
C S 6 1 C L 1 9 V M © U C R e g e n t s 1

CS61C - Machine Structures

Lecture 19 - Virtual Memory

November 3, 2000

David Patterson

http://www-inst.eecs.berkeley.edu/~cs61c/

C S 6 1 C L 1 9 V M © U C R e g e n t s 2

Review (1/2)

° Caches are NOT mandatory:

• Processor performs arithmetic

• Memory stores data

• Caches simply make things go faster

° Each level of memory hierarchy is just
a subset of next higher level

° Caches speed up due to temporal
locality: store data used recently

° Block size > 1 word speeds up due to
spatial locality: store words adjacent
to the ones used recently

C S 6 1 C L 1 9 V M © U C R e g e n t s 3

Review (2/2)

° Cache design choices:

• size of cache: speed v. capacity

• direct-mapped v. associative

• for N-way set assoc: choice of N

• block replacement policy

• 2nd level cache?

• Write through v. write back?

° Use performance model to pick
between choices, depending on
programs, technology, budget, . . .

C S 6 1 C L 1 9 V M © U C R e g e n t s 4

Another View of the Memory Hierarchy

Regs

L2 Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Upper Level

Lower Level

Faster

Larger

Cache
Blocks

Thus far{
{Next:

Virtual
Memory

C S 6 1 C L 1 9 V M © U C R e g e n t s 5

Virtual Memory

° If Principle of Locality allows caches
to offer (usually) speed of cache
memory with size of DRAM memory,
then recursively why not use at next
level to give speed of DRAM memory,
size of Disk memory?

° Called “Virtual Memory”

• Also allows OS to share memory, protect
programs from each other

• Today, more important for protection vs.
just another level of memory hierarchy

• Historically, it predates caches
C S 6 1 C L 1 9 V M © U C R e g e n t s 6

Virtual to Physical Addr. Translation

° Each program operates in its own virtual
address space; ~only program running

° Each is protected from the other

° OS can decide where each goes in memory

° Hardware (HW) provides virtual -> physical
mapping

virtual
address
(inst. fetch
load, store)

Program
operates in
its virtual
address
space

H W
mapping

physical
address
(inst. fetch
load, store)

Physical
memory
(incl. caches)

C S 6 1 C L 1 9 V M © U C R e g e n t s 7

Simple Example: Base and Bound Reg

0

∞∞

O S

User A

User B

User C

$base

$base+
$bound

° Want discontinuous
mapping

° Process size >> m e m

° Addition not enough!

=> use Indirection!

Enough space for User D,
but discontinuous
(“fragmentation problem”)

C S 6 1 C L 1 9 V M © U C R e g e n t s 8

Mapping Virtual Memory to Physical Memory

0

Physical Memory

∞∞
Virtual Memory

Code

Static

Heap

Stack

64 MB

° Divide into equal sized
chunks (about 4KB)

0

° Any chunk of Virtual Memory
assigned to any chuck of
Physical Memory (“page”)

C S 6 1 C L 1 9 V M © U C R e g e n t s 9

Paging Organization (assume 1 KB pages)

Addr
Trans
MAP

Page is unit
of mapping

Page also unit of
transfer from disk
to physical memory

page 0 1K
1K

1K

0
1024

31744

Virtual
Memory

Virtual
Address

page 1

page 31

1K2048 page 2

...... ...

page 00
1024

7168

Physical
Address

Physical
Memory

1K
1K

1K

page 1

page 7
...... ...

C S 6 1 C L 1 9 V M © U C R e g e n t s 10

Virtual Memory Mapping Function

° Cannot have simple function to
predict arbitrary mapping

° Use table lookup of mappings

° Use table lookup (“Page Table”) for
mappings: Page number is index

° Virtual Memory Mapping Function

• Physical Offset = Virtual Offset

• Physical Page Number
= PageTable[Virtual Page Number]

(P.P.N. also called “Page Frame”)

Page Number Offset

C S 6 1 C L 1 9 V M © U C R e g e n t s 11

Address Mapping: Page Table

Virtual Address:
page no. offset

Page Table
Base Reg

Page Table located in physical memory

(actually,
concatenation)

index
into
page
table

+

Physical
Memory
Address

Page Table

Val
-id

Access
Rights

Physical
Page
Address

.

V A.R. P. P. A.

...

...

C S 6 1 C L 1 9 V M © U C R e g e n t s 12

Page Table

° A page table is an operating system
structure which contains the mapping
of virtual addresses to physical
locations

• There are several different ways, all up to
the operating system, to keep this data
around

° Each process running in the operating
system has i ts own page table

• “State” of process is PC, all registers,
plus page table

• OS changes page tables by changing
contents of Page Table Base Register

C S 6 1 C L 1 9 V M © U C R e g e n t s 13

Page Table Entry (PTE) Format

° Contains either Physical Page Number
or indication not in Main Memory

° OS maps to disk if Not Valid (V = 0)

° If valid, also check if have permission
to use page: Access Rights (A.R.) may
be Read Only, Read/Write, Executable

...

Page Table
Val
-id

Access
Rights

Physical
Page
Number

V A.R. P. P. N.

V A.R. P. P.N.

...

P.T.E.

C S 6 1 C L 1 9 V M © U C R e g e n t s 14

Analogy

° Book title like virtual address

° Library of Congress call number l ike
physical address

° Card catalogue like page table,
mapping from book tit le to call number

° On card for book, in local l ibrary vs. in
another branch like valid bit indicating
in main memory vs. on disk

° On card, available for 2-hour in library
use (vs. 2-week checkout) l ike access
rights

C S 6 1 C L 1 9 V M © U C R e g e n t s 15

Address Map, Mathematically Speaking

V = {0, 1, . . . , n - 1} virtual address space (n > m)
M = {0, 1, . . . , m - 1} physical address space
MAP: V --> M U {θθ} address mapping function

MAP(a) = a' if data at virtual address a
is present in physical address a' and a' in M
= θθ if data at virtual address a is not present in M

Processor

Name Space V

Addr Trans
Mechanism

OS fault
handler

Main
Memory

 Disk

a

a
a'

0

page fault

physical
address

OS performs
this transfer C S 6 1 C L 1 9 V M © U C R e g e n t s 16

Comparing the 2 levels of hierarchy

° Cache Version Virtual Memory vers.

° Block or Line Page

° M iss Page Fault

° Block Size: 32-64B Page Size: 4K-8KB

° Placement: Fully Associative
Direct Mapped,
N-way Set Associative

° Replacement: Least Recently Used
LRU or Random (LRU)

° Write Thru or Back Write Back

C S 6 1 C L 1 9 V M © U C R e g e n t s 17

Administrivia

° Project 5 due Saturday midnight

• TA help Friday, not Saturday

° Homework 8 (next week)

• Want to fil l in page tables to learn material,
so easiest way is to turn in paper; no
electronic submission

° Grading scale (same as Spring 99, Fall 99)

95% A+, 90% A, 85% A-, 80% B+, 75% B,

70% B-, 65% C+, 60% C, 55% C-, 45% D

C S 6 1 C L 1 9 V M © U C R e g e n t s 18

Administrivia

° Median: 37;

° 50% 42 to 31

° Avg: 35.4,
Std. Dev. 8.3

% perfect or -1 point per question
1. Pliable Data 28% 75%
2. Parts of a Computer 89% 98%
3. Starting a Program 86% 100%
4. Networks 36% 51%
5. Pointers (p’s and q’s) 3% 20%
6. Floating Point 56% 77%
7. MIPS (self mod. Code) 27% 32%
8. Pointers in C and MIPS 51% 57%

0
510

15
2025
30
35
4045
50

0 35 70 105 140 175 210 245 280 315 350

m
id

te
rm

 s
co

re

C S 6 1 C L 1 9 V M © U C R e g e n t s 19

Notes on Page Table

° Solves Fragmentation problem: all chunks
same size, so all holes can be used

° OS must reserve “Swap Space” on disk
for each process

° To grow a process, ask Operating System

• I f unused pages, OS uses them first

• I f not, OS swaps some old pages to disk

• (Least Recently Used to pick pages to swap)

° Each process has own Page Table

° W ill add details, but Page Table is essence
of Virtual Memory

C S 6 1 C L 1 9 V M © U C R e g e n t s 20

Virtual Memory Problem #1

° Not enough physical memory!

• Only, say, 64 MB of physical memory

• N processes, each 4GB of virtual memory!

• Could have 1K virtual pages/physical page!

° Spatial Locality to the rescue

• Each page is 4 KB, lots of nearby references

• No matter how big program is, at any t ime
only accessing a few pages

• “Working Set”: recently used pages

C S 6 1 C L 1 9 V M © U C R e g e n t s 21

Virtual Address and a Cache

Processor Trans-
lation

Cache Main
Memory

VA PA miss

hit

data

• Cache typically operates on physical
addresses
• Page Table access is another memory access
for each program memory access!
•Need to fix this!

C S 6 1 C L 1 9 V M © U C R e g e n t s 22

Virtual Memory Problem #2

° Map every address ⇒ 1 extra memory
access for every memory access

° Observation: since locality in pages of
data, must be locality in virtual
addresses of those pages

° Why not use a cache of virtual to
physical address translations to make
translation fast? (small is fast)

° For historical reasons, cache is called a
Translation Lookaside Buffer, or TLB

C S 6 1 C L 1 9 V M © U C R e g e n t s 23

Typical TLB Format

Virtual Physical Dirty Ref Valid Access
Address Address Rights

• TLB just a cache on the page table mappings

• TLB access time comparable to cache
 (much less than main memory access time)
• Ref: Used to help calculate LRU on replacement
• Dirty: since use write back, need to know whether
or not to write page to disk when replaced

C S 6 1 C L 1 9 V M © U C R e g e n t s 24

What if not in TLB?

° Option 1: Hardware checks page table
and loads new Page Table Entry into TLB

° Option 2: Hardware traps to OS, up to OS
to decide what to do

° M IPS follows Option 2: Hardware knows
nothing about page table format

C S 6 1 C L 1 9 V M © U C R e g e n t s 25

TLB Miss (simplified format)
° I f the address is not in the TLB, MIPS

traps to the operating system

• When in the operating system, we don't
do translation (turn off virtual memory)

° The operating system knows which
program caused the TLB fault , page
fault, and knows what the virtual
address desired was requested

• So we look the data up in the page table

2 91

valid virtual physical

C S 6 1 C L 1 9 V M © U C R e g e n t s 26

I f the data is in memory

° We simply add the entry to the TLB,
evicting an old entry from the TLB

7 321
2 91

valid virtual physical

C S 6 1 C L 1 9 V M © U C R e g e n t s 27

What if the data is on disk?

° We load the page off the disk into a
free block of memory, using a DMA
transfer

• Meantime we switch to some other
process waiting to be run

° When the DMA is complete, we get an
interrupt and update the process's
page table

• So when we switch back to the task, the
desired data wil l be in memory

C S 6 1 C L 1 9 V M © U C R e g e n t s 28

What i f we don't have enough memory?

° We chose some other page belonging
to a program and transfer it onto the
disk if it is dirty

• If clean (other copy is up-to-date),
just overwrite that data in memory

• We chose the page to evict based on
replacement policy (e.g., LRU)

° And update that program's page table
to reflect the fact that its memory
moved somewhere else

C S 6 1 C L 1 9 V M © U C R e g e n t s 29

Translation Look-Aside Buffers

•TLBs usually small, typically 128 - 256 entries

• Like any other cache, the TLB can be fully
associative, set associative, or direct mapped

Processor
TLB

Lookup
Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

C S 6 1 C L 1 9 V M © U C R e g e n t s 30

Virtual Memory Problem #3

° Page Table too big!

• 4GB Virtual Memory ÷ 4 KB page
 ⇒ ~ 1 mill ion Page Table Entries
 ⇒ 4 MB just for Page Table for 1 process,
 25 processes ⇒ 100 MB for Page Tables!

° Variety of solutions to tradeoff memory
size of mapping function for slower
when miss TLB

• Make TLB large enough, highly associative
so rarely miss on address translation

• CS 162 wil l go over more options and in
greater depth

C S 6 1 C L 1 9 V M © U C R e g e n t s 31

2-level Page Table

0

Physical

 Memory
64
M B

Virtual Memory
∞∞

Code

Static

Heap

Stack

0

...

2nd Level
Page Tables

Super
Page
Table

C S 6 1 C L 1 9 V M © U C R e g e n t s 32

Page Table Shrink :

° Single Page Table

Page Number Offset

20 bits 12 bits
° Multilevel Page Table

Page
Number

Super
Page No.

Offset

10 bits 10 bits 12 bits

° Only have second level page table for
valid entries of super level page table

C S 6 1 C L 1 9 V M © U C R e g e n t s 33

Space Savings for Multi-Level Page Table

° I f only 10% of entries of Super Page
Table have valid enties, then total
mapping size is roughly 1/10-th of
single level page table

• Exercise 7.35 explores exact size

C S 6 1 C L 1 9 V M © U C R e g e n t s 34

Note: Actual MIPS Process Memory Allocation

0

∞ ∞ (232-1)
Address

Code

Static

User code/data space

Heap

Stack

I/O device registers

$sp

$gp

∞/∞/2 (231-1)

I /O Regs

Except. Exception Handlers

OS code/data space

∞/∞/2 (231)

• OS restricts I/O Registers,
Exception Handlers to OS

C S 6 1 C L 1 9 V M © U C R e g e n t s 35

Things to Remember 1/2

° Apply Principle of Locality Recursively

° Reduce Miss Penalty? add a (L2) cache

° Manage memory to disk? Treat as cache

• Included protection as bonus, now critical

• Use Page Table of mappings
vs. tag/data in cache

° Virtual memory to Physical Memory
Translation too slow?

• Add a cache of Virtual to Physical Address
Translations, called a TLB

C S 6 1 C L 1 9 V M © U C R e g e n t s 36

Things to Remember 2/2

° Virtual Memory allows protected sharing of
memory between processes with less
swapping to disk, less fragmentation than
always swap or base/bound

° Spatial Locality means Working Set of
Pages is all that must be in memory for
process to run fairly well

° TLB to reduce performance cost of VM

° Need more compact representation to
reduce memory size cost of simple 1-level
page table (especially 32- ⇒ 64-bit address)

° Next: Introduction to processors design

