CS61C - Machine Structures

Lecture 17 - Caches, Part |

October 25, 2000
David Patterson
http:/lwww-inst.eecs.berkeley.edu/~cs61c/

Outline

°Memory Hierarchy
°Direct-Mapped Cache

°Types of Cache Misses

°A (long) detailed example

°Peer - to - peer education example
°Block Size (if time permits)

Memory Hierarchy (2/4)

°Memory (DRAM)
esmaller than disk (not limitless capacity)

econtains subset of data on disk: basically
portions of programs that are currently
being run

emuch faster than disk: memory accesses
don’t slow down processor quite as much

*Problem: memory is still too slow
(hundreds of nanoseconds)

«Solution: add more layers (caches)

Things to Remember

°Magnetic Disks continue rapid advance:
60%/yr capacity, 40%/yr bandwidth, slow
on seek, rotation improvements, MB/$
improving 100%/yr?

*Designs to fit high volume form factor

*Quoted seek times too conservative,
data rates too optimistic for use in system

°RAID
*Higher performance with more disk arms per $

*Adds availability option for small number of
extra disks

Memory-Hierarchy-(1/4)

°Processor
eexecutes programs

runs on order of nanoseconds to
picoseconds

eneeds to access code and data for
programs: where are these?

°Disk
«HUGE capacity (virtually limitless)
*VERY slow: runs on order of milliseconds
*so how do we account for this gap?

Memory Hierarchy (3/4)

Procgssor
. Increasing
Higher Distance
Levels in from Proc.,
. ecreasing
hierarchy , L5
L CVTT O
Lowe
Leveln
v
« >

Size of memory at each level

Memory Hierarchy (4/4)

°If level is closer to Processor, it must ——Keyboard,
be 1 ouse
*smaller isk,
«faster e

esubset of all higher levels (contains most
recently used data)

Display,
______ Printer
econtain at least all the data in all lower ° A —————
levels Purpose:
. . » Faster access to large memory from
°Lowest Level (usually disk) contains processor
all available data

Memory-Hierarchy-Analogy:-Library-(1/2) Memory-Hierarchy-Analogy:-Library-(2/2)

°You're writing a term paper

) °Open books on table are cache
(Processor) at a table in Doe

esmaller capacity: can have very few open

°Doe Library is equivalent to disk books fit on table; again, when table fills
tially limitl " e up, you must close a book
essentially fimi ?SS capacity emuch, much faster to retrieve data
svery slow to retrieve a book])
. . °lllusion created: whole library open on
Table is memory the tabletop
*smaller capacity: means you must return «Keep as many recently used books open
book when table fills up on table as possible since likely to use
«easier and faster to find a book there agan

once you've already retrieved it *Also keep as many books on table as

, possible, since faster than going to library Y

Memory Hierarchy Basis Cache Design

°Disk contains everything. °How do we organize cache?

°When Processor needs something, °Where does each memory address
bring it into to all lower levels of map to? (Remember that cache is

memory. subset of memory, so multiple
))) memory addresses map to the same
°Cache contains copies of data in cache location.)
memory that are being used. .
)] °How do we know which elements are
°Memory contains copies of data on in cache?
disk that are being used.

°Entire idea is based on T | °How do we quickly locate them?
irei i C empora

Locality: if we use it now, we'llT want to
use it again soon (a Big Idea)

Direct-Mapped Cache (1/2)

°In adirect-mapped cache, each
memory address IS associated with
one possible block within the cache

*Therefore, we only need to look in a
single location in the cache for the data if
it exists in the cache

*Block is the unit of transfer between
cache and memory

Issues with Direct-Mapped

°Since multiple memory addresses map
to same cache index, how do we tell
which one is in there?

°What if we have a block size > 1 byte?

°Result: divide memory address into
three fields

index
to
select
block

Direct-Mapped Cache Example (1/3)

°Suppose we have a 16KB direct-
mapped cache with 4 word blocks.

°Determine the size of the tag, index and
offset fields if we're using a 32-bit
architecture.

°Offset

*need to specify correct byte within a block

eblock contains 4 words
16 bytes
24 bytes

*need 4 bits to specify correct byte

Direct-Mapped Cache (2/2)

Memory Cache 4 ByteDirect
Address Memory

Index _M ﬁﬁﬁed Cache

Cache Location 0 can be
occupied by data from:

* Memory location 0, 4, 8, ...

* In general: any memory
location that is multiple of 4
14

TIMUOWI>©O~NOUTAWNRO

Direct-Mapped-Cache Terminology

°All fields are read as unsigned integers.

: specifies the cache index (which
“row” of the cache we should look in)

°Offset: once we've found correct block,
Specifies which byte within the block
we want

: the remaining bits after offset and
index are determined; these are used to
distinguish between all the memory
addresses that map to the same
location

Direct-Mapped Cache Example (2/3)

°Index
*need to specify correct row in cache
ecache contains 16 KB = 24 bytes
*block contains 24 bytes (4 words)

e#rows/cache = # blocks/cache (since
there’'s one block/row)
bytes/cache

bytes/row
= é;’ pytles/cache

2% bytes/row
= 20 rows/cache

eneed 10 bits to specify this many rows

Direct-Mapped Cache Example (3/3)

°Tag
eused remaining bits as tag

etag length = mem addr length
- offset
- index
=32-4-10 bits
=18 bits
*so tag is leftmost 18 bits of memory
address

Computers.in the News: Sony Playstation 2

10/26 " Scuffles Greet
PlayStation 2's Launch”

«"If you're a gamer, you
have to have one," one
who pre-ordered the $299
console in February

«Japan: 1 Million on 1st day;

Accessing datain adirect mapped cache

° Memor
Eﬁ-ggprlnea&ggdB 4 Address (hex)Val Xe of Word

word blocks
: i =
Read 4 addresses HANAT S 2
+0x00000014, 0000001C d
0x0000001C,
0x00000034, 00000030 s
0x00008014 00000034 f
00000038 a
°Memory values on 0000003C h
right: 00008010
«only cache/memory 00008014
level of hierarchy

00008018
0000801C

Administrivia
°Midterms returned in lab
°See T.A.s in office hours if have questions
°Reading: 7.1t0 7.3

°Homework 7 due Monday

Sony-Playstation-2 Details
°Emotion Engine: I
66 million polygons 1 |
per second | | § o

* MIPS core + vector L [|
coprocessor + " i
graphics/DRAM
(128 bit data)

« /O processor runs ; L ey

s |:\.m
old games .
+1/0: TV (NTSC) DVD, | |

Firewire (400 Mbit/s)

PCMCIA card, USB, "=’

Modem, ...
« "Trojan Horse to pump a menu of digital entertain-
ment into homes"? PCs temperamental, and "no
one ever has to reboot a game console."

!

L

Accessing datain adirect mapped cache
°4 Addresses:

+0x00000014, 0x0000001C, 0x00000034,
0x00008014

°4 Addresses divided g r convenience)
into Tag, Index, Byte Offset fields

000000000000000000 0000000001 0100
000000000000000000 0000000001 1100
000000000000000000 0000000011 0100
000000000000000010 0000000001 0100

Tag Index Offset

Accessing data in a direct mapped cache

°So lets %o through accessing some data in
this cache

*16KB, direct-mapped, 4 word blocks
°Will see 3 types of events:

°cache miss: nothing in cache in appropriate
block, so fetch from memory

°cache hit: cache block is valid and contains
proper address, so read desired word

°cache miss, block replacement: wrong data
ISTn cache af appropriate block, so discard
it and fetch desired data from memory

p-3

Read 0x00000014 = 0...00 0..001 0100

° 000000000000000000 0000000001 0100
valid Tag field Index field Offset
ali

0x0-3 0x4-7 0x8-h Oxc-f
IGU
In%e
2

~Nooih~hw

ocoqggd

P
oo .
NI
RIS

od

No valid data

000000001 0100
Index field Offset

Ox8b 1 Oxc=F

16 KB Direct Mapped Cache, 16B blocks

° Valid bit: determines whether anything
is stored in that row (when computer _
\)Qjélally turned on, all entries are invalid)

|

Index _Tag 0x0-3 0x4-7 Ox8-b~ Oxc-f

So we read block 1 (0000000001)

° 000000000000000000 0000000001 0100
i Index field Offset

0x0-3 Ox4-7 0x8-b Oxc-f

@
x
4
&

~NOUIRWNRFOQ

So toad that data into cache, setting tag, valid
° 000000000000000000 0000000001 0100

Tag field Index field Offset
Valid /a@ o

Index[TTag [OX0-3 [OX4=7 Ox8——TOxC=
0 ql »
1 170 a b Cc d
2 dq
3 d
4 q
5 ¢
6
7 o
o d | T | |
10224 | | | |

10230

Read from cache at offset, return word b
° 000000000000000000 0000000001 0100

valid Tag field IAWQ/Offset
Index—_Tag 0x0-3 O0x4-7% Ox8-b Oxc-f
0 |
1 pl 0 a h c d
Z o
3
4
5 [
6 [
7
10220] | | | I
10230l [[[[

Data valid, tag OK, so read offset return word d

° 000000000000000000 0000000001 1190
\
id

<
0x0-3 Ox4-7 0x8-b Oxc-f

n

[¢]
V3

oy

4 \4

o

to
23 19 T —a—

H
1D

~NOUIRWNRFOQ

QPP g

So read block 3
°000000000000000000 0000000011 0100

vaid 129 field ndex field Offset

Index OXO=—3——0%4-7 Ox8=t T Oxc=F
0

1 0 a b C d

2 [
A3 o

Z |o

5 [o

6 [0

7 o

i I [I T
10229 | | | |
10230

Read 0x0000001C =0...00.0..001. 1100
° 000000000000000000 0000000001 1100
Tag field Index field Offset

valid
Index —Tag 0x0-3 0x4-7 0x8-b Oxc-f
0
1 11la a b c d
2
3
4
5
6
7
10224] | I I I
1023d1 I I I I

Read-0x00000034-=-0---00-0::011-0100

° 000000000000000000 0000000011 0100
valid Tag field ndex field Offset

Index rTFag 0x0-3 Ox4-7 0x8-b Oxc-f

1 a to o
4 \v) =3 19 T o)

~NOOIRWNRO

No valid data
°000000000000000000 0000000011 0100

valid Tag field ndexfie Offset

Index OX0=—3—TO0x4-7 Ox8=t—TOxC=f
q

1 10 a b C d

o
A3

4

5

6

7 o

Load that cache block, return word f
°000000000000000000 0000000011 0100

. Tag field ndex set
Valid
Index—_Tag 0x0-3 0x4—,7/0x8-b Oxc-f
0
il 0 a b c d
2 o
A3 0] e f ol h
Z o
5 o
6 [0
7 lo
102720 | T T
10230l [[[

So read Cache Block 1, Data is Valid
° 000000000000000010 0000000001 0100

id ie ndex field Offset
ndex Tay Ov0-2 Ox4-7 0x8-h Oxc-f
0
Al g & b 7 o)
2
3 B—o e f g f
4 lo
5 o
6 6
7
S I | |
10220
1023——1 ! '

Miss;, soreplace block T with-new data & tag

°000000000000000010 0000000001 0100

In

P

Read 0x00008014 = 0...10 0..001 0100
°000000000000000010 0000000001 0100

valid Tag field ndex field Offset
dex_Tag 0x0-3 O0x4-7 Ox8-b Oxc-f
0
1 11la a b c d
2
3 0] e f g h
4
5
6
7
02241 | I I I
023d1 I I I I

Cache Block 1 Tag does not match (0 !=2)

° 000000000000000010 0000000001 0100
. g field Index field Offset
Valid Ox4-7 0Ox8-b Oxc-f
Index Tay/ 0Ox0-3 X4- X8- XC-=
0 \ 4
1 16 & b © o
2
3 1+o e f g h
4
5
6
7 o0
| | | | |
1022
1023%' ' ' ' '

And return word j

valid rad field Index field Offset
IndeX [Tag[OX0-3 T Ox&7 1 Ox8t T Oxc=F

0O o

1 gl 2 | | K T

2

3 L[0 e f g h

4 o

5 o

6 [0

7 o

o I I I I
10220l [[| |
10230

a

° 000000000 001 64060
aid 1ag field Indexfield Offset

dex[[Tag [OX0-3 [OxZ=7 T 0%t TOxc=1

0 ¢

‘% i1l 2 1 I k |
q

3 170 e f g h

4 q

5 ¢

6

7 o

T | |

1022q] [I I I

10230

Do an example yourself. What happens?

°Chose from: Cache: Hit, Miss, Miss w. replace
Values returned: a,b,c,d,e, .. k,l

°Read address 0x00000030 ?
000000000000000000 0000000011 0000

°Read address 0x0000001c ?
000000000000000000 0000000001 1100

Ing\e/a:)“dTaﬂ 0x0-3 O0x4-7 0x8-b Oxc-f

2 i i K 1

0

0 e f g h

=} =] =]=)

P NOYOIARWNE

Block-Size-Tradeoff(2/3)

°Drawbacks of Larger Block Size

eLarger block size means larger miss
penalty

- on amiss, takes longer time to load a new
block from next level

«If block size is too big relative to cache
size, then there are too few blocks

- Result: miss rate goes up
°In general, minimize
Average Access Time

= Hit Time x Hit Rate
+ Miss Penalty x Miss Rate

Things to Remember

°We would like to have the capacity of
disk at the speed of the processor:
unfortunately this is not feasible.

°So we create a memory hierarchy:

eeach successively lower level contains
“most used” data from next higher level

eexploits temporal locality and spatial
locality

*do the common case fast, worry less about
the exceptions (design principle of MIPS)

°Locality of reference is a Big Idea

Block Size Tradeoff (1/3)

°Benefits of Larger Block Size

e Spatial Locality: if we access a given
word, we're likely to access other
nearby words soon (Another Big Idea)

*Very applicable with Stored-Program
Concept: if we execute a given
instruction, it’s likely that we’ll execute
the next few as well

*Works nicely in sequential array
accesses too

Block-Size-Tradeoff(3/3)

°Hit Time =time to find and retrieve
data from current level cache

°Miss Penalty = average time to retrieve
dafaon a current level miss (includes
the possibility of misses on
successive levels)

°Hit Rate = % of requests that are found
in current level cache

°Miss Rate = 1 - Hit Rate

47

