
CS61C L20 Datapath © UC Regents 1

CS61C - Machine Structures

Lecture 20 - Datapath

November 8, 2000

David Patterson

http://www-inst.eecs.berkeley.edu/~cs61c/

CS61C L20 Datapath © UC Regents 2

Review 1/3
°Apply Principle of Locality Recursively

°Reduce Miss Penalty? add a (L2) cache

°Manage memory to disk? Treat as cache
• Included protection as bonus, now critical
• Use Page Table of mappings
vs. tag/data in cache

°Virtual memory to Physical Memory
Translation too slow?

• Add a cache of Virtual to Physical Address
Translations, called a TLB

CS61C L20 Datapath © UC Regents 3

Review 2/3
°Virtual Memory allows protected sharing of
memory between processes with less
swapping to disk, less fragmentation than
always swap or base/bound

°Spatial Locality means Working Set of
Pages is all that must be in memory for
process to run fairly well

°TLB to reduce performance cost of VM

°Need more compact representation to
reduce memory size cost of simple 1-level
page table (especially 32- ⇒ 64-bit address)

CS61C L20 Datapath © UC Regents 4

Review 3/3: Paging/Virtual Memory
User B:

Virtual Memory
∞

Code

Static

Heap

Stack

0
Code

Static

Heap

Stack

A
Page
Table

B
Page
Table

User A:
Virtual Memory
∞

0
0

Physical
 Memory

64 MB

CS61C L20 Datapath © UC Regents 5

Outline

°Datapath Walkthroughs

°Hardware Building Blocks

°ALU Design

°Full Adder

°Datapath utilization

CS61C L20 Datapath © UC Regents 6

Five Components of a Computer

 Processor
 (active)

Computer

Control
(George)

Datapath
(Lenny)

Memory
(passive)

(where
programs,
data live
when
running)

Devices
Input

Output

Keyboard,
Mouse

Display,
Printer

Disk
(where
programs,
data live
when not
running)

CS61C L20 Datapath © UC Regents 7

The CPU

°Processor (CPU): the active part of the
computer, which does all the work (data
manipulation and decision-making)

°Datapath: portion of the processor
which contains hardware necessary to
perform all operations required by the
computer (the brawn)

°Control: portion of the processor (also
in hardware) which tells the datapath
what needs to be done (the brain)

CS61C L20 Datapath © UC Regents 8

Stages of the Datapath (1/6)

°Problem: a single, atomic block which
“executes an instruction” (performs all
necessary operations beginning with
fetching the instruction) would be too
bulky and inefficient

°Solution: break up the process of
“executing an instruction” into stages,
and then connect the stages to create
the whole datapath

• smaller stages are easier to design
• easy to optimize (change) one stage
without touching the others

CS61C L20 Datapath © UC Regents 9

Stages of the Datapath (2/6)

°There is a wide variety of MIPS
instructions: so what general steps do
they have in common?

°Stage 1: Instruction Fetch
• no matter what the instruction, the 32-bit
instruction word must first be fetched
from memory (the cache-memory
hierarchy)

• also, this is where we Increment PC
(that is, PC = PC + 4, to point to the next
instruction: byte addressing so + 4)

CS61C L20 Datapath © UC Regents 10

Stages of the Datapath (3/6)

°Stage 2: Instruction Decode
• upon fetching the instruction, we next
gather data from the fields (decode all
necessary instruction data)

• first, read the Opcode to determine
instruction type and field lengths

• second, read in data from all necessary
registers

- for add, read two registers
- for addi, read one register
- for jal, no reads necessary

CS61C L20 Datapath © UC Regents 11

Stages of the Datapath (4/6)

°Stage 3: ALU (Arithmetic-Logic Unit)
• the real work of most instructions is
done here: arithmetic (+, -, *, /), shifting,
logic (&, |), comparisons (slt)

• what about loads and stores?
- lw $t0, 40($t1)
- the address we are accessing in memory =

the value in $t1 PLUS the value 40
- so we do this addition in this stage

CS61C L20 Datapath © UC Regents 12

Stages of the Datapath (5/6)

°Stage 4: Memory Access
• actually only the load and store
instructions do anything during this
stage; the others remain idle

• since these instructions have a unique
step, we need this extra stage to account
for them

• as a result of the cache system, this
stage is expected to be just as fast (on
average) as the others

CS61C L20 Datapath © UC Regents 13

Stages of the Datapath (6/6)

°Stage 5: Register Write
• most instructions write the result of some
computation into a register

• examples: arithmetic, logical, shifts,
loads, slt

• what about stores, branches, jumps?
- don’t write anything into a register at the end
- these remain idle during this fifth stage

CS61C L20 Datapath © UC Regents 14

Generic Steps=> Datapath

P
C

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs
rd

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

1. Instruction
Fetch

2. Decode/
 Register

Read

3. Execute 4. Memory 5. Reg.
 Write

CS61C L20 Datapath © UC Regents 15

Datapath Walkthroughs (1/3)

°add $r3,$r1,$r2 # r3 = r1+r2
• Stage 1: fetch this instruction, inc. PC
• Stage 2: decode to find it’s an add, then
read registers $r1 and $r2

• Stage 3: add the two values retrieved in
Stage 2

• Stage 4: idle (nothing to write to memory)
• Stage 5: write result of Stage 3 into
register $r3

CS61C L20 Datapath © UC Regents 16

Example: ADD Instruction

P
C

in
st

ru
ct

io
n

m
em

or
y

+4

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

2
1
3

ad
d

r3
, r

1,
 r2

reg[1]+reg[2]

reg[2]

reg[1]

CS61C L20 Datapath © UC Regents 17

Datapath Walkthroughs (2/3)

°slti $r3,$r1,17
• Stage 1: fetch this instruction, inc. PC
• Stage 2: decode to find it’s an slti, then
read register $r1

• Stage 3: compare value retrieved in Stage
2 with the integer 17

• Stage 4: go idle
• Stage 5: write the result of Stage 3 in
register $r3

CS61C L20 Datapath © UC Regents 18

Example: SLTI Instruction

P
C

in
st

ru
ct

io
n

m
em

or
y

+4

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

3
1
x

sl
ti

r3
, r

1,
 1

7

reg[1]-17

17

reg[1]

CS61C L20 Datapath © UC Regents 19

Datapath Walkthroughs (3/3)

°sw $r3, 17($r1)
• Stage 1: fetch this instruction, inc. PC
• Stage 2: decode to find it’s a sw, then
read registers $r1 and $r3

• Stage 3: add 17 to value in register $41
(retrieved in Stage 2)

• Stage 4: write value in register $r3
(retrieved in Stage 2) into memory
address computed in Stage 3

• Stage 5: go idle (nothing to write into a
register)

CS61C L20 Datapath © UC Regents 20

Example: SW Instruction

P
C

in
st

ru
ct

io
n

m
em

or
y

+4

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

3
1
x

S
W

 r3
, 1

7(
r1

)

reg[1]+17

17

reg[1]

M
E

M
[r1

+1
7]

<=
r3

reg[3]

CS61C L20 Datapath © UC Regents 21

Administrivia

°Homework 8 (next week)
• Want to fill in page tables to learn material,
so easiest way is to turn in paper; no
electronic submission

°Grading scale (same as Spring 99, Fall 99)

95% A+, 90% A, 85% A-, 80% B+, 75% B,

70% B-, 65% C+, 60% C, 55% C-, 45% D

CS61C L20 Datapath © UC Regents 22

26

74 86
46

22

0
20
40
60
80

100

<= 4 5 to 8 9 to
12

13 to
16

>= 17

Hours/week

Survey

4 10

134
95

11
0

50

100

150

Way
too

 slo
w

A l
ittle

 slo
w

Ab
ou

t rig
ht

A b
it fa

st

W
ay

too
 fas

t

0
50

100
150

Lo
st

Sig
nif
i...

Un
de

r...

Und
er.

..

Interrupt I/O

stack v. heap v.
static in
Assembly
Network
Devices,
Networking
Polling I/0

Translating C
pointers into
assembly
stack v. heap v.

• Popular lab: #8 (Signal in C)
• Unpopular lab: #6 (Fl. Pt.)!
• Projects popular v. unpopular
 smaller margins:

• disassembler: 35% v. 13%
• philspel: 18% v. 37%

CS61C L20 Datapath © UC Regents 23

Why Five Stages? (1/2)

°Could we have a different number of
stages?

• Yes, and other architectures do

°So why does MIPS have five if
instructions tend to go idle for at least
one stage?

• There is one instruction that uses all five
stages: the load

CS61C L20 Datapath © UC Regents 24

Why Five Stages? (2/2)

°lw $r3, 17($r1)
• Stage 1: fetch this instruction, inc. PC
• Stage 2: decode to find it’s a lw, then
read register $r1

• Stage 3: add 17 to value in register $r1
(retrieved in Stage 2)

• Stage 4: read value from memory
address compute in Stage 3

• Stage 5: write value found in Stage 4 into
register $r3

CS61C L20 Datapath © UC Regents 25

Example: LW Instruction
P

C

in
st

ru
ct

io
n

m
em

or
y

+4

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

3
1
x

LW
 r3

, 1
7(

r1
)

reg[1]+17

17

reg[1]

M
E

M
[r1

+1
7]

CS61C L20 Datapath © UC Regents 26

What Hardware Is Needed? (1/2)

°PC: a register which keeps track of VA
of the next instruction

°General Purpose Registers
• used in Stages 2 (Read) and 5 (Write)
• we’re currently working with 32 of these

°Memory
• used in Stages 1 (Fetch) and 4 (R/W)
• cache system makes these two stages as
fast as the others, on average

CS61C L20 Datapath © UC Regents 27

Datapath Summary
°Construct datapath based on register
transfers required to perform
instructions

°Control part causes the right transfers
to happen

P
C

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs
rd

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

Controller
opcode, funct

CS61C L20 Datapath © UC Regents 28

What Hardware Is Needed? (2/2)

°ALU
• used in Stage 3
• something that performs all necessary
types of work: arithmetic, logicals, etc.

• we’ll design this later

°Miscellaneous Registers
• hold intermediate data, such as results in
between stages, etc.

• Note: Register is a general purpose term
meaning something that stores bits.

CS61C L20 Datapath © UC Regents 29

Hardware Building Blocks (1/6)

° In reality, CPUs are built out of
transistors and wires (plus resistors
and capacitors).

°For this class, we’ll do design using
gates and wires.

°Gate:
• hardware unit that receives a certain
number of inputs and produces one
output: implements one of the basic
logic functions

• can be represented as a truth table
• actually implemented in transistors

CS61C L20 Datapath © UC Regents 30

Hardware Building Blocks (2/6)

°We can have more
inputs:

• C = 1 if and only if
ALL inputs are 1

AND Gate

CA

B

Symbol

A B C
0 0 0
0 1 0
1 0 0
1 1 1

Definition

called a
"truth
table"

CS61C L20 Datapath © UC Regents 31

Hardware Building Blocks (3/6)

°We can have more
inputs:

• C = 1 if and only if
ANY input is 1

OR Gate

A B C
0 0 0
0 1 1
1 0 1
1 1 1

Definition

A

B
C

Symbol

CS61C L20 Datapath © UC Regents 32

Hardware Building Blocks (4/6)

° In this case, there is always exactly
one input and one output.

°Note: Inverter is usually drawn as just
a bubble, without the triangle.

CA

Symbol

Inverter

A C
0 1
1 00 0

Definition

CS61C L20 Datapath © UC Regents 33

Hardware Building Blocks (5/6)

Multiplexor (MUX)

D C
0 A
1 B0 0

DefinitionSymbol

C
A

B

0

1

D

CS61C L20 Datapath © UC Regents 34

Hardware Building Blocks (6/6)

°General Muxes:
• have control bits and data bits
• control bits select which data bit will pass
through: all others are blocked

• in general,
1 control bit selects between 2 data bits,
2 control bits select between 4 data bits,
3 control bits select between 8 data bits,
n control bits select between 2n data bits

• so we can build a mux of any size to serve
our purpose

CS61C L20 Datapath © UC Regents 35

Registers

°General Definition of a Register
• a place where we can store one or more
bits for future retrieval

• since registers are in hardware, they can
be designed using gates and wires

° In MIPS, we have:
• 32 general purpose registers used by
programs for computations

• registers in the datapath used to store
data between Stages

• a few more (such as PC, hi, lo)

CS61C L20 Datapath © UC Regents 36

ALU Design Philosophies (1/4)

°Fact: All basic hardware building
blocks accept individual bits at inputs
and output individual bit.

°Fact: The MIPS ALU (generally) needs
to work with 32-bit registers.

°Design Philosophy #1: For simplicity,
build 32 separate one-bit ALUs, and
then figure out what needs to be done
to connect them.

CS61C L20 Datapath © UC Regents 37

ALU Design Philosophies (2/4)

°Fact: ALU needs to perform a WIDE
variety of tasks: add, subtract,
multiply, divide, shift, compare, etc.

°Design Philosophy #2:
• Build separate hardware blocks for each
necessary task.

• When inputs come in, perform all
possible operations in parallel.

• Use a mux to choose which operation is
actually desired.

• Note: Since everything’s done in parallel,
no time is lost.

CS61C L20 Datapath © UC Regents 38

ALU Design Philosophies (3/4)

°Consequence of Design Philosophy #2:
• New operations can be added to the ALU
just by adding new data lines into the
muxes and informing Control of the
change.

• This means that new instructions can be
added to the system without changing
everything: just a small portion of the
ALU.

CS61C L20 Datapath © UC Regents 39

ALU Design Philosophy (4/4)

°There will be more places in the
design where we need to make a
decision:

• so feel free to add a mux whenever
necessary

• assume that control signals for all muxes
can be handled by the Control

CS61C L20 Datapath © UC Regents 40

In the Beginning

°The ALU consists of 32 muxes (one for
each necessary output bit).

Control lines: may
need more

Output: one per mux

Data lines: may
need more

°Now we go through instruction set and
add data lines to implement all
necessary functionality.

CS61C L20 Datapath © UC Regents 41

Logical Instructions (1/2)

°AND instruction
• one of data lines should be a simple AND
gate

°OR instruction
• another data line should be a simple OR
gate

A
B C

0

1

Op

Op C
0 A and B
1 A or B0 0

Definition

CS61C L20 Datapath © UC Regents 42

One-Bit Full Adder (1/3)

°Example Binary Addition:
Carries

°Thus for any bit of addition:
• The inputs are ai, b i, CarryIni

• The outputs are Sumi, CarryOuti

°Note: CarryIni+1 = CarryOuti

a: 0 0 1 1

b: 0 1 0 1

Sum: 1 0 0 0

CS61C L20 Datapath © UC Regents 43

One-Bit Full Adder (2/3)

Sum
A

Symbol

B

CarryIn

CarryOut

+

Definition
A B CarryIn CarryOut Sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

CS61C L20 Datapath © UC Regents 44

Add 1-bit Adder to 1-bit ALU

°Now connect 32 1-bit ALUs together

Op

Op C
0 A and B
1 A or B

2 A + B + CarryIn

Definition
CarryIn

CarryOut

A
B

C

0

1

2+

CS61C L20 Datapath © UC Regents 45

One-Bit Full Adder (3/3)

°To create one-bit full adder:
• implement gates for Sum
• implement gates for CarryOut
• connect all inputs with same name
• the symbol for one-bit full adder now
represents this jumble of gates and wires
(simplifies schematics)

CS61C L20 Datapath © UC Regents 46

Constructing Hardware to Match Definition

°Given any table of binary inputs for a
binary output, programs can
automatically connect a minimal
number of AND gates, OR gates, and
Inverters to produce the desired
function

°Such programs generically called
“Computer Aided Design”, or CAD

CS61C L20 Datapath © UC Regents 47

Example: HW gates for CarryOut

°Values of Inputs
when CarryOut is 1:

A B CarryIn
0 1 1
1 0 1
1 1 0
1 1 1

°Gates for CarryOut
signal:

A

B

CarryIn
CarryOut

°Gates for Sum left as
exercise to Reader

CS61C L20 Datapath © UC Regents 48

Things to Remember (1/3)

°Datapath is the hardware that
performs operations necessary to
execute programs.

°Control instructs datapath on what to
do next.

°Datapath needs:
• access to storage (general purpose
registers and memory)

• computational ability (ALU)
• helper hardware (local registers and PC)

CS61C L20 Datapath © UC Regents 49

Things to Remember (2/3)

°Five stages of datapath (executing an
instruction):

1. Instruction Fetch (Increment PC)
2. Instruction Decode (Read Registers)
3. ALU (Computation)
4. Memory Access
5. Write to Registers

°ALL instructions must go through ALL
five stages.

°Datapath designed in hardware.
CS61C L20 Datapath © UC Regents 50

Things to Remember (3/3)
°When inputs come into ALU stage, all
possible calculations/operations are
performed on them.

°One big mux then chooses which
operation is actually desired.

°New functionality can be added simply
by modifying the existing ALU (adding
a new data line to the mux, if
necessary)

°Computer Aided Design can create
gates to implement function defined in
any truth table

