
C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 1

CS61C - Machine Structures

Lecture 18 - Caches, Part I I

November 1, 2000

David Patterson

http://www-inst.eecs.berkeley.edu/~cs61c/

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 2

Review

° We would l ike to have the capacity of
disk at the speed of the processor:
unfortunately this is not feasible.

° So we create a memory hierarchy:

• each successively lower level contains
“most used” data from next higher level

• exploits temporal locality

• do the common case fast, worry less about
the exceptions (design principle of MIPS)

° Locality of reference is a Big Idea

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 3

Big Idea Review (1/2)

° Mechanism for transparent movement
of data among levels of a storage
hierarchy

• set of address/value bindngs
• address => index to set of candidates
• compare desired address with tag
• service hit or miss

- load new block and b inding on miss

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
...

1 0 a b c d

000000000000000000 0000000001 1100
address: tag index offset

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 4

Outline

° Block Size Tradeoff

° Types of Cache Misses

° Fully Associative Cache

° Course Advice

° N-Way Associative Cache

° Block Replacement Policy

° Multilevel Caches (if time)

° Cache write policy (if time)

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 5

Block Size Tradeoff (1/3)

° Benefits of Larger Block Size

• Spatial Locality: if we access a given
word, we’re likely to access other
nearby words soon (Another Big Idea)

• Very applicable with Stored-Program
Concept: i f we execute a given
instruction, it’s likely that we’ll execute
the next few as well

• Works nicely in sequential array
accesses too

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 6

Block Size Tradeoff (2/3)

° Drawbacks of Larger Block Size

• Larger block size means larger miss
penalty

- on a miss, takes longer t ime to load a new
block from next level

• If block size is too big relative to cache
size, then there are too few blocks

- Resul t : miss rate goes up

° In general, minimize
Average Access Time

= Hit Time x Hit Rate
+ Miss Penalty x Miss Rate

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 7

Block Size Tradeoff (3/3)

° Hit Time = time to find and retrieve
data from current level cache

° M iss Penalty = average time to retrieve
data on a current level miss (includes
the possibility of misses on
successive levels of memory
hierarchy)

° Hit Rate = % of requests that are found
in current level cache

° M iss Rate = 1 - Hit Rate

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 8

Extreme Example: One Big Block

° Cache Size = 4 bytes Block Size = 4 bytes

• Only ONE entry in the cache!

° I f item accessed, l ikely accessed again soon

• But unlikely will be accessed again immediately!

° The next access will l ikely to be a miss again

• Continually loading data into the cache but
discard data (force out) before use it again

• Nightmare for cache designer: Ping Pong Effect

 Cache DataValid Bit

B 0B 1B 3
Tag

B 2

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 9

Block Size Tradeoff Conclusions

Miss
Penalty

Block Size

Increased Miss Penalty
& Miss Rate

Average
Access

Time

Block Size

Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Miss
Rate

Block Size

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 10

Types of Cache Misses (1/2)

° Compulsory Misses

• occur when a program is first started

• cache does not contain any of that
program’s data yet, so misses are bound
to occur

• can’t be avoided easily, so won’t focus
on these in this course

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 11

Types of Cache Misses (2/2)

° Conflict Misses

• miss that occurs because two distinct
memory addresses map to the same
cache location

• two blocks (which happen to map to the
same location) can keep overwriting
each other

• big problem in direct-mapped caches

• how do we lessen the effect of these?

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 12

Dealing with Conflict Misses

° Solution 1: Make the cache size bigger

• fails at some point

° Solution 2: Multiple distinct blocks can
fit in the same Cache Index?

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 13

Fully Associative Cache (1/3)

° Memory address fields:

• Tag: same as before

• Offset: same as before

• Index: non-existent

° What does this mean?

• no “rows”: any block can go anywhere in
the cache

• must compare with all tags in entire cache
to see if data is there

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 14

Fully Associative Cache (2/3)

° Fully Associative Cache (e.g., 32 B block)

• compare tags in parallel

Byte Offset

:

 Cache Data
B 0

0431

:

Cache Tag (27 bits long)

Valid

:

B 1B 31 :

 Cache Tag
=

=
=

=

=
:

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 15

Fully Associative Cache (3/3)

° Benefit of Fully Assoc Cache

• no Conflict Misses (since data can go
anywhere)

° Drawbacks of Ful ly Assoc Cache

• need hardware comparator for every
single entry: if we have a 64KB of data in
cache with 4B entries, we need 16K
comparators: infeasible

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 16

Third Type of Cache Miss

° Capacity Misses

• miss that occurs because the cache has
a limited size

• miss that would not occur if we increase
the size of the cache

• sketchy definition, so just get the general
idea

° This is the primary type of miss for
Fully Associate caches.

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 17

Administrivia: General Course Philosophy

° Take variety of undergrad courses
now to get introduction to areas

• Can learn advanced material on own later
once know vocabulary

° Who knows what you wil l work on
over a 40 year career?

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 18

Administrivia: Courses for Telebears
° General Philosophy

• Take courses from great teachers!
• HKN ratings; >= 6 very good, < 5 not good
• www-hkn.eecs/student/coursesurveys.shtml

° Top Faculty / CS Course (may teach soon)
• CS 70 Discrete Math Papadami. 6.3 S00

• CS 150 Logic design Katz (DTA) 6.3 F92
• CS 152 Computer Kubiatowicz 6.7 F99
• CS 160 User Interface Rowe 6.0 F99
• CS 164 Compilers Aiken 6.1 S00
• CS 169 SW engin. Brewer 6.3 F99
• CS 174 Combinatori Sinclair 6.0 F97
• CS 184 Graphics Sequin 6.1 S99
• CS 188 Artfic. Intel. Rusell 6.0 F97

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 19

Administrivia: Courses for Telebears

° General Philosophy
• Take courses from great teachers!

° Top Faculty / EE Course (may teach soon)
• EE 105 Micro. Devices Howe 6.2 S98
• EE 120 Signal,System Kahn 6.0 F99
• EE 121 Noise Analysis Tse 6.8 S00

• EE 130 I .C. Devices Hu (DTA) 6.6 F99
• EE 140 Linear I.C.s Brodersen 6.2 F98
• EE 141 Digital I.C.s Rabaey 6.4 F98
• EE 142 I .C. for Comm. Meyer 6.2 F98
• EE 143 Process I .C.s Cheung 6.0 S00
• EE 192 Mechatronics Fearing 6.1 S00

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 20

I f many good teachers: My recommendations

° CS169 Software Engineering

• Everyone writes programs, even HW designers

• Often programs are written in groups
 ⇒ learn skill now in school (before it counts)

° CS162 Operating Systems

• All special-purpose HW will run a layer of SW
that uses processes and concurrent
programming; CS162 is the closest thing

° EE122 Introduction to Communication
Networks

• World is getting connected;
communications must play major role

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 21

I f many good teachers: Courses to consider

° E190 Technical Communication

• Talent in writing and speaking critical for
success

• Now required for EECS majors

° CS 150 Lab Hardware Design

• Hands on HW design

° CS 152 Design a Computer

° CS 186 Understand databases

• Information more important now than
computation?

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 22

Administrivia: Courses for Telebears

° Remember:

° Teacher quality
more important to learning experience
than official course content

° Take courses from great teachers!

° Distinguished Teaching Award:

www.uga.berkeley.edu/sled/dta-dept.html

° HKN Evaluations:

www-hkn.eecs.berkeley.edu/student/coursesurveys.shtml

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 23

N-Way Set Associative Cache (1/4)

° Memory address fields:

• Tag: same as before

• Offset: same as before

• Index: points us to the correct “row”
(called a set in this case)

° So what’s the difference?

• each set contains multiple blocks

• once we’ve found correct set, must
compare with all tags in that set to find
our data

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 24

N-Way Set Associative Cache (2/4)

° Summary:

• cache is direct-mapped with respect to
sets

• each set is fully associative

• basically N direct-mapped caches
working in parallel: each has its own
valid bit and data

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 25

N-Way Set Associative Cache (3/4)

° Given memory address:

• Find correct set using Index value.

• Compare Tag with al l Tag values in the
determined set.

• If a match occurs, it’s a hit, otherwise a
miss.

• Finally, use the offset field as usual to
find the desired data within the desired
block.

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 26

N-Way Set Associative Cache (4/4)

° What’s so great about this?

• even a 2-way set assoc cache avoids a
lot of conflict misses

• hardware cost isn’t that bad: only need N
comparators

° In fact, for a cache with M blocks,

• it’s Direct-Mapped if it’s 1-way set assoc

• it ’s Fully Assoc if it ’s M-way set assoc

• so these two are just special cases of the
more general set associative desgin

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 27

Block Replacement Policy (1/2)

° Direct-Mapped Cache: index completely
specifies position which position a
block can go in on a miss

° N-Way Set Assoc (N > 1): index
specifies a set, but block can occupy
any position within the set on a miss

° Fully Associative: block can be written
into any position

° Question: if we have the choice, where
should we write an incoming block?

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 28

Block Replacement Policy (2/2)

° Solution:

• If there are any locations with valid bit off
(empty), then usually write the new block
into the first one.

• If all possible locations already have a
valid block, we must pick a replacement
policy: rule by which we determine which
block gets “cached out” on a miss.

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 29

Block Replacement Policy: LRU

° LRU (Least Recently Used)

• Idea: cache out block which has been
accessed (read or write) least recently

• Pro: temporal locality => recent past use
implies likely future use: in fact, this is a
very effective policy

• Con: with 2-way set assoc, easy to keep
track (one LRU bit); with 4-way or
greater, requires complicated hardware
and much time to keep track of this

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 30

Block Replacement Example

° We have a 2-way set associative cache
with a four word total capacity and one
word blocks. We perform the
following word accesses (ignore bytes
for this problem):

0, 2, 0, 1, 4, 0, 2, 3, 5, 4

How many hits and how many misses
will there for the LRU block
replacement policy?

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 31

Block Replacement Example: LRU
° Addresses 0, 2, 0, 1, 4, 0, ... 0

lru

2
lru

lru

1
lru

loc 0 loc 1

4
lru

set 0

set 1

0set 0

set 1

0 2set 0

set 1

0 2
lruset 0

set 1

set 0

set 1

0

1
lru

lruset 0

set 1

0 4

1 lru

• 0: miss, bring into set 0 (loc 0)

• 2: miss, bring into set 0 (loc 1)

• 0: hit

• 1: miss, bring into set 1 (loc 0)

• 4: miss, bring into set 0 (loc 1, replace 2)

• 0: hit

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 32

Ways to reduce miss rate

° Larger cache

• l imited by cost and technology

• hit time of first level cache < cycle time

° More places in the cache to put each
block of memory - associativity

• fully-associative

- any block any l ine

• k-way set associated

- k places for each block

- direct map: k=1

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 33

Big Idea

° How chose between options of
associativity, block size, replacement
policy?

° Design against a performance model

• Minimize: Average Access Time

 = Hit Time + Miss Penalty x Miss Rate

• influenced by technology and program
behavior

° Create the il lusion of a memory that is
large, cheap, and fast - on average

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 34

Example

° Assume

• Hit Time = 1 cycle

• Miss rate = 5%

• Miss penalty = 20 cycles

° Avg mem access time = 1 + 0.05 x 20
= 2 cycle

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 35

Improving Miss Penalty

° When caches first became popular,
M iss Penalty ~ 10 processor clock
cycles

° Today 1000 MHz Processor (1 ns per
clock cycle) and 100 ns to go to DRAM
⇒⇒ 100 processor clock cycles!

Proc $ 2

D
R

A
M$

MEM

Solution: another cache between memory and
the processor cache: Second Level (L2) Cache

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 36

Analyzing Multi-level cache hierarchy

Proc $ 2

D
R

A
M$

L1 hit
t ime

L1 Miss Rate

L1 Miss Penalty
Avg Mem Access Time =

L1 Hit Time + L1 Miss Rate * L1 Miss Penalty

L1 Miss Penalty = L2 Hit Time + L2 Miss Rate
* L2 Miss Penalty

Avg Mem Access Time =
L1 Hit Time + L1 Miss Rate * (L2 Hit Time +

L2 Miss Rate * L2 Miss Penalty)

L2 hit
t ime L2 Miss Rate

L2 Miss Penalty

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 37

Typical Scale

° L1
• size: tens of KB

• hit time: complete in one clock cycle

• miss rates: 1-5%

° L2:
• size: hundreds of KB

• hit time: few clock cycles

• miss rates: 10-20%

° L2 miss rate is fraction of L1 misses
that also miss in L2

• why so high?
C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 38

Example (cont)

° Assume

• L1 Hit Time = 1 cycle

• L1 Miss rate = 5%

• L2 Hit Time = 5 cycles

• L2 Miss rate = 15% (% L1 misses that miss)

• L2 Miss Penalty = 100 cycles

° L1 miss penalty = 5 + 0.15 * 100 = 20

° Avg mem access time = 1 + 0.05 x 20
= 2 cycle

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 39

Example: without L2 cache

° Assume

• L1 Hit Time = 1 cycle

• L1 Miss rate = 5%

• L1 Miss Penalty = 100 cycles

° Avg mem access time = 1 + 0.05 x 100
= 6 cycles

° 3x faster with L2 cache

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 40

What to do on a write hit?

° Write-through
• update the word in cache block and

corresponding word in memory

° Write-back
• update word in cache block

• allow memory word to be “stale”

=> add ‘dirty’ bit to each line indicating
that memory needs to be updated when
block is replaced

=> OS flushes cache before I/O !!!

° Performance trade-offs?

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 41

Things to Remember (1/2)
° Caches are NOT mandatory:

• Processor performs arithmetic

• Memory stores data

• Caches simply make data transfers go
faster

° Each level of memory hierarchy is just
a subset of next higher level

° Caches speed up due to temporal
locality: store data used recently

° Block size > 1 word speeds up due to
spatial locality: store words adjacent
to the ones used recently

C S 6 1 C L 1 8 C a c h e 2 © U C R e g e n t s 42

Things to Remember (2/2)

° Cache design choices:

• size of cache: speed v. capacity

• direct-mapped v. associative

• for N-way set assoc: choice of N

• block replacement policy

• 2nd level cache?

• Write through v. write back?

° Use performance model to pick
between choices, depending on
programs, technology, budget, . . .

