
CS61C L21 Pipeline © UC Regents 1

CS61C - Machine Structures

Lecture 21 - Introduction to Pipelined
Execution

November 8, 2000

David Patterson

http://www-inst.eecs.berkeley.edu/~cs61c/

CS61C L21 Pipeline © UC Regents 2

Review (1/3)

° Datapath is the hardware that
performs operations necessary to
execute programs.

° Control instructs datapath on what to
do next.

° Datapath needs:

• access to storage (general purpose
registers and memory)

• computational ability (ALU)

• helper hardware (local registers and PC)

CS61C L21 Pipeline © UC Regents 3

Review (2/3)

° Five stages of datapath (executing an
instruction):

1. Instruction Fetch (Increment PC)

2. Instruction Decode (Read Registers)

3. ALU (Computation)

4. Memory Access

5. Write to Registers

° ALL instructions must go through ALL
five stages.

° Datapath designed in hardware.
CS61C L21 Pipeline © UC Regents 4

Review Datapath

P
C

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs

rd

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

1. Instruction
Fetch

2. Decode/
 Register

Read

3. Execute 4. Memory
5. Write

Back

CS61C L21 Pipeline © UC Regents 5

Outline

° Pipelining Analogy

° Pipelining Instruction Execution

° Hazards

° Advanced Pipelining Concepts by
Analogy

CS61C L21 Pipeline © UC Regents 6

Gotta Do Laundry

° Ann, Brian, Cathy, Dave
each have one load of
clothes to wash, dry,
fold, and put away

A B C D

° Dryer takes 30 minutes

° “Folder” takes 30
minutes

° “Stasher” takes 30
minutes to put clothes
into drawers

° Washer takes 30
minutes

CS61C L21 Pipeline © UC Regents 7

Sequential Laundry

° Sequential laundry takes
8 hours for 4 loads

T
a
s
k

O
r
d
e
r

B

C

D

A

30
Time

30 30 3030 30 3030 30 30 3030 30 30 3030

6 PM 7 8 9 10 11 12 1 2 A M

CS61C L21 Pipeline © UC Regents 8

Pipelined Laundry

° Pipelined laundry takes
3.5 hours for 4 loads!

T
a
s
k

O
r
d
e
r

B

C

D

A

12 2 A M6 PM 7 8 9 10 11 1

Time3030 30 3030 30 30

CS61C L21 Pipeline © UC Regents 9

General Definitions

° Latency: t ime to completely execute a
certain task

• for example, t ime to read a sector from
disk is disk access time or disk latency

° Throughput: amount of work that can
be done over a period of t ime

CS61C L21 Pipeline © UC Regents 10

Pipelining Lessons (1/2)
° Pipelining doesn’t help

latency of single task, it
helps throughput of
entire workload

° Multiple tasks
operating
simultaneously using
different resources

° Potential speedup =
Number pipe stages

° Time to “fill” pipeline
and t ime to “drain” it
reduces speedup:
2.3X v. 4X in this
example

6 PM 7 8 9

Time

B

C

D

A

3030 30 3030 30 30

T
a
s
k

O
r
d
e
r

CS61C L21 Pipeline © UC Regents 11

Pipelining Lessons (2/2)
° Suppose new

Washer takes 20
minutes, new
Stasher takes 20
minutes. How much
faster is pipeline?

° Pipeline rate limited
by slowest pipeline
stage

° Unbalanced lengths
of pipe stages also
reduces speedup

6 PM 7 8 9

Time

B

C

D

A

3030 30 3030 30 30

T
a
s
k

O
r
d
e
r

CS61C L21 Pipeline © UC Regents 12

Steps in Executing MIPS

1) IFetch: Fetch Instruction, Increment PC

2) Decode Instruction, Read Registers

3) Execute:
 M e m -ref: Calculate Address
 Arith-log: Perform Operation

4) Memory:
 Load: Read Data from Memory
 Store: Write Data to Memory

5) Write Back: Write Data to Register

CS61C L21 Pipeline © UC Regents 13

Pipelined Execution Representation

° Every instruction must take same number
of steps, also called pipeline “stages”, so
some wil l go idle sometimes

IFtch Dcd Exec M e m W B

IFtch Dcd Exec M e m W B

IFtch Dcd Exec M e m W B

IFtch Dcd Exec M e m W B

IFtch Dcd Exec M e m W B

IFtch Dcd Exec M e m W B

Time

CS61C L21 Pipeline © UC Regents 14

Review: Datapath for MIPS

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

° Use datapath figure to represent pipeline

IFtch Dcd Exec M e m W B

A
L

U I$ Reg D$ Reg

P
C

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs

rd

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

1. Instruction
Fetch

2. Decode/
 Register Read

3. Execute 4. Memory
5. Write

Back

CS61C L21 Pipeline © UC Regents 15

Graphical Pipeline Representation

I
n
s
t
r.

O
r
d
e
r

Load

Add

Store

Sub

Or

 I$

Time (clock cycles)

 I$

A
L

U

Reg

Reg

 I$

 D$

A
L

U

A
L

U

Reg

 D$

Reg

 I$

 D$

Reg
A

L
U

Reg Reg

Reg

 D$

Reg

 D$

A
L

U

(In Reg, right half highlight read, left half write)

Reg

 I$

CS61C L21 Pipeline © UC Regents 16

Example

° Suppose 2 ns for memory access, 2 ns
for ALU operation, and 1 ns for register
file read or write

° Nonpipelined Execution:

• lw : IF + Read Reg + ALU + Memory + Write
Reg = 2 + 1 + 2 + 2 + 1 = 8 ns

• add: IF + Read Reg + ALU + Write Reg
= 2 + 1 + 2 + 1 = 6 ns

° Pipelined Execution:

• Max(IF,Read Reg,ALU,Memory,Write Reg)
= 2 ns

CS61C L21 Pipeline © UC Regents 17

Pipeline Hazard: Matching socks in later load

A depends on D; stall since folder tied up

T
a
s
k

O
r
d
e
r

B

C

D

A

E

F

bubble

12 2 A M6 PM 7 8 9 10 11 1

Time3030 30 3030 30 30

CS61C L21 Pipeline © UC Regents 18

Administrivia: Rest of 61C
•Rest of 61C slower pace

• 1 project, 1 lab, no more homeworks

F 11/17 Performance; Cache Sim Project
W 11/24 X86, PC buzzwords and 61C

W 11/29 Review: Pipelines; RAID Lab
F 12/1 Review: Caches/TLB/VM; Section 7.5

M 12/4 Deadline to correct your grade record

W 12/6 Review: Interrupts (A.7); Feedback lab
F 12/8 61C Summary / Your Cal heritage /

HKN Course Evaluation

Sun 12/10 Final Review, 2PM (155 Dwinelle)
Tues 12/12 Final (5PM 1 P imintel)

CS61C L21 Pipeline © UC Regents 19

Problems for Computers

° Limits to pipelining: Hazards prevent
next instruction from executing during
its designated clock cycle

• Structural hazards: HW cannot support
this combination of instructions (single
person to fold and put clothes away)

• Control hazards: Pipelining of branches &
other instructions stall the pipeline until
the hazard “bubbles” in the pipeline

• Data hazards: Instruction depends on
result of prior instruction still in the
pipeline (missing sock)

CS61C L21 Pipeline © UC Regents 20

Structural Hazard #1: Single Memory (1/2)

Read same memory twice in same clock cycle

 I$

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg
A

L
U I$ Reg D$ Reg

A
L

UReg D$ Reg

A
L

U I$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L21 Pipeline © UC Regents 21

Structural Hazard #1: Single Memory (2/2)

° Solution:

• infeasible and inefficient to create
second memory

• so simulate this by having two Level 1
Caches

• have both an L1 Instruction Cache and
an L1 Data Cache

• need more complex hardware to control
when both caches miss

CS61C L21 Pipeline © UC Regents 22

Structural Hazard #2: Registers (1/2)

Can’t read and write to registers simultaneously

 I$

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

UReg D$ Reg

A
L

U I$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L21 Pipeline © UC Regents 23

Structural Hazard #2: Registers (2/2)

° Fact: Register access is VERY fast:
takes less than half the time of ALU
stage

° Solution: introduce convention

• always Write to Registers during first half
of each clock cycle

• always Read from Registers during
second half of each clock cycle

• Result: can perform Read and Write
during same clock cycle

CS61C L21 Pipeline © UC Regents 24

Control Hazard: Branching (1/6)

° Suppose we put branch decision-
making hardware in ALU stage

• then two more instructions after the
branch will always be fetched, whether or
not the branch is taken

° Desired functionality of a branch

• if we do not take the branch, don’t waste
any time and continue executing
normally

• if we take the branch, don’t execute any
instructions after the branch, just go to
the desired label

CS61C L21 Pipeline © UC Regents 25

Control Hazard: Branching (2/6)

° Initial Solution: Stall until decision is
made

• insert “no-op” instructions: those that
accomplish nothing, just take time

• Drawback: branches take 3 clock cycles
each (assuming comparator is put in
ALU stage)

CS61C L21 Pipeline © UC Regents 26

Control Hazard: Branching (3/6)

° Optimization #1:

• move comparator up to Stage 2

• as soon as instruction is decoded
(Opcode identifies is as a branch),
immediately make a decision and set the
value of the PC (if necessary)

• Benefit: since branch is complete in
Stage 2, only one unnecessary
instruction is fetched, so only one no-op
is needed

• Side Note: This means that branches are
idle in Stages 3, 4 and 5.

CS61C L21 Pipeline © UC Regents 27

° Insert a single no-op (bubble)

Control Hazard: Branching (4/6)

Add

Beq

Load

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

UReg D$ Reg I$

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

bub
ble

° Impact: 2 clock cycles per branch
instruction ⇒ slow

CS61C L21 Pipeline © UC Regents 28

Control Hazard: Branching (5/6)

° Optimization #2: Redefine branches

• Old definition: if we take the branch,
none of the instructions after the branch
get executed by accident

• New definition: whether or not we take
the branch, the single instruction
immediately following the branch gets
executed (called the branch-delay slot)

CS61C L21 Pipeline © UC Regents 29

Control Hazard: Branching (6/6)

° Notes on Branch-Delay Slot

• Worst-Case Scenario: can always put a
no-op in the branch-delay slot

• Better Case: can find an instruction
preceding the branch which can be
placed in the branch-delay slot without
affecting flow of the program

- re-order ing instruct ions is a common
method of speeding up programs

- compi ler must be very smart in order to f ind
instructions to do this

- usual ly can f ind such an instruct ion at least
50% of the t ime

CS61C L21 Pipeline © UC Regents 30

Example: Nondelayed vs. Delayed Branch

add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Nondelayed Branch

add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Delayed Branch

Exit: Exit:

CS61C L21 Pipeline © UC Regents 31

Things to Remember (1/2)

° Optimal Pipeline

• Each stage is executing part of an
instruction each clock cycle.

• One instruction finishes during each
clock cycle.

• On average, execute far more quickly.

° What makes this work?

• Similarities between instructions allow
us to use same stages for all instructions
(generally).

• Each stage takes about the same amount
of time as all others: little wasted time.

CS61C L21 Pipeline © UC Regents 32

Advanced Pipelining Concepts (if t ime)

° “Out-of-order” Execution

° “Superscalar” execution

° State-of-the-Art Microprocessor

CS61C L21 Pipeline © UC Regents 33

Review Pipeline Hazard: Stall is dependency

A depends on D; stall since folder tied up

T
a
s
k

O
r
d
e
r

12 2 A M6 PM 7 8 9 10 11 1

Time

B

C

D

A

E

F

bubble

3030 30 3030 30 30

CS61C L21 Pipeline © UC Regents 34

Out-of-Order Laundry: Don’t Wait

A depends on D; rest continue; need
more resources to allow out-of-order

T
a
s
k

O
r
d
e
r

12 2 A M6 PM 7 8 9 10 11 1

Time

B

C

D

A

3030 30 3030 30 30

E

F

bubble

CS61C L21 Pipeline © UC Regents 35

Superscalar Laundry: Parallel per stage

More resources, HW to match mix of
parallel tasks?

T
a
s
k

O
r
d
e
r

12 2 A M6 PM 7 8 9 10 11 1

Time

B

C

D

A

E

F

 (light clothing)
 (dark clothing)
 (very dirty clothing)

 (light clothing)
 (dark clothing)
 (very dirty clothing)

3030 30 3030

CS61C L21 Pipeline © UC Regents 36

Superscalar Laundry: Mismatch Mix

Task mix underutilizes extra resources

T
a
s
k

O
r
d
e
r

12 2 A M6 PM 7 8 9 10 11 1

Time3030 30 3030 30 30

 (light clothing)

 (light clothing)
 (dark clothing)

 (light clothing)

A

B

D

C

CS61C L21 Pipeline © UC Regents 37

State of the Art: Compaq Alpha 21264

° Very similar instruction set to MIPS

° 1 64KB Instruction cache, 1 64 KB Data
cache on chip; 16MB L2 cache off chip

° Clock cycle = 1.5 nanoseconds,
or 667 MHz clock rate

° Superscalar: fetch up to
6 instructions /clock cycle,
retires up to 4 instruction/clock cycle

° Execution out-of-order

° 15 million transistors, 90 watts!

CS61C L21 Pipeline © UC Regents 38

Things to Remember (1/2)

° Optimal Pipeline

• Each stage is executing part of an
instruction each clock cycle.

• One instruction finishes during each
clock cycle.

• On average, execute far more quickly.

° What makes this work?

• Similarities between instructions allow
us to use same stages for all instructions
(generally).

• Each stage takes about the same amount
of time as all others: little wasted time.

CS61C L21 Pipeline © UC Regents 39

Things to Remember (2/2)

° Pipelining a Big Idea: widely used
concept

° What makes it less than perfect?

• Structural hazards: suppose we had
only one cache?

⇒⇒ Need more HW resources

• Control hazards: need to worry about
branch instructions?

 ⇒⇒ Delayed branch

• Data hazards: an instruction depends on
a previous instruction?

