
CS61C L11 Linker © UC Regents 1

CS61C - Machine Structures

Lecture 11 - Starting a Program

October 4, 2000

David Patterson

http://www-inst.eecs.berkeley.edu/~cs61c/

CS61C L11 Linker © UC Regents 2

Review (1/2)

° IEEE 754 Floating Point Standard:
Kahan pack as much in as could get
away with

• +/- infinity, Not-a-Number (Nan), Denorms

• 4 rounding modes

°Stored Program Concept: Both data and
actual code (instructions) are stored in
the same memory.

°Type is not associated with data, bits
have no meaning unless given in
context

CS61C L11 Linker © UC Regents 3

Things to Remember (1/2)

°Machine Language Instruction: 32 bits
representing a single MIPS instruction

opcode rs rt rd functshamt

opcode rs rt immediate

R
I

opcode target addressJ

° Instructions formats kept similar

°Branches, Jumps optimized for greater
branch distance and hence strange

°New Logical, Shift Instructions:
and, andi, or, ori,sll, srl, sra

CS61C L11 Linker © UC Regents 4

Outline

°Compiler

°Assembler

°Linker

°Loader

°Example

CS61C L11 Linker © UC Regents 5

Steps to Starting a Program
C program: foo.c

Assembly program: foo.s

Executable(mach lang pgm): a.out

Compiler

Assembler

Linker

Loader

Memory

Object(mach lang module): foo.o

lib.o

CS61C L11 Linker © UC Regents 6

Compiler

° Input: High-Level Language Code
(e.g., C, Java)

°Output: Assembly Language Code
(e.g., MIPS)

°Note: Output may contain
pseudoinstructions

°Pseudoinstructions: instructions that
assembler understands but not in
machine (e.g., HW#4); For example:

° mov $s1, $s2 = or $s1, $s2, $zero

CS61C L11 Linker © UC Regents 7

Where Are We Now?
C program: foo.c

Assembly program: foo.s

Executable(mach lang pgm): a.out

Compiler

Assembler

Linker

Loader

Memory

Object(mach lang module): foo.o

lib.o

CS61C L11 Linker © UC Regents 8

Assembler

°Reads and Uses Directives

°Replace Pseudoinstructions

°Produce Machine Language

°Creates Object File

CS61C L11 Linker © UC Regents 9

Assembler Directives (p. A-51 to A-53)

°Give directions to assembler, but do not
produce machine instructions
 .text: Subsequent items put in user text
segment
 .data: Subsequent items put in user data
segment
 .globl sym: declares sym global and can
be referenced from other files
 .asciiz str: Store the string str in
memory and null-terminate it
.word w1 wn: Store the n 32-bit quantities
in successive memory words

CS61C L11 Linker © UC Regents 10

Pseudoinstruction Replacement

°Asm. treats convenient variations of
machine language instructions as if real
instructions
Pseudo: Real:
 subu $sp,$sp,32 addiu $sp,$sp,-32

 sd $a0, 32($sp) sw $a0, 32($sp)
sw $a1, 36($sp)

 mul $t7,$t6,$t5 mul $t6,$t5
mflo $t7

 addu $t0,$t6,1 addiu $t0,$t6,1

 ble $t0,100,loop slti $at,$t0,101
bne $at,$0,loop

 la $a0, str lui $at,left(str)
 ori $a0,$at,right(str)

CS61C L11 Linker © UC Regents 11

Absolute Addresses in MIPS
°Which instructions need relocation
editing?

°J-format: jump, jump and link
j/jal xxxxx

°Loads and stores to variables in static
area, relative to global pointer
lw/sw $gp $x address

°What about conditional branches?
beq/bne $rs $rt address
°PC-relative addressing preserved even
if code moves

CS61C L11 Linker © UC Regents 12

Producing Machine Language (1/2)

°Simple Case
• Arithmetic, Logical, Shifts, and so on.

• All necessary info is within the
instruction already.

°What about Branches?
• PC-Relative

• So once pseudoinstructions are replaced
by real ones, we know by how many
instructions to branch.

°So these can be handled easily.

CS61C L11 Linker © UC Regents 13

Producing Machine Language (2/2)

°What about jumps (j and jal)?
• Jumps require absolute address.

°What about references to data?
¥la gets broken up into lui and ori

• These will require the full 32-bit address
of the data.

°These can’t be determined yet, so we
create two tables…

CS61C L11 Linker © UC Regents 14

Symbol Table

°List of “items” in this file that may be
used by other files.

°What are they?
• Labels: function calling
• Data: anything in the .data section;
variables which may be accessed across
files

°First Pass: record label-address pairs

°Second Pass: produce machine code
• Result: can jump to a later label without
first declaring it

CS61C L11 Linker © UC Regents 15

Relocation Table

°List of “items” for which this file
needs the address.

°What are they?
• Any label jumped to: j or jal

- internal

- external (including lib files)

• Any piece of data
- such as the la instruction

CS61C L11 Linker © UC Regents 16

Object File Format

°object file header: size and position of
the other pieces of the object file

° text segment: the machine code

°data segment: binary representation of
the data in the source file

°relocation information: identifies lines
of code that need to be “handled”

°symbol table: list of this file’s labels
and data that can be referenced

°debugging information

CS61C L11 Linker © UC Regents 17

Where Are We Now?
C program: foo.c

Assembly program: foo.s

Executable(mach lang pgm): a.out

Compiler

Assembler

Linker

Loader

Memory

Object(mach lang module): foo.o

lib.o

CS61C L11 Linker © UC Regents 18

Link Editor/Linker (1/2)

°What does it do?

°Combines several object (.o) files into
a single executable (“linking”)

°Enable Separate Compilation of files
• Changes to one file do not require
recompilation of whole program

- Windows NT source is >30 M lines of code!
And Growing!

• Called a module
• Link Editor name from editing the “links”
in jump and link instructions

CS61C L11 Linker © UC Regents 19

Link Editor/Linker (2/2)

°Step 1: Take text segment from each
.o file and put them together.

°Step 2: Take data segment from each
.o file, put them together, and
concatenate this onto end of text
segments.

°Step 3: Resolve References
• Go through Relocation Table and handle
each entry

• That is, fill in all absolute addresses

CS61C L11 Linker © UC Regents 20

Four Types of Addresses

°PC-Relative Addressing (beq, bne):
never relocate

°Absolute Address (j, jal): always
relocate

°External Reference (usually jal):
always relocate

°Data Reference (often lui and ori):
always relocate

CS61C L11 Linker © UC Regents 21

Resolving References (1/2)

°Linker assumes first word of first text
segment is at address 0x00000000.

°Linker knows:
• length of each text and data segment
• ordering of text and data segments

°Linker calculates:
• absolute address of each label to be
jumped to (internal or external) and each
piece of data being referenced

CS61C L11 Linker © UC Regents 22

Resolving References (2/2)

°To resolve references:
• search for reference (data or label) in all
symbol tables

• if not found, search library files
(for example, for printf)

• once absolute address is determined, fill
in the machine code appropriately

°Output of linker: executable file
containing text and data (plus header)

CS61C L11 Linker © UC Regents 23

Administrivia
°Reading assignment:

• P&H A.8, 8.1-8.4

CS61C L11 Linker © UC Regents 24

Where Are We Now?
C program: foo.c

Assembly program: foo.s

Executable(mach lang pgm): a.out

Compiler

Assembler

Linker

Loader

Memory

Object(mach lang module): foo.o

lib.o

CS61C L11 Linker © UC Regents 25

Loader (1/3)

°Executable files are stored on disk.

°When one is run, loader’s job is to
load it into memory and start it
running.

° In reality, loader is the operating
system (OS)

• loading is one of the OS tasks

CS61C L11 Linker © UC Regents 26

Loader (2/3)

°So what does a loader do?

°Reads executable file’s header to
determine size of text and data
segments

°Creates new address space for
program large enough to hold text and
data segments, along with a stack
segment

°Copies instructions and data from
executable file into the new address
space (this may be anywhere in
memory)

CS61C L11 Linker © UC Regents 27

Loader (3/3)

°Copies arguments passed to the
program onto the stack

° Initializes machine registers
• Most registers cleared, but stack pointer
assigned address of 1st free stack
location

°Jumps to start-up routine that copies
program’s arguments from stack to
registers and sets the PC

• If main routine returns, start-up routine
terminates program with the exit system
call

CS61C L11 Linker © UC Regents 28

Example: C ⇒ Asm ⇒ Obj ⇒ Exe ⇒ Run
#include <stdio.h>

int main (int argc, char *argv[]) {

 int i;

 int sum = 0;

 for (i = 0; i <= 100; i = i + 1)
sum = sum + i * i;

 printf ("The sum from 0 .. 100 is %d\n",
sum);

}

CS61C L11 Linker © UC Regents 29

Example: C ⇒ Asm ⇒ Obj ⇒ Exe ⇒ Run
.text
.align 2
.globl main
main:
subu $sp,$sp,32
sw $ra, 20($sp)
sd $a0, 32($sp)
sw $0, 24($sp)
sw $0, 28($sp)
loop:
lw $t6, 28($sp)
mul $t7, $t6,$t6
lw $t8, 24($sp)
addu $t9,$t8,$t7
sw $t9, 24($sp)

 addu $t0, $t6, 1
sw $t0, 28($sp)
ble $t0,100, loop
la $a0, str
lw $a1, 24($sp)
jal printf
move $v0, $0
lw $ra, 20($sp)
addiu $sp,$sp,32
j $ra
.data
.align 0
str:
.asciiz "The sum
from 0 .. 100 is
%d\n"

CS61C L11 Linker © UC Regents 30

Symbol Table Entries

°Label Address

 main:

 loop:

 str:

 printf:

?

CS61C L11 Linker © UC Regents 31

Example: C ⇒ Asm ⇒ Obj ⇒ Exe ⇒ Run

00 addiu $29,$29,-32
04 sw $31,20($29)
08 sw $4, 32($29)
0c sw $5, 36($29)
10 sw $0, 24($29)
14 sw $0, 28($29)
18 lw $14, 28($29)
1c multu $14, $14
20 mflo $15
24 lw $24, 24($29)
28 addu $25,$24,$15
2c sw $25, 24($29)

30 addiu $8,$14, 1
34 sw $8,28($29)
38 slti $1,$8, 101
3c bne $1,$0, loop
40 lui $4, l.str
44 ori $4,$4,r.str
48 lw $5,24($29)
4c jal printf
50 add $2, $0, $0
54 lw $31,20($29)
58 addiu $29,$29,32
5c jr $31

•Remove pseudoinstructions, assign addresses

CS61C L11 Linker © UC Regents 32

Symbol Table Entries

°Symbol Table
• Label Address
main: 0x00000000

loop: 0x00000018

str: 0x10000430

printf: 0x000003b0

°Relocation Information
• Address Instr. Type Dependency
¥0x0000004c jal printf

CS61C L11 Linker © UC Regents 33

Example: C ⇒ Asm ⇒ Obj ⇒ Exe ⇒ Run

00 addiu $29,$29,-32
04 sw $31,20($29)
08 sw $4, 32($29)
0c sw $5, 36($29)
10 sw $0, 24($29)
14 sw $0, 28($29)
18 lw $14, 28($29)
1c multu $14, $14
20 mflo $15
24 lw $24, 24($29)
28 addu $25,$24,$15
2c sw $25, 24($29)

30 addiu $8,$14, 1
34 sw $8,28($29)
38 slti $1,$8, 101
3c bne $1,$0, -10
40 lui $4, 4096
44 ori $4,$4,1072
48 lw $5,24($29)
4c jal 812
50 add $2, $0, $0
54 lw $31,20($29)
58 addiu $29,$29,32
5c jr $31

•Edit Addresses: start at 0x0040000

CS61C L11 Linker © UC Regents 34

Example: C ⇒ Asm ⇒ Obj ⇒ Exe ⇒ RunRun
0x004000 00100111101111011111111111100000
0x004004 10101111101111110000000000010100
0x004008 10101111101001000000000000100000
0x00400c 10101111101001010000000000100100
0x004010 10101111101000000000000000011000
0x004014 10101111101000000000000000011100
0x004018 10001111101011100000000000011100
0x00401c 10001111101110000000000000011000
0x004020 00000001110011100000000000011001
0x004024 00100101110010000000000000000001
0x004028 00101001000000010000000001100101
0x00402c 10101111101010000000000000011100
0x004030 00000000000000000111100000010010
0x004034 00000011000011111100100000100001
0x004038 00010100001000001111111111110111
0x00403c 10101111101110010000000000011000
0x004040 00111100000001000001000000000000
0x004044 10001111101001010000000000011000
0x004048 00001100000100000000000011101100
0x00404c 00100100100001000000010000110000
0x004050 10001111101111110000000000010100
0x004054 00100111101111010000000000100000
0x004058 00000011111000000000000000001000
0x00405c 00000000000000000001000000100001

CS61C L11 Linker © UC Regents 35

Things to Remember (1/3)
C program: foo.c

Assembly program: foo.s

Executable(mach lang pgm): a.out

Compiler

Assembler

Linker

Loader

Memory

Object(mach lang module): foo.o

lib.o

CS61C L11 Linker © UC Regents 36

Things to Remember (2/3)

°Compiler converts a single HLL file
into a single assembly language file.

°Assembler removes pseudos,
converts what it can to machine
language, and creates a checklist for
the linker (relocation table). This
changes each .s file into a .o file.

°Linker combines several .o files and
resolves absolute addresses.

°Loader loads executable into memory
and begins execution.

CS61C L11 Linker © UC Regents 37

Things to Remember 3/3

°Stored Program concept mean
instructions just like data, so can take data
from storage, and keep transforming it
until load registers and jump to routine to
begin execution
• Compiler ⇒ Assembler ⇒ Linker (⇒ Loader)

°Assembler does 2 passes to resolve
addresses, handling internal forward
references

°Linker enables separate compilation,
libraries that need not be compiled, and
resolves remaining addresses

