Review
°1/O gives computers their 5 senses

CS61C - Machine Structures °l/O speed range is million to one
°Processor speed means must
Lecture 14 - Operating System Support synchronize with 1/0 devices before use

and Prioritized Interrupts
October (Friday the) 13(th), 2000
David Patterson

°Polling works, but expensive
* processor repeatedly queries devices

°Interrupts works, more complex

http://www-inst.eecs.berkeley.edu/~cs61c/ - devices causes an exception, causing
OS to run and deal with the device

°l/O control leads to Operating Systems

2

Outline Polling vs. Interrupt Analogy

°Instruction rt for °Imagine yourself on a long road tri
struction Set Support for 0S with your 10-year-old younger brot?ner...

°Handling a Single Interrupt (You: I/O device, brother: CPU)

°Prioritized Interrupts °Polling:

°Re-entrant Interrupt Routine « “Are we there yet? Are we there yet? Are

we there yet?”
* CPU not doing anything useful

°Interrupt:

« Stuff him a color gameboy,
“interrupt” him when arrive at destination

* CPU does useful work while I/O busy

OS: I/0 Requirements

°The OS must be able to prevent:

° r r 0 Registers:
* The user program from communicating with Coprocessor 0 Registers

] 1 name number usage
the I/0 device directly BadVAddr $8 Addr of bad instr

Review of Coprocessor 0 Registers

. Status $12 Interrupt enable
°If user programs could perform /O directly: Cause $13 Exception type
. EPC $14 Instruction address

*No protection to the shared I/O resources

o I . °Different registers from integer

3 types of communication are required: registers, jL?St as Floating Pgint has
* The OS must be able to give commands to the another set of registers independent
1/0 devices

from integer registers

* The I/O device notify OS when the I/O device * Floating Point called “Coprocessor 1”,
has completed an operation or an error has own set of registers and data

+ Data transfers between memory and I/O device transfer instructions

5

Instruction Set Support for OS (1/2)

°How to turn off interrupts during
interrupt routine?

°Bit in Status Register determines
whether or not interrupts enabled:
Interrupt Enable bit (IE) (0 = off, 1 = on)

(described later) IE| Status Register

Kernel/User Mode

°Generally restrict device access to OS
°"HOW?

°Add a “mode bit” to the machine: K/U

°Only allow SW in “kernel mode” to
access device registers

°If user programs could access device
directly?
« could destroy each others data, ...
* might break the devices, ...

Syscall

°How does user invoke the 0S?

esyscall instruction: invoke the kernel
(Go to 0x80000080, change to kernel
mode)

* By software convention, $v0 has system
service requested: OS performs request

Instruction Set Support for OS (2/2)

°How to prevent user program from
turning off interrupts (forever)?

« Bit in Status Register determines whether in
user mode or OS (kernel) mode:
Kernel/User bit (KU) (0 = kernel, 1 = user)

Assume Unused KU|E| Status Register

* On exception/interrupt disable interrupts
(IE=0) and go into kernel mode (KU=0)

Crossing the System Boundary

°System loads user program into

memory and ‘gives’ it use of the
processor
°Switch back [T —
*SYSCALL Mem
i Syste
- request service
- 10
* TRAP (overflow)
oy W
« Interrupt v & > N
=

SPIM OS Services via Syscall

Service Code Args Result
(put in $vo0)

print_int 1 | $a0 =integer
print_float |2 | $f12 =float
print_double 3 | $£12 = double
print_string |4_|_$a0=string_| __________]
read_int 5 integer (in $v0)
read_float |6 float (in $£0)
read_double| 7 double (in $£0)
read_string (8 | $a0 = buffer,

I e sal=length | ___________|
sbrk 190 $a0 ="amounf address(in $v0)

°Note: most OS services deal with I/0

Example: User invokes OS (SPIM)

°Print “the answer = 42”

°First print “the answer =":

.data

str: .asciiz "the answer = "
.text

1i $vo0,4 # 4=code for print str
la $a0,str # address of string
syscall # print the string

°Now print 42

1i $vo0,1 # l=code for print int
1i $a0,42 # integer to print
syscall # print int

Handling a Single Interrupt (1/3)

°An interrupt has occurred, then what?

+ Automatically, the hardware copies PC
into EPC ($14 on cop0) and puts correct
code into Cause Reg ($13 on cop0)

» Automatically, PC is set to 0x80000080,
process enters kernel mode, and
interrupt handler code begins execution

+Interrupt Handler code: Checks Cause
Register (bits 5 to 2 of $13 in cop0) and
jumps to portion of interrupt handler
which handles the current exception

Handling a Single Interrupt (3/3)

* When the interrupt is handled, copy the
value from EPC to the PC.

« Call instruction rfe (return from
exception), which will return process to
user mode and reset state to the way it
was before the interrupt

°What about multiple interrupts?

Administrivia

°Midterm will be Wed Oct 25 5-8 P.M.
*1 Pimintel

» Midterm conflicts? Talk to TA about
taking early midterm ("beta tester")

+ 2 sides of paper with handwritten notes;
no calculators

* Sample midterm will be online soon
(Monday?)

 Old midterms will be online soon

°Rest of homework assignments are
online: 6,7, 8

Handling a Single Interrupt (2/3)

°Sample Interrupt Handler Code
.text 0x80000080
mfcO0 $k0,$13 # $13 is Cause Reg
sll $k0,$k0,26 # isolate
srl $k0,$k0,28 # Cause bits

°Notes:
*Don’t need to save $k0 or $k1

- MIPS software convention to provide temp
registers for operating system routines

- Application software cannot use them
 Can only work on CPU, not on cop0

16

Multiple Interrupts

°Problem: What if we’re handling an
Overflow interrupt and an I/O interrupt
(printer ready, for example) comes in?

°Options:

«drop any conflicting interrupts:
unrealistic, they may be important

« simultaneously handle multiple interrupts:
unrealistic, may not be able to synchronize
them (such as with multiple I/O interrupts)

+ queue them for later handling: sounds
good

Prioritized Interrupts (1/3)

°Question: Suppose we’re dealing with
a computer runnlnf] a nuclear facility.
What if we’re handling an Overflow
interrupt and a Nuclear Meltdown
Imminent interrupt comes in?

°Answer: We need to categorize and
Prioritize interrupts so we can handle
hem in order of urgency: emergency
vs. luxury.

Prioritized Interrupts (3/3)

°To implement, we need an Exception
Stack:

« portion of address space allocated for
stack of “Exception Frames”

+ each frame represents one interrupt:
contains priority level as well as enough
info to restart handling it if necessary

Modified Interrupt Handler (2/3)

°When next (or any later) interrupt comes
in:

«interrupt the first one

«disable interrupts (in Status Register)

*save EPC, Cause, Status and Priority Level
(and maybe more) on Exception Stack

» determine whether new one preempts old
one

- if no, re-enable interrupts and continue with
old one

- if yes, may have to save state for the old one,
then re-enable interrupts, then handle new one

23

Prioritized Interrupts (2/3)

°0S convention to simplify software:

* Process cannot be preempted by
interrupt at same or lower "level”

* Return to interrupted code as soon as no
more interrupts at a higher level

* When an interrupt is handled, take the
highest priority interrupt on the queue

- may be partially handled, may not, so we
may need to save state of interrupts(!)

20

Modified Interrupt Handler (1/3)

°Problem: When an interrupt comes in,
EPC and Cause get overwritten
immediately by hardware. Lost EPC
means loss of user program.

°Solution: Modify interrupt handler.
When first interrupt comes in:
« disable interrupts (in Status Register)

»save EPC, Cause, Status and Priority
Level on Exception Stack

*re-enable interrupts
« continue handling current interrupt

Modified Interrupt Handler (3/3)

°Notes:
+ Disabling interrupts is dangerous

*So we disable them for as short a time as
possible: long enough to save vital info
onto Exception Stack

°This new scheme allows us to handle
many interrupts effectively.

24

Interrupt Levels in MIPS?

°What are they? —

-y < 2
S reio .
Ej/ :iij%g' '\?. —_
°lt depends what the MIPS chip is

inside of: differ by app Casio PalmPC,
Sony Playstation, HP LaserJet printer

°MIPS architecture enables priorities
for different I/0 events

Improving Data Transfer Performance

°Thus far: OS give commands to I/0,
1/0 device notify OS when the 1/0 device
completed operation or an error

°What about data transfer to I/O device?
* Processor busy doing loads/stores
between memory and I/0O Data Register
°ldeal: specify the block of memory to be
transferred, be notified on completion?

* Direct Memory Access (DMA) : a simple
computer transfers a block of data to/from
memory and |/O, interrupting upon done

Details not covered

°MIPS has a field to record all pending
interrupts so that none are lost while
interrupts are off; in Cause register

°The Interrupt Priority Level that the
CPU is running at is set in memory

°MIPS has a field in that can mask
interrupts of different priorities to
implement priority levels; in Status
register

°MIPS has limited nesting of saving
KU,LIE bits to recall in case higher
priority interrupts; in Status Register

Interrupt Levels in MIPS Architecture

°Conventionally, from highest level to
lowest level exception/interrupt levels:

*Bus error

+lllegal Instruction/Address trap

+ High priority I/0O Interrupt (fast response)
+ Low priority I/0 Interrupt (slow response)

« (later in course, will talk about other
events with other levels)

26

Example: code in DMA controller
°DMA code from Disk Device to Memory

.data
Count: .word 4096
Start: .space 4096
.text

Initial: 1w $s0, Count # No. chars
la $sl, Start # @next char
Wait: lw $s2, DiskControl
andi $s2,$s2,1 # select Ready
beq $s2,$0,Wait # spinwait
1b $t0, DiskData # get byte
sb $t0, 0($sl) # transfer
addiu $s0,$s0,-1 # Count--
addiu $s1,$sl1l,1 # Start++
bne $s0,$0,Wait # next char

°DMA “computer” in parallel with CPU

Interrupts while serving interrupts?

°Suppose there was an interrupt while
the interrupt enable or mask bit is off:
what should you do? (cannot ignore)

°Cause register has field--Pendinﬁ
,nterru%tsg(PI)-- 5 bits wide (bits15:11)
for each of the 5 HW interrupt levels

* Bit becomes 1 when an interrupt at its
level has occurred but not yet serviced

* Interrupt routine checks pending
interrupts ANDed with interrupt mask to
decide what to service

Bl Cause Register

30

support for OS: User => System mode

« Bit in Status Register determines whether in
user mode or OS (kernel) mode:
Kernel/User bit (KU) (0 = kernel, 1 = user)

(described later) Ku|E| Status Register

» On exception/interrupt disable interrupts
(IE=0) and go into kernel mode (KU=0)

°How remember old KU, IE bits?

» Hardware copies Current KU and IE bits (0-1)
into Previous KU and IE bits (2-3)

¥] Stat
(described later) Kl7|IE Regailsltj:r

Prioritizing Interrupts
°How implement interrupt levels?
°Allow selective interruption via Interrupt

Mask(IM) in Status Register: 5 for HW
interrupts

« Interrupt only if IE==1 AND Mask bit ==
(bits 15:11 of SR) for that interrupt level

+ Set Mask Bits above your level to 1

°To support interrupts of interrupts, have
3 deep s(t1ack in Status for IE,K/U bits:

0), (3:2), OId (5:4)
M I:’L{IE y Status
Register
0 33

Re-entrant Interrupt Routine?

°How allow interrupt of interrupts and
safely save registers?

°Stack?

* Resources consumed by each exception,
so cannot tolerate arbitrary deep nesting
of exceptions/interrupts

°With priority level system onl

interrupted by higher priority¥nterrupt,
so cannot be recursive

°= Only need one save area
(“exception frame”) per priority level

support for OS: System => user mode

°OS saves user registers, performs its
task and restores user registers.
«can JR back to value saved in EPC

*how to get back to user mode?

°use Return from Exception (rfe)

. Status
(described later) 5 IE Register

Revised Interrupt Routine 2/2
°Jump to appropriate interrupt routine

°0On Return, disable interrupts using
Current IE bit of Status Register

°Then restore saved registers, previous
KU,IE bits of Status (via rfe) and return
to instruction determined by old EPC

Old

M KL{IE Status Reg Before

' '\‘ rée

M KUIEKUIE v
B Status Reg After

34

Things to Remember

°Kernel Mode v. User Mode: OS can
provide security and fairness

°Syscall: provides a way for a
programmer to avoid having to know
details of each I/0 device

°To be acceptable, interrupt handler
must:

« service all interrupts (no drops)
* service by priority

* make all users believe that no interrupt
has occurred

