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Lecture 16 - Disks
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Review
°Protocol suites allow heterogeneous
networking
• Another form of principle of abstraction
• Protocols ⇒ operation in presence of failures
• Standardization key for LAN, WAN

° Integrated circuit revolutionizing network
switches as well as processors
• Switch just a specialized computer

°Trend from shared to switched networks
to get faster links and scalable bandwidth
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Magnetic Disks

°Purpose:
•  Long-term, nonvolatile, inexpensive
storage for files

•  Large, inexpensive, slow level in the
memory hierarchy (discuss later)
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Disk Device Terminology

° Several platters, with information recorded
magnetically on both surfaces (usually)

° Actuator moves head (end of arm,1/surface) over
track (“seek”), select surface, wait for sector rotate
under head, then read or write

•        “Cylinder”: all tracks under heads

° Bits recorded in tracks, which in turn divided into
sectors (e.g., 512 Bytes)
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Disk Device Performance
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°Disk Latency = Seek Time + Rotation Time
+ Transfer Time + Controller Overhead

° Seek Time? depends no. tracks move arm, seek
speed of disk

° Rotation Time? depends on speed disk rotates,
how far sector is from head

° Transfer Time? depends on data rate (bandwidth)
of disk (bit density), size of request
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Disk Device Performance

°Average distance sector from head?

°1/2 time of a rotation
• 7200 Revolutions Per Minute ⇒ 120 Rev/sec
• 1 revolution = 1/120 sec ⇒ 8.33 milliseconds
• 1/2 rotation (revolution) ⇒ 4.16 ms

°Average no. tracks move arm?
• Sum all possible seek distances
from all possible tracks / # possible

- Assumes average seek distance is random

• Disk industry standard benchmark
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Data Rate: Inner vs. Outer Tracks 
°To keep things simple, orginally kept same
number of sectors per track

• Since outer track longer, lower bits per inch

°Competition ⇒ decided to keep BPI the
same for all tracks (“constant bit density”)

⇒ More capacity per disk
⇒ More of sectors per track towards edge
⇒ Since disk spins at constant speed,
outer tracks have faster data rate

°Bandwidth outer track 1.7X inner track!
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Disk Performance Model /Trends
°  Capacity

+ 100%/year (2X / 1.0 yrs)

°Transfer rate (BW)
+ 40%/year (2X / 2.0 yrs)

°Rotation + Seek time
– 8%/ year (1/2 in 10 yrs)

°MB/$
> 100%/year (2X / <1.5 yrs)
Fewer chips + areal density
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State of the Art: Ultrastar 72ZX
• 73.4 GB, 3.5 inch disk
• 2¢/MB
• 10,000 RPM;
3 ms = 1/2 rotation

• 11 platters, 22
surfaces

• 15,110 cylinders
• 7 Gbit/sq. in. areal den
• 17 watts (idle)
• 0.1 ms controller time
• 5.3 ms avg. seek
• 50 to 29 MB/s(internal)source: www.ibm.com;

www.pricewatch.com; 2/14/00

Latency = 
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Seek Time + 
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Size / Bandwidth
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Disk Performance Example (will fix later)

°Calculate time to read 1 sector (512B)
for UltraStar 72 using advertised
performance; sector is on outer track

Disk latency =  average seek time +
average rotational delay + transfer time
+ controller overhead

 = 5.3 ms + 0.5 * 1/(10000 RPM)
+ 0.5 KB / (50 MB/s) + 0.15 ms

 = 5.3 ms + 0.5 /(10000 RPM/(60000ms/M))
+ 0.5 KB / (50 KB/ms) + 0.15 ms

 = 5.3 + 3.0 + 0.10 + 0.15 ms = 8.55 ms
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Areal Density
°Bits recorded along a track

• Metric is Bits Per Inch (BPI)

°Number of tracks per surface
• Metric is Tracks Per Inch (TPI)

°Care about bit density per unit area
• Metric is  Bits Per Square Inch
• Called Areal Density
• Areal Density = BPI x TPI
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Disk History (IBM)

Data 
density
Mbit/sq. in.

Capacity of
Unit Shown
Megabytes

1973:
1. 7 Mbit/sq. in
140 MBytes

1979:
7. 7 Mbit/sq. in
2,300 MBytes

source: New York Times, 2/23/98, page C3, 
“Makers of disk drives crowd even more data into even smaller spaces” CS61C L16 Disks © UC Regents 14

Disk History

1989:
63 Mbit/sq. in
60,000 MBytes

1997:
1450 Mbit/sq. in
2300 MBytes

source: New York Times, 2/23/98, page C3, 
“Makers of disk drives crowd even more data into even smaller spaces”

1997:
3090 Mbit/sq. in
8100 MBytes
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Areal Density
Year Areal Density

1973 1.7
1979 7.7
1989 63
1997 3090
2000 17100
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• Areal Density = BPI x TPI
• Change slope 30%/yr to 60%/yr about 1991
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Historical Perspective

° Form factor and capacity drives market,
more than performance

° 1970s: Mainframes ⇒ 14 inch diameter
disks

° 1980s: Minicomputers, Servers
 ⇒ 8”, 5.25” diameter disks

° Late 1980s/Early 1990s:
• Pizzabox PCs ⇒ 3.5 inch diameter disks
• Laptops, notebooks ⇒ 2.5 inch disks
• Palmtops didn’t use disks,

so 1.8 inch diameter disks didn’t make it
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1 inch disk drive!

°2000 IBM MicroDrive:
•  1.7” x 1.4” x 0.2”
• 1 GB, 3600 RPM,
5 MB/s, 15 ms seek

• Digital camera, PalmPC?

°2006 MicroDrive?

°9 GB, 50 MB/s!
• Assuming it  finds a niche
in a successful product

• Assuming past trends continue
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Administrivia
°Midterm Review Sunday Oct 22 starting
2 PM in155 Dwinelle

°Midterm will be Wed Oct 25 5-8 P.M.
• 1 Pimintel
• Midterm conflicts? Talk to TA about taking
early midterm ("beta tester")

• Pencils
• 2 sides of paper with handwritten notes
• no calculators
• Sample midterm online, old midterms online
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Fallacy: Use Data Sheet “Average Seek” Time
°Manufacturers needed standard for fair
comparison (“benchmark”)

• Calculate all seeks from all tracks, divide by
number of seeks => “average”

°Real average would be based on how
data laid out on disk, where seek in real
applications, then measure performance

• Usually, tend to seek to tracks nearby, not
to random track

°Rule of Thumb: observed average seek
time is typically about 1/4 to 1/3 of quoted
seek time (i.e., 3X-4X faster)

• UltraStar 72 avg. seek: 5.3 ms ⇒ 1.7 ms CS61C L16 Disks © UC Regents 20

Fallacy: Use Data Sheet Transfer Rate
°Manufacturers quote the speed off the
data rate off the surface of the disk

°Sectors contain an error detection and
correction field (can be 20% of sector
size) plus sector number as well as data

°There are gaps between sectors on track

°Rule of Thumb: disks deliver about 3/4 of
internal media rate (1.3X slower) for data

°For example, UlstraStar 72 quotes
 50 to 29 MB/s internal media rate

  ⇒ Expect 37 to 22 MB/s user data rate

CS61C L16 Disks © UC Regents 21

Disk Performance Example
°Calculate time to read 1 sector for
UltraStar 72 again, this time using 1/3
quoted seek time, 3/4 of internal outer
track bandwidth; (8.55 ms before)

Disk latency =  average seek time +
average rotational delay + transfer time +
controller overhead

 = (0.33 * 5.3 ms) + 0.5 * 1/(10000 RPM)
+ 0.5 KB / (0.75 * 50 MB/s) + 0.15 ms

 = 1.77 ms + 0.5 /(10000 RPM/(60000ms/M))
+ 0.5 KB / (37 KB/ms) + 0.15 ms

 = 1.73 + 3.0 + 0.14 + 0.15 ms = 5.02 ms
CS61C L16 Disks © UC Regents 22

Future Disk Size and Performance

° Continued advance in capacity (60%/yr)
and bandwidth (40%/yr)

° Slow improvement in seek, rotation
(8%/yr)

° Time to read whole disk 

Year Sequentially Randomly
 (1 sector/seek)

1990   4 minutes 6 hours

2000 12 minutes 1 week(!)

° 3.5” form factor make sense in 5-7 yrs?
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Use Arrays of Small Disks?

14”
10”5.25”3.5”

3.5”

Disk Array:
1 disk design

Conventional:
4 disk
designs

Low End High End

•Katz and Patterson asked in 1987:
•Can smaller disks be used  to close gap in
performance between disks and CPUs?
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Replace Small Number of Large Disks with
Large Number of Small Disks! (1988 Disks)

Capacity 
Volume 
Power
Data Rate 
I/O Rate   
MTTF  
Cost

IBM 3390K
20 GBytes
97 cu. ft.

3 KW
15 MB/s

600 I/Os/s
250 KHrs

$250K

IBM 3.5" 0061
320 MBytes

0.1 cu. ft.
11 W

1.5 MB/s
55 I/Os/s
50 KHrs

$2K

x70
23 GBytes
11 cu. ft.

1 KW
120 MB/s

3900 IOs/s
??? Hrs
$150K

Disk Arrays have potential for large data and
I/O rates, high MB per cu. ft., high MB per KW,
but what about reliability?

9X
3X

8X

6X
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Array Reliability

°Reliability - whether or not a component
has failed
• measured as Mean Time To Failure (MTTF)

°Reliability of N disks
= Reliability of 1 Disk ÷ N
(assuming failures independent)
• 50,000 Hours ÷ 70 disks = 700 hour

°Disk system MTTF:
Drops from 6 years  to 1 month!

°Arrays too unreliable to be useful!
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Redundant Arrays of (Inexpensive) Disks
°Files are "striped" across multiple disks

°Redundancy yields high data availability

• Availability: service still provided to user,
even if some components failed

°Disks will still fail

°Contents reconstructed from data
redundantly stored in the array

⇒ Capacity penalty to store redundant info
⇒ Bandwidth penalty to update redundant info
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Redundant Arrays of Inexpensive Disks
RAID 1: Disk Mirroring/Shadowing

• Each disk is fully duplicated onto its “mirror”
      Very high availability can be achieved
• Bandwidth sacrifice on write:
      Logical write = two physical writes

• Reads may be optimized
• Most expensive solution: 100% capacity overhead

• (RAID 2 not interesting, so skip)

recovery
group
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Redundant Array of Inexpensive Disks
RAID 3: Parity Disk

P

10010011
11001101
10010011

. . .
logical record 1

0
0
1
0
0
1
1

1
1
0
0
1
1
0
1

1
0
0
1
0
0
1
1

1
1
0
0
1
1
0
1

P contains sum of
other disks per stripe 
mod 2 (“parity”)
If disk fails, subtract 
P from sum of other 
disks to find missing information

Striped physical
records

CS61C L16 Disks © UC Regents 29

RAID 3
° Sum computed across recovery group to protect

against hard disk failures, stored in P disk

° Logically, a single high capacity, high transfer
rate disk: good for large transfers

° Wider arrays reduce capacity costs, but
decreases availability

° 33% capacity cost for parity in this configuration
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Inspiration for RAID 4
° RAID 3 relies on parity disk to discover errors

on Read

° But every sector has an error detection field

° Rely on error detection field to catch errors on
read, not on the parity disk

° Allows independent reads to different disks
simultaneously
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Redundant Arrays of Inexpensive Disks
RAID 4: High I/O Rate Parity

D0 D1 D2 D3 P

D4 D5 D6 PD7

D8 D9 PD10 D11

D12 PD13 D14 D15

PD16 D17 D18 D19

D20 D21 D22 D23 P
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.Disk Columns

Increasing
Logical

Disk 
Address

Stripe

Insides of
5 disks
Insides of
5 disks

Example:
small read
D0 & D5,
large write
D12-D15

Example:
small read
D0 & D5,
large write
D12-D15
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Inspiration for RAID 5
°RAID 4 works well for small reads

°Small writes (write to one disk):
• Option 1: read other data disks, create new
sum and write to Parity Disk

• Option 2: since P has old sum, compare old
data to new data, add the difference to P

°Small writes are limited by Parity Disk:
Write to D0, D5 both also write to P disk

D0 D1 D2 D3 P

D4 D5 D6 PD7
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Redundant Arrays of Inexpensive Disks
RAID 5: High I/O Rate Interleaved Parity

Independent
writes
possible
because of
interleaved
parity

Independent
writes
possible
because of
interleaved
parity

D0 D1 D2 D3 P

D4 D5 D6 P D7

D8 D9 P D10 D11

D12 P D13 D14 D15

P D16 D17 D18 D19

D20 D21 D22 D23 P
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
Disk Columns

Increasing
Logical
Disk 

Addresses

Example:
write to
D0, D5
uses disks
0, 1, 3, 4

CS61C L16 Disks © UC Regents 34

Berkeley History: RAID-I

°RAID-I (1989)
• Consisted of a Sun
4/280 workstation with
128 MB of DRAM, four
dual-string SCSI
controllers, 28 5.25-
inch SCSI disks and
specialized disk
striping software

°Today RAID is $19
billion dollar industry,
80% nonPC disks
sold in RAIDs
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“And in Conclusion..” 1/1
°Magnetic Disks continue rapid advance:
60%/yr capacity, 40%/yr bandwidth, slow
on seek, rotation improvements, MB/$
improving 100%/yr?
• Designs to fit high volume form factor
• Quoted seek times too conservative,
data rates too optimistic for use in system

°RAID
• Higher performance with more disk arms per $
• Adds availability option for small number of
extra disks


