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Review
° I/O gives computers their 5 senses

° I/O speed range is million to one

°Processor speed means must
synchronize with I/O devices before use

°Polling works, but expensive
• processor repeatedly queries devices

° Interrupts works, more complex
• devices causes an exception, causing
OS to run and deal with the device

° I/O control leads to Operating Systems
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Outline

° Instruction Set Support for OS

°Handling a Single Interrupt

°Prioritized Interrupts

°Re-entrant Interrupt Routine
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Polling vs. Interrupt Analogy

° Imagine yourself on a long road trip
with your 10-year-old younger brother…
(You: I/O device, brother: CPU)

°Polling:
• “Are we there yet? Are we there yet? Are
we there yet? ….”

• CPU not doing anything useful

° Interrupt:
• Stuff him a color gameboy,
“interrupt” him when arrive at destination

• CPU does useful work while I/O busy
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OS: I/O Requirements
°The OS must be able to prevent:

• The user program from communicating with
the I/O device directly

° If user programs could perform I/O directly:
• No protection to the shared I/O resources

°3 types of communication are required:
• The OS must be able to give commands to the
I/O devices

• The I/O device notify OS when the I/O device
has completed an operation or an error

• Data transfers between memory and I/O device
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Review of Coprocessor 0 Registers

°Coprocessor 0 Registers:
name number usage
BadVAddr $8 Addr of bad instr
Status $12 Interrupt enable
Cause $13 Exception type
EPC $14 Instruction address

°Different registers from integer
registers, just as Floating Point has
another set of registers independent
from integer registers

• Floating Point called “Coprocessor 1”,
has own set of registers and data
transfer instructions
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Instruction Set Support for OS (1/2)

°How to turn off interrupts during
interrupt routine?

°Bit in Status Register determines
whether or not interrupts enabled:
Interrupt Enable bit (IE) (0 ⇒ off, 1 ⇒ on)

Status Register(described later) IE
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Instruction Set Support for OS (2/2)

°How to prevent user program from
turning off interrupts (forever)?
• Bit in Status Register determines whether in
user mode or OS (kernel) mode:
Kernel/User bit (KU) (0 ⇒ kernel, 1 ⇒ user)

Status RegisterAssume Unused IEKU

• On exception/interrupt disable interrupts
(IE=0) and go into kernel mode (KU=0)
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Kernel/User Mode

°Generally restrict device access to OS

°HOW?

°Add a “mode bit” to the machine: K/U

°Only allow SW in “kernel mode” to
access device registers

° If user programs could access device
directly?

• could destroy each others data, ...

• might break the devices, …

CS61C L14 Interrupts © UC Regents 10

Crossing the System Boundary

°System loads user program into
memory and ‘gives’ it use of the
processor

°Switch back
• SYSCALL

- request service

- I/O

• TRAP (overflow)

• Interrupt

Proc Mem

I/O Bus

cmd reg.
data reg.

 System

 User
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Syscall

°How does user invoke the OS?
•syscall instruction: invoke the kernel
(Go to 0x80000080, change to kernel
mode)

• By software convention, $v0 has system
service requested: OS performs request
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SPIM OS Services via Syscall

°Note: most OS services deal with I/O

  print_int 1 $a0 = integer
print_float 2 $f12 = float
print_double 3 $f12 = double
print_string 4 $a0 = string
read_int 5 integer (in $v0)
read_float 6 float (in $f0)
read_double 7 double (in $f0)
read_string 8 $a0 = buffer,

$a1 = length
sbrk 9 $a0 = amount address(in $v0)
exit 10

   Service Code Args Result
              (put in $v0)



CS61C L14 Interrupts © UC Regents 13

Example: User invokes OS (SPIM)

°Print “the answer = 42”

°First print “the answer =”:
.data
str: .asciiz "the answer = "
.text
li $v0,4 # 4=code for print_str
la $a0,str # address of string
syscall # print the string

°Now print 42
 li $v0,1 # 1=code for print_int
li $a0,42 # integer to print
syscall # print int
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Administrivia

°Midterm will be Wed Oct 25 5-8 P.M.
• 1 Pimintel

• Midterm conflicts? Talk to TA about
taking early midterm ("beta tester")

• 2 sides of paper with handwritten notes;
no calculators

• Sample midterm will be online soon
(Monday?)

• Old midterms will be online soon

°Rest of homework assignments are
online: 6, 7, 8
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Handling a Single Interrupt (1/3)

°An interrupt has occurred, then what?
• Automatically, the hardware copies PC
into EPC ($14 on cop0) and puts correct
code into Cause Reg ($13 on cop0)

• Automatically, PC is set to 0x80000080,
process enters kernel mode, and
interrupt handler code begins execution

• Interrupt Handler code: Checks Cause
Register (bits 5 to 2 of $13 in cop0) and
jumps to portion of interrupt handler
which handles the current exception
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Handling a Single Interrupt (2/3)

°Sample Interrupt Handler Code
.text 0x80000080

mfc0  $k0,$13  # $13 is Cause Reg

sll   $k0,$k0,26  # isolate

srl   $k0,$k0,28  #   Cause bits

°Notes:
• Don’t need to save $k0 or $k1

- MIPS software convention to provide temp
registers for operating system routines

- Application software cannot use them

• Can only work on CPU, not on cop0
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Handling a Single Interrupt (3/3)

• When the interrupt is handled, copy the
value from EPC to the PC.

• Call instruction rfe (return from
exception), which will return process to
user mode and reset state to the way it
was before the interrupt

°What about multiple interrupts?
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Multiple Interrupts

°Problem: What if we’re handling an
Overflow interrupt and an I/O interrupt
(printer ready, for example) comes in?

°Options:
• drop any conflicting interrupts:
unrealistic, they may be important

• simultaneously handle multiple interrupts:
unrealistic, may not be able to synchronize
them (such as with multiple I/O interrupts)

• queue them for later handling: sounds
good
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Prioritized Interrupts (1/3)

°Question: Suppose we’re dealing with
a computer running a nuclear facility.
What if we’re handling an Overflow
interrupt and a Nuclear Meltdown
Imminent interrupt comes in?

°Answer: We need to categorize and
prioritize interrupts so we can handle
them in order of urgency: emergency
vs. luxury.

CS61C L14 Interrupts © UC Regents 20

Prioritized Interrupts (2/3)

°OS convention to simplify software:
• Process cannot be preempted by
interrupt at same or lower "level"

• Return to interrupted code as soon as no
more interrupts at a higher level

• When an interrupt is handled, take the
highest priority interrupt on the queue

- may be partially handled, may not, so we
may need to save state of interrupts(!)
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Prioritized Interrupts (3/3)

°To implement, we need an Exception
Stack:

• portion of address space allocated for
stack of “Exception Frames”

• each frame represents one interrupt:
contains priority level as well as enough
info to restart handling it if necessary
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Modified Interrupt Handler (1/3)

°Problem: When an interrupt comes in,
EPC and Cause get overwritten
immediately by hardware.  Lost EPC
means loss of user program.

°Solution: Modify interrupt handler.
When first interrupt comes in:

• disable interrupts (in Status Register)

• save EPC, Cause, Status and Priority
Level on Exception Stack

• re-enable interrupts

• continue handling current interrupt

CS61C L14 Interrupts © UC Regents 23

Modified Interrupt Handler (2/3)

°When next (or any later) interrupt comes
in:

• interrupt the first one

• disable interrupts (in Status Register)

• save EPC, Cause, Status and Priority Level
(and maybe more) on Exception Stack

• determine whether new one preempts old
one

- if no, re-enable interrupts and continue with
old one

- if yes, may have to save state for the old one,
then re-enable interrupts, then handle new one
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Modified Interrupt Handler (3/3)

°Notes:
• Disabling interrupts is dangerous

• So we disable them for as short a time as
possible: long enough to save vital info
onto Exception Stack

°This new scheme allows us to handle
many interrupts effectively.
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Interrupt Levels in MIPS?

°What are they?

° It depends what the MIPS chip is
inside of: differ by app Casio PalmPC,
Sony Playstation, HP LaserJet printer

°MIPS architecture enables priorities
for different I/O events
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Interrupt Levels in MIPS Architecture

°Conventionally, from highest level to
lowest level exception/interrupt levels:

• Bus error

• Illegal Instruction/Address trap

• High priority I/O Interrupt (fast response)

• Low priority I/O Interrupt (slow response)

• (later in course, will talk about other
events with other levels)
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Improving Data Transfer Performance

°Thus far: OS give commands to I/O,
I/O device notify OS when the I/O device
completed operation or an error

°What about data transfer to I/O device?
• Processor busy doing loads/stores
between memory and I/O Data Register

° Ideal: specify the block of memory to be
transferred, be notified on completion?

• Direct Memory Access (DMA) : a simple
computer transfers a block of data to/from
memory and I/O, interrupting upon done
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Example:  code in DMA controller
°DMA code from Disk Device to Memory
  .data
Count: .word  4096
Start: .space 4096

°DMA “computer” in parallel with CPU

  .text
Initial: lw $s0, Count # No. chars

la $s1, Start # @next char
 Wait: lw $s2, DiskControl

andi $s2,$s2,1 # select Ready
beq $s2,$0,Wait # spinwait
lb $t0, DiskData # get byte
sb $t0, 0($s1) # transfer
addiu $s0,$s0,-1 # Count--
addiu $s1,$s1,1  # Start++
bne   $s0,$0,Wait # next char
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Details not covered

°MIPS has a field to record all pending
interrupts so that none are lost while
interrupts are off; in Cause register

°The Interrupt Priority Level that the
CPU is running at is set in memory

°MIPS has a field in that can mask
interrupts of different priorities to
implement priority levels; in Status
register

°MIPS has limited nesting of saving
KU,IE bits to recall in case higher
priority interrupts; in Status Register
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Interrupts while serving interrupts?
°Suppose there was an interrupt while
the interrupt enable or mask bit is off:
what should you do? (cannot ignore)

°Cause register has field--Pending
Interrupts (PI)-- 5 bits wide (bits15:11)
for each of the 5 HW interrupt levels

• Bit becomes 1 when an interrupt at its
level has occurred but not yet serviced

• Interrupt routine checks pending
interrupts ANDed with interrupt mask to
decide what to service

Cause RegisterExcCodePI
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support for OS: User => System mode

• Bit in Status Register determines whether in
user mode or OS (kernel) mode:
Kernel/User bit (KU) (0 ⇒ kernel, 1 ⇒ user)

Status Register(described later) IEKU

• On exception/interrupt disable interrupts
(IE=0) and go into kernel mode (KU=0)

°How remember old KU, IE bits?
• Hardware copies Current KU and IE bits (0-1)
into Previous KU and IE bits (2-3)

Status 
Register(described later) IEKUIEKU 0 0
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support for OS: System => user mode

°OS saves user registers, performs its
task and restores user registers.
• can JR back to value saved in EPC
• how to get back to user mode?

°use Return from Exception (rfe)

Status 
Register(described later) IEK

U
IEK

U
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Prioritizing Interrupts
°How implement interrupt levels?

°Allow selective interruption via Interrupt
Mask(IM) in Status Register: 5 for HW
interrupts
• Interrupt only if IE==1 AND Mask bit == 1
(bits 15:11 of SR) for that interrupt level

• Set Mask Bits above your level to 1

°To support interrupts of interrupts, have
3 deep stack in Status for IE,K/U bits:
Current (1:0), Previous (3:2), Old (5:4)

IEKU
Status 

Register
IEKUIEKUIM

CPO

0 0
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Revised Interrupt Routine 2/2
°Jump to appropriate interrupt routine

°On Return, disable interrupts using
Current IE bit of Status Register

°Then restore saved registers, previous
KU,IE bits of Status (via rfe) and return
to instruction determined by old EPC

rfe

IEKU IEKUIEKUIM
Status Reg After

IEKU Status Reg BeforeIEKUIEKUIM

CurrentPre.Old
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Re-entrant Interrupt Routine?

°How allow interrupt of interrupts and
safely save registers?

°Stack?
• Resources consumed by each exception,
so cannot tolerate arbitrary deep nesting
of exceptions/interrupts

°With priority level system only
interrupted by higher priority interrupt,
so cannot be recursive

°⇒⇒ Only need one save area
(“exception frame”) per priority level
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Things to Remember

°Kernel Mode v. User Mode: OS can
provide security and fairness

°Syscall: provides a way for a
programmer to avoid having to know
details of each I/O device

°To be acceptable, interrupt handler
must:

• service all interrupts (no drops)
• service by priority

• make all users believe that no interrupt
has occurred


