
CS61C L14 Interrupts © UC Regents 1

CS61C - Machine Structures

Lecture 14 - Operating System Support
and Prioritized Interrupts

October (Friday the) 13(th), 2000

David Patterson

http://www-inst.eecs.berkeley.edu/~cs61c/

CS61C L14 Interrupts © UC Regents 2

Review
° I/O gives computers their 5 senses

° I/O speed range is million to one

°Processor speed means must
synchronize with I/O devices before use

°Polling works, but expensive
• processor repeatedly queries devices

° Interrupts works, more complex
• devices causes an exception, causing
OS to run and deal with the device

° I/O control leads to Operating Systems

CS61C L14 Interrupts © UC Regents 3

Outline

° Instruction Set Support for OS

°Handling a Single Interrupt

°Prioritized Interrupts

°Re-entrant Interrupt Routine

CS61C L14 Interrupts © UC Regents 4

Polling vs. Interrupt Analogy

° Imagine yourself on a long road trip
with your 10-year-old younger brother…
(You: I/O device, brother: CPU)

°Polling:
• “Are we there yet? Are we there yet? Are
we there yet? ….”

• CPU not doing anything useful

° Interrupt:
• Stuff him a color gameboy,
“interrupt” him when arrive at destination

• CPU does useful work while I/O busy

CS61C L14 Interrupts © UC Regents 5

OS: I/O Requirements
°The OS must be able to prevent:

• The user program from communicating with
the I/O device directly

° If user programs could perform I/O directly:
• No protection to the shared I/O resources

°3 types of communication are required:
• The OS must be able to give commands to the
I/O devices

• The I/O device notify OS when the I/O device
has completed an operation or an error

• Data transfers between memory and I/O device
CS61C L14 Interrupts © UC Regents 6

Review of Coprocessor 0 Registers

°Coprocessor 0 Registers:
name number usage
BadVAddr $8 Addr of bad instr
Status $12 Interrupt enable
Cause $13 Exception type
EPC $14 Instruction address

°Different registers from integer
registers, just as Floating Point has
another set of registers independent
from integer registers

• Floating Point called “Coprocessor 1”,
has own set of registers and data
transfer instructions

CS61C L14 Interrupts © UC Regents 7

Instruction Set Support for OS (1/2)

°How to turn off interrupts during
interrupt routine?

°Bit in Status Register determines
whether or not interrupts enabled:
Interrupt Enable bit (IE) (0 ⇒ off, 1 ⇒ on)

Status Register(described later) IE

CS61C L14 Interrupts © UC Regents 8

Instruction Set Support for OS (2/2)

°How to prevent user program from
turning off interrupts (forever)?
• Bit in Status Register determines whether in
user mode or OS (kernel) mode:
Kernel/User bit (KU) (0 ⇒ kernel, 1 ⇒ user)

Status RegisterAssume Unused IEKU

• On exception/interrupt disable interrupts
(IE=0) and go into kernel mode (KU=0)

CS61C L14 Interrupts © UC Regents 9

Kernel/User Mode

°Generally restrict device access to OS

°HOW?

°Add a “mode bit” to the machine: K/U

°Only allow SW in “kernel mode” to
access device registers

° If user programs could access device
directly?

• could destroy each others data, ...

• might break the devices, …

CS61C L14 Interrupts © UC Regents 10

Crossing the System Boundary

°System loads user program into
memory and ‘gives’ it use of the
processor

°Switch back
• SYSCALL

- request service

- I/O

• TRAP (overflow)

• Interrupt

Proc Mem

I/O Bus

cmd reg.
data reg.

 System

 User

CS61C L14 Interrupts © UC Regents 11

Syscall

°How does user invoke the OS?
•syscall instruction: invoke the kernel
(Go to 0x80000080, change to kernel
mode)

• By software convention, $v0 has system
service requested: OS performs request

CS61C L14 Interrupts © UC Regents 12

SPIM OS Services via Syscall

°Note: most OS services deal with I/O

 print_int 1 $a0 = integer
print_float 2 $f12 = float
print_double 3 $f12 = double
print_string 4 $a0 = string
read_int 5 integer (in $v0)
read_float 6 float (in $f0)
read_double 7 double (in $f0)
read_string 8 $a0 = buffer,

$a1 = length
sbrk 9 $a0 = amount address(in $v0)
exit 10

 Service Code Args Result
 (put in $v0)

CS61C L14 Interrupts © UC Regents 13

Example: User invokes OS (SPIM)

°Print “the answer = 42”

°First print “the answer =”:
.data
str: .asciiz "the answer = "
.text
li $v0,4 # 4=code for print_str
la $a0,str # address of string
syscall # print the string

°Now print 42
 li $v0,1 # 1=code for print_int
li $a0,42 # integer to print
syscall # print int

CS61C L14 Interrupts © UC Regents 14

Administrivia

°Midterm will be Wed Oct 25 5-8 P.M.
• 1 Pimintel

• Midterm conflicts? Talk to TA about
taking early midterm ("beta tester")

• 2 sides of paper with handwritten notes;
no calculators

• Sample midterm will be online soon
(Monday?)

• Old midterms will be online soon

°Rest of homework assignments are
online: 6, 7, 8

CS61C L14 Interrupts © UC Regents 15

Handling a Single Interrupt (1/3)

°An interrupt has occurred, then what?
• Automatically, the hardware copies PC
into EPC ($14 on cop0) and puts correct
code into Cause Reg ($13 on cop0)

• Automatically, PC is set to 0x80000080,
process enters kernel mode, and
interrupt handler code begins execution

• Interrupt Handler code: Checks Cause
Register (bits 5 to 2 of $13 in cop0) and
jumps to portion of interrupt handler
which handles the current exception

CS61C L14 Interrupts © UC Regents 16

Handling a Single Interrupt (2/3)

°Sample Interrupt Handler Code
.text 0x80000080

mfc0 $k0,$13 # $13 is Cause Reg

sll $k0,$k0,26 # isolate

srl $k0,$k0,28 # Cause bits

°Notes:
• Don’t need to save $k0 or $k1

- MIPS software convention to provide temp
registers for operating system routines

- Application software cannot use them

• Can only work on CPU, not on cop0

CS61C L14 Interrupts © UC Regents 17

Handling a Single Interrupt (3/3)

• When the interrupt is handled, copy the
value from EPC to the PC.

• Call instruction rfe (return from
exception), which will return process to
user mode and reset state to the way it
was before the interrupt

°What about multiple interrupts?

CS61C L14 Interrupts © UC Regents 18

Multiple Interrupts

°Problem: What if we’re handling an
Overflow interrupt and an I/O interrupt
(printer ready, for example) comes in?

°Options:
• drop any conflicting interrupts:
unrealistic, they may be important

• simultaneously handle multiple interrupts:
unrealistic, may not be able to synchronize
them (such as with multiple I/O interrupts)

• queue them for later handling: sounds
good

CS61C L14 Interrupts © UC Regents 19

Prioritized Interrupts (1/3)

°Question: Suppose we’re dealing with
a computer running a nuclear facility.
What if we’re handling an Overflow
interrupt and a Nuclear Meltdown
Imminent interrupt comes in?

°Answer: We need to categorize and
prioritize interrupts so we can handle
them in order of urgency: emergency
vs. luxury.

CS61C L14 Interrupts © UC Regents 20

Prioritized Interrupts (2/3)

°OS convention to simplify software:
• Process cannot be preempted by
interrupt at same or lower "level"

• Return to interrupted code as soon as no
more interrupts at a higher level

• When an interrupt is handled, take the
highest priority interrupt on the queue

- may be partially handled, may not, so we
may need to save state of interrupts(!)

CS61C L14 Interrupts © UC Regents 21

Prioritized Interrupts (3/3)

°To implement, we need an Exception
Stack:

• portion of address space allocated for
stack of “Exception Frames”

• each frame represents one interrupt:
contains priority level as well as enough
info to restart handling it if necessary

CS61C L14 Interrupts © UC Regents 22

Modified Interrupt Handler (1/3)

°Problem: When an interrupt comes in,
EPC and Cause get overwritten
immediately by hardware. Lost EPC
means loss of user program.

°Solution: Modify interrupt handler.
When first interrupt comes in:

• disable interrupts (in Status Register)

• save EPC, Cause, Status and Priority
Level on Exception Stack

• re-enable interrupts

• continue handling current interrupt

CS61C L14 Interrupts © UC Regents 23

Modified Interrupt Handler (2/3)

°When next (or any later) interrupt comes
in:

• interrupt the first one

• disable interrupts (in Status Register)

• save EPC, Cause, Status and Priority Level
(and maybe more) on Exception Stack

• determine whether new one preempts old
one

- if no, re-enable interrupts and continue with
old one

- if yes, may have to save state for the old one,
then re-enable interrupts, then handle new one

CS61C L14 Interrupts © UC Regents 24

Modified Interrupt Handler (3/3)

°Notes:
• Disabling interrupts is dangerous

• So we disable them for as short a time as
possible: long enough to save vital info
onto Exception Stack

°This new scheme allows us to handle
many interrupts effectively.

CS61C L14 Interrupts © UC Regents 25

Interrupt Levels in MIPS?

°What are they?

° It depends what the MIPS chip is
inside of: differ by app Casio PalmPC,
Sony Playstation, HP LaserJet printer

°MIPS architecture enables priorities
for different I/O events

CS61C L14 Interrupts © UC Regents 26

Interrupt Levels in MIPS Architecture

°Conventionally, from highest level to
lowest level exception/interrupt levels:

• Bus error

• Illegal Instruction/Address trap

• High priority I/O Interrupt (fast response)

• Low priority I/O Interrupt (slow response)

• (later in course, will talk about other
events with other levels)

CS61C L14 Interrupts © UC Regents 27

Improving Data Transfer Performance

°Thus far: OS give commands to I/O,
I/O device notify OS when the I/O device
completed operation or an error

°What about data transfer to I/O device?
• Processor busy doing loads/stores
between memory and I/O Data Register

° Ideal: specify the block of memory to be
transferred, be notified on completion?

• Direct Memory Access (DMA) : a simple
computer transfers a block of data to/from
memory and I/O, interrupting upon done

CS61C L14 Interrupts © UC Regents 28

Example: code in DMA controller
°DMA code from Disk Device to Memory
 .data
Count: .word 4096
Start: .space 4096

°DMA “computer” in parallel with CPU

 .text
Initial: lw $s0, Count # No. chars

la $s1, Start # @next char
 Wait: lw $s2, DiskControl

andi $s2,$s2,1 # select Ready
beq $s2,$0,Wait # spinwait
lb $t0, DiskData # get byte
sb $t0, 0($s1) # transfer
addiu $s0,$s0,-1 # Count--
addiu $s1,$s1,1 # Start++
bne $s0,$0,Wait # next char

CS61C L14 Interrupts © UC Regents 29

Details not covered

°MIPS has a field to record all pending
interrupts so that none are lost while
interrupts are off; in Cause register

°The Interrupt Priority Level that the
CPU is running at is set in memory

°MIPS has a field in that can mask
interrupts of different priorities to
implement priority levels; in Status
register

°MIPS has limited nesting of saving
KU,IE bits to recall in case higher
priority interrupts; in Status Register

CS61C L14 Interrupts © UC Regents 30

Interrupts while serving interrupts?
°Suppose there was an interrupt while
the interrupt enable or mask bit is off:
what should you do? (cannot ignore)

°Cause register has field--Pending
Interrupts (PI)-- 5 bits wide (bits15:11)
for each of the 5 HW interrupt levels

• Bit becomes 1 when an interrupt at its
level has occurred but not yet serviced

• Interrupt routine checks pending
interrupts ANDed with interrupt mask to
decide what to service

Cause RegisterExcCodePI

CS61C L14 Interrupts © UC Regents 31

support for OS: User => System mode

• Bit in Status Register determines whether in
user mode or OS (kernel) mode:
Kernel/User bit (KU) (0 ⇒ kernel, 1 ⇒ user)

Status Register(described later) IEKU

• On exception/interrupt disable interrupts
(IE=0) and go into kernel mode (KU=0)

°How remember old KU, IE bits?
• Hardware copies Current KU and IE bits (0-1)
into Previous KU and IE bits (2-3)

Status
Register(described later) IEKUIEKU 0 0

CS61C L14 Interrupts © UC Regents 32

support for OS: System => user mode

°OS saves user registers, performs its
task and restores user registers.
• can JR back to value saved in EPC
• how to get back to user mode?

°use Return from Exception (rfe)

Status
Register(described later) IEK

U
IEK

U

CS61C L14 Interrupts © UC Regents 33

Prioritizing Interrupts
°How implement interrupt levels?

°Allow selective interruption via Interrupt
Mask(IM) in Status Register: 5 for HW
interrupts
• Interrupt only if IE==1 AND Mask bit == 1
(bits 15:11 of SR) for that interrupt level

• Set Mask Bits above your level to 1

°To support interrupts of interrupts, have
3 deep stack in Status for IE,K/U bits:
Current (1:0), Previous (3:2), Old (5:4)

IEKU
Status

Register
IEKUIEKUIM

CPO

0 0

CS61C L14 Interrupts © UC Regents 34

Revised Interrupt Routine 2/2
°Jump to appropriate interrupt routine

°On Return, disable interrupts using
Current IE bit of Status Register

°Then restore saved registers, previous
KU,IE bits of Status (via rfe) and return
to instruction determined by old EPC

rfe

IEKU IEKUIEKUIM
Status Reg After

IEKU Status Reg BeforeIEKUIEKUIM

CurrentPre.Old

CS61C L14 Interrupts © UC Regents 35

Re-entrant Interrupt Routine?

°How allow interrupt of interrupts and
safely save registers?

°Stack?
• Resources consumed by each exception,
so cannot tolerate arbitrary deep nesting
of exceptions/interrupts

°With priority level system only
interrupted by higher priority interrupt,
so cannot be recursive

°⇒⇒ Only need one save area
(“exception frame”) per priority level

CS61C L14 Interrupts © UC Regents 36

Things to Remember

°Kernel Mode v. User Mode: OS can
provide security and fairness

°Syscall: provides a way for a
programmer to avoid having to know
details of each I/O device

°To be acceptable, interrupt handler
must:

• service all interrupts (no drops)
• service by priority

• make all users believe that no interrupt
has occurred

