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Review 1/3
°Apply Principle of Locality Recursively

°Reduce Miss Penalty? add a (L2) cache

°Manage memory to disk? Treat as cache
• Included protection as bonus, now critical
• Use Page Table of mappings
vs. tag/data in cache

°Virtual memory to Physical Memory
Translation too slow?

• Add a cache of Virtual to Physical Address
Translations, called a TLB
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Review 2/3
°Virtual Memory allows protected sharing of
memory between processes with less
swapping to disk, less fragmentation than
always swap or base/bound

°Spatial Locality means Working Set of
Pages is all that must be in memory for
process to run fairly well

°TLB to reduce performance cost of VM

°Need more compact representation to
reduce memory size cost of simple 1-level
page table (especially 32- ⇒ 64-bit address)
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Review 3/3: Paging/Virtual Memory
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Outline

°Datapath Walkthroughs

°Hardware Building Blocks

°ALU Design

°Full Adder

°Datapath utilization
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The CPU

°Processor (CPU): the active part of the
computer, which does all the work (data
manipulation and decision-making)

°Datapath: portion of the processor
which contains hardware necessary to
perform all operations required by the
computer (the brawn)

°Control: portion of the processor (also
in hardware) which tells the datapath
what needs to be done (the brain)
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Stages of the Datapath (1/6)

°Problem: a single, atomic block which
“executes an instruction” (performs all
necessary operations beginning with
fetching the instruction) would be too
bulky and inefficient

°Solution: break up the process of
“executing an instruction” into stages,
and then connect the stages to create
the whole datapath

• smaller stages are easier to design
• easy to optimize (change) one stage
without touching the others
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Stages of the Datapath (2/6)

°There is a wide variety of MIPS
instructions: so what general steps do
they have in common?

°Stage 1: Instruction Fetch
• no matter what the instruction, the 32-bit
instruction word must first be fetched
from memory (the cache-memory
hierarchy)

• also, this is where we Increment PC
(that is, PC = PC + 4, to point to the next
instruction: byte addressing so + 4)
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Stages of the Datapath (3/6)

°Stage 2: Instruction Decode
• upon fetching the instruction, we next
gather data from the fields (decode all
necessary instruction data)

• first, read the Opcode to determine
instruction type and field lengths

• second, read in data from all necessary
registers

- for add, read two registers
- for addi, read one register
- for jal, no reads necessary
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Stages of the Datapath (4/6)

°Stage 3: ALU (Arithmetic-Logic Unit)
• the real work of most instructions is
done here: arithmetic (+, -, *, /), shifting,
logic (&, |), comparisons (slt)

• what about loads and stores?
- lw   $t0, 40($t1)
- the address we are accessing in memory =

the value in $t1 PLUS the value 40
- so we do this addition in this stage
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Stages of the Datapath (5/6)

°Stage 4: Memory Access
• actually only the load and store
instructions do anything during this
stage; the others remain idle

• since these instructions have a unique
step, we need this extra stage to account
for them

• as a result of the cache system, this
stage is expected to be just as fast (on
average) as the others
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Stages of the Datapath (6/6)

°Stage 5: Register Write
• most instructions write the result of some
computation into a register

• examples: arithmetic, logical, shifts,
loads, slt

• what about stores, branches, jumps?
- don’t write anything into a register at the end
- these remain idle during this fifth stage
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Generic Steps=> Datapath
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Datapath Walkthroughs (1/3)

°add   $r3,$r1,$r2 # r3 = r1+r2
• Stage 1: fetch this instruction, inc. PC
• Stage 2: decode to find it’s an add, then
read registers $r1 and $r2

• Stage 3: add the two values retrieved in
Stage 2

• Stage 4: idle (nothing to write to memory)
• Stage 5: write result of Stage 3 into
register $r3
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Example: ADD Instruction
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Datapath Walkthroughs (2/3)

°slti   $r3,$r1,17
• Stage 1: fetch this instruction, inc. PC
• Stage 2: decode to find it’s an slti, then
read register $r1

• Stage 3: compare value retrieved in Stage
2 with the integer 17

• Stage 4: go idle
• Stage 5: write the result of Stage 3 in
register $r3
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Example: SLTI Instruction
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Datapath Walkthroughs (3/3)

°sw   $r3, 17($r1)
• Stage 1: fetch this instruction, inc. PC
• Stage 2: decode to find it’s a sw, then
read registers $r1 and $r3

• Stage 3: add 17 to value in register $41
(retrieved in Stage 2)

• Stage 4: write value in register $r3
(retrieved in Stage 2) into memory
address computed in Stage 3

• Stage 5: go idle (nothing to write into a
register)
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Example: SW Instruction
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Administrivia

°Homework 8 (next week)
• Want to fill in page tables to learn material,
so easiest way is to turn in paper; no
electronic submission

°Grading scale (same as Spring 99, Fall 99)

95% A+, 90% A, 85% A-, 80% B+, 75% B,

70% B-, 65% C+, 60% C, 55% C-, 45% D
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• Popular lab: #8 (Signal in C)
• Unpopular lab: #6 (Fl. Pt.)!
• Projects popular v. unpopular
  smaller margins: 

• disassembler: 35% v. 13%
• philspel: 18% v. 37%
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Why Five Stages? (1/2)

°Could we have a different number of
stages?

• Yes, and other architectures do

°So why does MIPS have five if
instructions tend to go idle for at least
one stage?

• There is one instruction that uses all five
stages: the load
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Why Five Stages? (2/2)

°lw   $r3, 17($r1)
• Stage 1: fetch this instruction, inc. PC
• Stage 2: decode to find it’s a lw, then
read register $r1

• Stage 3: add 17 to value in register $r1
(retrieved in Stage 2)

• Stage 4: read value from memory
address compute in Stage 3

• Stage 5: write value found in Stage 4 into
register $r3
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Example: LW Instruction
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What Hardware Is Needed? (1/2)

°PC: a register which keeps track of VA
of the next instruction

°General Purpose Registers
• used in Stages 2 (Read) and 5 (Write)
• we’re currently working with 32 of these

°Memory
• used in Stages 1 (Fetch) and 4 (R/W)
• cache system makes these two stages as
fast as the others, on average
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Datapath Summary
°Construct datapath based on register
transfers required to perform
instructions

°Control part causes the right transfers
to happen
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What Hardware Is Needed? (2/2)

°ALU
• used in Stage 3
• something that performs all necessary
types of work: arithmetic, logicals, etc.

• we’ll design this later

°Miscellaneous Registers
• hold intermediate data, such as results in
between stages, etc.

• Note: Register is a general purpose term
meaning something that stores bits.

CS61C L20 Datapath © UC Regents 29

Hardware Building Blocks (1/6)

° In reality, CPUs are built out of
transistors and wires (plus resistors
and capacitors).

°For this class, we’ll do design using
gates and wires.

°Gate:
• hardware unit that receives a certain
number of inputs and produces one
output: implements one of the basic
logic functions

• can be represented as a truth table
• actually implemented in transistors
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Hardware Building Blocks (2/6)

°We can have more
inputs:

• C = 1 if and only if
ALL inputs are 1

AND Gate

CA

B

Symbol

A B C
0 0 0
0 1 0
1 0 0
1 1 1

Definition

called a
"truth
table"
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Hardware Building Blocks (3/6)

°We can have more
inputs:

• C = 1 if and only if
ANY input is 1

OR Gate

A B C
0 0 0
0 1 1
1 0 1
1 1 1

Definition

A

B
C

Symbol
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Hardware Building Blocks (4/6)

° In this case, there is always exactly
one input and one output.

°Note: Inverter is usually drawn as just
a bubble, without the triangle.

CA

Symbol

Inverter

A C
0 1
1 00 0

Definition
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Hardware Building Blocks (5/6)

Multiplexor (MUX)

D C
0 A
1 B0 0

DefinitionSymbol

C
A

B

0

1

D
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Hardware Building Blocks (6/6)

°General Muxes:
• have control bits and data bits
• control bits select which data bit will pass
through: all others are blocked

• in general,
1 control bit selects between 2 data bits,
2 control bits select between 4 data bits,
3 control bits select between 8 data bits,
n control bits select between 2n data bits

• so we can build a mux of any size to serve
our purpose
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Registers

°General Definition of a Register
• a place where we can store one or more
bits for future retrieval

• since registers are in hardware, they can
be designed using gates and wires

° In MIPS, we have:
• 32 general purpose registers used by
programs for computations

• registers in the datapath used to store
data between Stages

• a few more (such as PC, hi, lo)
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ALU Design Philosophies (1/4)

°Fact: All basic hardware building
blocks accept individual bits at inputs
and output individual bit.

°Fact: The MIPS ALU (generally) needs
to work with 32-bit registers.

°Design Philosophy #1: For simplicity,
build 32 separate one-bit ALUs, and
then figure out what needs to be done
to connect them.
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ALU Design Philosophies (2/4)

°Fact: ALU needs to perform a WIDE
variety of tasks: add, subtract,
multiply, divide, shift, compare, etc.

°Design Philosophy #2:
• Build separate hardware blocks for each
necessary task.

• When inputs come in, perform all
possible operations in parallel.

• Use a mux to choose which operation is
actually desired.

• Note: Since everything’s done in parallel,
no time is lost.
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ALU Design Philosophies (3/4)

°Consequence of Design Philosophy #2:
• New operations can be added to the ALU
just by adding new data lines into the
muxes and informing Control of the
change.

• This means that new instructions can be
added to the system without changing
everything: just a small portion of the
ALU.
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ALU Design Philosophy (4/4)

°There will be more places in the
design where we need to make a
decision:

• so feel free to add a mux whenever
necessary

• assume that control signals for all muxes
can be handled by the Control
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In the Beginning

°The ALU consists of 32 muxes (one for
each necessary output bit).

Control lines: may
need more

Output: one per mux

Data lines: may
need more

°Now we go through instruction set and
add data lines to implement all
necessary functionality.
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Logical Instructions (1/2)

°AND instruction
• one of data lines should be a simple AND
gate

°OR instruction
• another data line should be a simple OR
gate

A
B C

0

1

Op

Op C
0 A and B
1 A or B0 0

Definition
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One-Bit Full Adder (1/3)

°Example Binary Addition:
Carries

°Thus for any bit of addition:
• The inputs are ai, b i, CarryIni

• The outputs are Sumi, CarryOuti

°Note: CarryIni+1 = CarryOuti

a:   0     0     1      1

b:   0     1     0      1

Sum: 1     0     0      0
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One-Bit Full Adder (2/3)

Sum
A

Symbol

B

CarryIn

CarryOut

+

Definition
A B CarryIn CarryOut Sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
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Add 1-bit Adder to 1-bit ALU

°Now connect 32 1-bit ALUs together

Op

Op C
0 A and B
1 A or B

2 A + B + CarryIn

Definition
CarryIn

CarryOut

A
B

C

0

1

2+

CS61C L20 Datapath © UC Regents 45

One-Bit Full Adder (3/3)

°To create one-bit full adder:
• implement gates for Sum
• implement gates for CarryOut
• connect all inputs with same name
• the symbol for one-bit full adder now
represents this jumble of gates and wires
(simplifies schematics)
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Constructing Hardware to Match Definition

°Given any table of binary inputs for a
binary output, programs can
automatically connect a minimal
number of AND gates, OR gates, and
Inverters to produce the desired
function

°Such programs generically called
“Computer Aided Design”, or CAD
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Example: HW gates for CarryOut

°Values of Inputs
when CarryOut is 1:

A B CarryIn
0 1 1
1 0 1
1 1 0
1 1 1

°Gates for CarryOut
signal:

A

B

CarryIn
CarryOut

°Gates for Sum left as
exercise to Reader
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Things to Remember (1/3)

°Datapath is the hardware that
performs operations necessary to
execute programs.

°Control instructs datapath on what to
do next.

°Datapath needs:
• access to storage (general purpose
registers and memory)

• computational ability (ALU)
• helper hardware (local registers and PC)
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Things to Remember (2/3)

°Five stages of datapath (executing an
instruction):

1. Instruction Fetch (Increment PC)
2. Instruction Decode (Read Registers)
3. ALU (Computation)
4. Memory Access
5. Write to Registers

°ALL instructions must go through ALL
five stages.

°Datapath designed in hardware.
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Things to Remember (3/3)
°When inputs come into ALU stage, all
possible calculations/operations are
performed on them.

°One big mux then chooses which
operation is actually desired.

°New functionality can be added simply
by modifying the existing ALU (adding
a new data line to the mux, if
necessary)

°Computer Aided Design can create
gates to implement function defined in
any truth table


