111 1000

0101 0110 0111 1000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0101 0110

46CS61C L10 Fl. Pt. © UC Regents

Uses for Shift Instructions (3/5)

° In decimal:
• Multiplying by 10 is same as shifting left
by 1:

- 71410 x 1010 = 714010

- 5610 x 1010 = 56010

• Multiplying by 100 is same as shifting left
by 2:

- 71410 x 10010 = 7140010

- 5610 x 10010 = 560010

• Multiplying by 10n is same as shifting left
by n

47CS61C L10 Fl. Pt. © UC Regents

Uses for Shift Instructions (4/5)

° In binary:
• Multiplying by 2 is same as shifting left
by 1:

- 112 x 102 = 1102

- 10102 x 102 = 101002

• Multiplying by 4 is same as shifting left
by 2:

- 112 x 1002 = 11002

- 10102 x 1002 = 1010002

• Multiplying by 2n is same as shifting left
by n

48CS61C L10 Fl. Pt. © UC Regents

Uses for Shift Instructions (5/5)

°Since shifting is so much faster than
multiplication (you can imagine how
complicated multiplication is), a good
compiler usually notices when C code
multiplies by a power of 2 and
compiles it to a shift instruction:
a *= 8; (in C)

would compile to:
sll $s0,$s0,3 (in MIPS)

49CS61C L10 Fl. Pt. © UC Regents

Things to Remember (1/3)

° IEEE 754 Floating Point Standard:
Kahan pack as much in as could get
away with

• +/- infinity, Not-a-Number (Nan), Denorms

• 4 rounding modes

°Stored Program Concept: Both data and
actual code (instructions) are stored in
the same memory.

°Type is not associated with data, bits
have no meaning unless given in
context

50CS61C L10 Fl. Pt. © UC Regents

Things to Remember (2/3)

°Machine Language Instruction: 32 bits
representing a single MIPS instruction

opcode rs rt rd functshamt

opcode rs rt immediate

R
I

opcode target addressJ

° Instructions formats are kept as similar
as possible.

°Branches and Jumps were optimized
for greater branch distance and hence
strange, so clear these up in your mind
now.

51CS61C L10 Fl. Pt. © UC Regents

Things to Remember (3/3)

°New Instructions:

and, andi, or, ori

sll, srl, sra

