
CS61C L17 Cache1 © UC Regents 1

CS61C - Machine Structures

Lecture 17 - Caches, Part I

October 25, 2000

David Patterson

http://www-inst.eecs.berkeley.edu/~cs61c/

CS61C L17 Cache1 © UC Regents 2

Things to Remember
°Magnetic Disks continue rapid advance:
60%/yr capacity, 40%/yr bandwidth, slow
on seek, rotation improvements, MB/$
improving 100%/yr?
• Designs to fit high volume form factor
• Quoted seek times too conservative,
data rates too optimistic for use in system

°RAID
• Higher performance with more disk arms per $
• Adds availability option for small number of
extra disks

CS61C L17 Cache1 © UC Regents 3

Outline

°Memory Hierarchy

°Direct-Mapped Cache

°Types of Cache Misses

°A (long) detailed example

°Peer - to - peer education example

°Block Size (if time permits)

CS61C L17 Cache1 © UC Regents 4

Memory Hierarchy (1/4)

°Processor
• executes programs
• runs on order of nanoseconds to
picoseconds

• needs to access code and data for
programs: where are these?

°Disk
• HUGE capacity (virtually limitless)
• VERY slow: runs on order of milliseconds
• so how do we account for this gap?

CS61C L17 Cache1 © UC Regents 5

Memory Hierarchy (2/4)

°Memory (DRAM)
• smaller than disk (not limitless capacity)
• contains subset of data on disk: basically
portions of programs that are currently
being run

• much faster than disk: memory accesses
don’t slow down processor quite as much

• Problem: memory is still too slow
(hundreds of nanoseconds)

• Solution: add more layers (caches)

CS61C L17 Cache1 © UC Regents 6

Memory Hierarchy (3/4)
Processor

Size of memory at each level

Increasing
Distance

from Proc.,
Decreasing
cost / MB

Level 1
Level 2

Level n

Level 3
. . .

Higher

Lower

Levels in
memory

hierarchy

CS61C L17 Cache1 © UC Regents 7

Memory Hierarchy (4/4)

° If level is closer to Processor, it must
be:

• smaller
• faster
• subset of all higher levels (contains most
recently used data)

• contain at least all the data in all lower
levels

°Lowest Level (usually disk) contains
all available data

CS61C L17 Cache1 © UC Regents 8

Memory Hierarchy

°Purpose:
• Faster access to large memory from
processor

 Processor
 (active)

Computer

Control
(“brain”)
Datapath
(“brawn”)

Memory
(passive)
(where
programs,
data live
when
running)

Devices
Input

Output

Keyboard,
Mouse

Display,
Printer

Disk,
Network

CS61C L17 Cache1 © UC Regents 9

Memory Hierarchy Analogy: Library (1/2)

°You’re writing a term paper
(Processor) at a table in Doe

°Doe Library is equivalent to disk
• essentially limitless capacity
• very slow to retrieve a book

°Table is memory
• smaller capacity: means you must return
book when table fills up

• easier and faster to find a book there
once you’ve already retrieved it

CS61C L17 Cache1 © UC Regents 10

Memory Hierarchy Analogy: Library (2/2)

°Open books on table are cache
• smaller capacity: can have very few open
books fit on table; again, when table fills
up, you must close a book

• much, much faster to retrieve data

° Illusion created: whole library open on
the tabletop

• Keep as many recently used books open
on table as possible since likely to use
again

• Also keep as many books on table as
possible, since faster than going to library

CS61C L17 Cache1 © UC Regents 11

Memory Hierarchy Basis

°Disk contains everything.

°When Processor needs something,
bring it into to all lower levels of
memory.

°Cache contains copies of data in
memory that are being used.

°Memory contains copies of data on
disk that are being used.

°Entire idea is based on Temporal
Locality: if we use it now, we’ll want to
use it again soon (a Big Idea)

CS61C L17 Cache1 © UC Regents 12

Cache Design

°How do we organize cache?

°Where does each memory address
map to? (Remember that cache is
subset of memory, so multiple
memory addresses map to the same
cache location.)

°How do we know which elements are
in cache?

°How do we quickly locate them?

CS61C L17 Cache1 © UC Regents 13

Direct-Mapped Cache (1/2)

° In a direct-mapped cache, each
memory address is associated with
one possible block within the cache

• Therefore, we only need to look in a
single location in the cache for the data if
it exists in the cache

• Block is the unit of transfer between
cache and memory

CS61C L17 Cache1 © UC Regents 14

Direct-Mapped Cache (2/2)

° Cache Location 0 can be
occupied by data from:
• Memory location 0, 4, 8, ...
• In general: any memory

location that is multiple of 4

Memory
Memory
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

4 Byte Direct
Mapped Cache

Cache
Index

0
1
2
3

CS61C L17 Cache1 © UC Regents 15

Issues with Direct-Mapped

°Since multiple memory addresses map
to same cache index, how do we tell
which one is in there?

°What if we have a block size > 1 byte?

°Result: divide memory address into
three fields

ttttttttttttttttt iiiiiiiiii oooo

 tag index byte
to check to offset
if have select within
correct block block block

CS61C L17 Cache1 © UC Regents 16

Direct-Mapped Cache Terminology

°All fields are read as unsigned integers.

° Index: specifies the cache index (which
“row” of the cache we should look in)

°Offset: once we’ve found correct block,
specifies which byte within the block
we want

°Tag: the remaining bits after offset and
index are determined; these are used to
distinguish between all the memory
addresses that map to the same
location

CS61C L17 Cache1 © UC Regents 17

Direct-Mapped Cache Example (1/3)

°Suppose we have a 16KB direct-
mapped cache with 4 word blocks.

°Determine the size of the tag, index and
offset fields if we’re using a 32-bit
architecture.

°Offset
• need to specify correct byte within a block
• block contains 4 words

16 bytes
24 bytes

• need 4 bits to specify correct byte
CS61C L17 Cache1 © UC Regents 18

Direct-Mapped Cache Example (2/3)

° Index
• need to specify correct row in cache
• cache contains 16 KB = 214 bytes
• block contains 24 bytes (4 words)
• # rows/cache = # blocks/cache (since

there’s one block/row)
 = bytes/cache

bytes/row
 = 214 bytes/cache

 24 bytes/row
 = 210 rows/cache

• need 10 bits to specify this many rows

CS61C L17 Cache1 © UC Regents 19

Direct-Mapped Cache Example (3/3)

°Tag
• used remaining bits as tag
• tag length = mem addr length

- offset
- index

 = 32 - 4 - 10 bits
 = 18 bits

• so tag is leftmost 18 bits of memory
address

CS61C L17 Cache1 © UC Regents 20

Administrivia
°Midterms returned in lab

°See T.A.s in office hours if have questions

°Reading: 7.1 to 7.3

°Homework 7 due Monday

CS61C L17 Cache1 © UC Regents 21

Computers in the News: Sony Playstation 2
10/26 "Scuffles Greet
PlayStation 2's Launch"

• "If you're a gamer, you
have to have one,'' one
who pre-ordered the $299
console in February

• Japan: 1 Million on 1st day

CS61C L17 Cache1 © UC Regents 22

Sony Playstation 2 Details
° Emotion Engine:

66 million polygons
per second

• MIPS core + vector
coprocessor +
graphics/DRAM
(128 bit data)

• I/O processor runs
old games

• I/O: TV (NTSC) DVD,
Firewire (400 Mbit/s),
PCMCIA card, USB,
Modem, ...

• "Trojan Horse to pump a menu of digital entertain-
ment into homes"? PCs temperamental, and "no
one ever has to reboot a game console."

CS61C L17 Cache1 © UC Regents 23

Accessing data in a direct mapped cache
°Example: 16KB,
direct-mapped, 4
word blocks

°Read 4 addresses
• 0x00000014,
0x0000001C,
0x00000034,
0x00008014

°Memory values on
right:
• only cache/memory
level of hierarchy

Address (hex) Value of Word
Memory

00000010
00000014
00000018
0000001C

a
b
c
d

... ...
00000030
00000034
00000038
0000003C

e
f
g
h

00008010
00008014
00008018
0000801C

i
j
k
l

... ...

... ...

... ...

CS61C L17 Cache1 © UC Regents 24

Accessing data in a direct mapped cache
°4 Addresses:

• 0x00000014, 0x0000001C, 0x00000034,
0x00008014

°4 Addresses divided (for convenience)
into Tag, Index, Byte Offset fields

000000000000000000 0000000001 0100

000000000000000000 0000000001 1100

000000000000000000 0000000011 0100

000000000000000010 0000000001 0100

 Tag Index Offset

CS61C L17 Cache1 © UC Regents 25

Accessing data in a direct mapped cache
°So lets go through accessing some data in
this cache
• 16KB, direct-mapped, 4 word blocks

°Will see 3 types of events:

°cache miss: nothing in cache in appropriate
block, so fetch from memory

°cache hit: cache block is valid and contains
proper address, so read desired word

°cache miss, block replacement: wrong data
is in cache at appropriate block, so discard
it and fetch desired data from memory

CS61C L17 Cache1 © UC Regents 26

Example Block

16 KB Direct Mapped Cache, 16B blocks
° Valid bit: determines whether anything

is stored in that row (when computer
initially turned on, all entries are invalid)

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

Index
0
0
0
0
0
0
0
0

0
0

CS61C L17 Cache1 © UC Regents 27

Read 0x00000014 = 0…00 0..001 0100
° 000000000000000000 0000000001 0100

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

Index

Tag field Index field Offset

0
0
0
0
0
0
0
0

0
0

CS61C L17 Cache1 © UC Regents 28

So we read block 1 (0000000001)

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

° 000000000000000000 0000000001 0100

Index

Tag field Index field Offset

0
0
0
0
0
0
0
0

0
0

CS61C L17 Cache1 © UC Regents 29

No valid data

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

° 000000000000000000 0000000001 0100

Index

Tag field Index field Offset

0
0
0
0
0
0
0
0

0
0

CS61C L17 Cache1 © UC Regents 30

So load that data into cache, setting tag, valid

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

° 000000000000000000 0000000001 0100

Index

Tag field Index field Offset

0

0
0
0
0
0
0

0
0

CS61C L17 Cache1 © UC Regents 31

Read from cache at offset, return word b
° 000000000000000000 0000000001 0100

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

Index

Tag field Index field Offset

0

0
0
0
0
0
0

0
0

CS61C L17 Cache1 © UC Regents 32

Read 0x0000001C = 0…00 0..001 1100

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

° 000000000000000000 0000000001 1100

Index

Tag field Index field Offset

0

0
0
0
0
0
0

0
0

CS61C L17 Cache1 © UC Regents 33

Data valid, tag OK, so read offset return word d

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

° 000000000000000000 0000000001 1100

Index
0

0
0
0
0
0
0

0
0

CS61C L17 Cache1 © UC Regents 34

Read 0x00000034 = 0…00 0..011 0100

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

° 000000000000000000 0000000011 0100

Index

Tag field Index field Offset

0

0
0
0
0
0
0

0
0

CS61C L17 Cache1 © UC Regents 35

So read block 3

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

° 000000000000000000 0000000011 0100

Index

Tag field Index field Offset

0

0
0
0
0
0
0

0
0

CS61C L17 Cache1 © UC Regents 36

No valid data

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

° 000000000000000000 0000000011 0100

Index

Tag field Index field Offset

0

0
0
0
0
0
0

0
0

CS61C L17 Cache1 © UC Regents 37

Load that cache block, return word f

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

° 000000000000000000 0000000011 0100

1 0 e f g h

Index

Tag field Index field Offset

0

0

0
0
0
0

0
0

CS61C L17 Cache1 © UC Regents 38

Read 0x00008014 = 0…10 0..001 0100

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

° 000000000000000010 0000000001 0100

1 0 e f g h

Index

Tag field Index field Offset

0

0

0
0
0
0

0
0

CS61C L17 Cache1 © UC Regents 39

So read Cache Block 1, Data is Valid

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

° 000000000000000010 0000000001 0100

1 0 e f g h

Index

Tag field Index field Offset

0

0

0
0
0
0

0
0

CS61C L17 Cache1 © UC Regents 40

Cache Block 1 Tag does not match (0 != 2)

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

° 000000000000000010 0000000001 0100

1 0 e f g h

Index

Tag field Index field Offset

0

0

0
0
0
0

0
0

CS61C L17 Cache1 © UC Regents 41

Miss, so replace block 1 with new data & tag

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 2 i j k l

° 000000000000000010 0000000001 0100

1 0 e f g h

Index

Tag field Index field Offset

0

0

0
0
0
0

0
0

CS61C L17 Cache1 © UC Regents 42

And return word j

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 2 i j k l

° 000000000000000010 0000000001 0100

1 0 e f g h

Index

Tag field Index field Offset

0

0

0
0
0
0

0
0

CS61C L17 Cache1 © UC Regents 43

Do an example yourself. What happens?
° Chose from: Cache: Hit, Miss, Miss w. replace

 Values returned: a ,b, c, d, e, ..., k, l
° Read address 0x00000030 ?
000000000000000000 0000000011 0000

° Read address 0x0000001c ?
 000000000000000000 0000000001 1100

...

ValidTag 0x0-3 0x4-7 0x8-b 0xc-f
0
1
2
3
4
5
6
7
...

1 2 i j k l

1 0 e f g h

Index
0

0

0
0
0
0

Cache

CS61C L17 Cache1 © UC Regents 45

Block Size Tradeoff (1/3)

°Benefits of Larger Block Size
• Spatial Locality: if we access a given
word, we’re likely to access other
nearby words soon (Another Big Idea)

• Very applicable with Stored-Program
Concept: if we execute a given
instruction, it’s likely that we’ll execute
the next few as well

• Works nicely in sequential array
accesses too

CS61C L17 Cache1 © UC Regents 46

Block Size Tradeoff (2/3)

°Drawbacks of Larger Block Size
• Larger block size means larger miss
penalty

- on a miss, takes longer time to load a new
block from next level

• If block size is too big relative to cache
size, then there are too few blocks

- Result: miss rate goes up

° In general, minimize
Average Access Time

= Hit Time x Hit Rate
+ Miss Penalty x Miss Rate

CS61C L17 Cache1 © UC Regents 47

Block Size Tradeoff (3/3)

°Hit Time = time to find and retrieve
data from current level cache

°Miss Penalty = average time to retrieve
data on a current level miss (includes
the possibility of misses on
successive levels)

°Hit Rate = % of requests that are found
in current level cache

°Miss Rate = 1 - Hit Rate

CS61C L17 Cache1 © UC Regents 48

Things to Remember
°We would like to have the capacity of
disk at the speed of the processor:
unfortunately this is not feasible.

°So we create a memory hierarchy:
• each successively lower level contains
“most used” data from next higher level

• exploits temporal locality and spatial
locality

• do the common case fast, worry less about
the exceptions (design principle of MIPS)

°Locality of reference is a Big Idea

