
CS61C L221 Performance © UC Regents 1

CS61C - Machine Structures

Lecture 22 - Introduction to Performance

November 17, 2000

David Patterson

http://www-inst.eecs.berkeley.edu/~cs61c/

CS61C L221 Performance © UC Regents 2

Review (1/2)

° Optimal Pipeline

• Each stage is executing part of an
instruction each clock cycle.

• One instruction finishes during each
clock cycle.

• On average, execute far more quickly.

° What makes this work?

• Similarities between instructions allow
us to use same stages for all instructions
(generally).

• Each stage takes about the same amount
of time as all others: little wasted time.

CS61C L221 Performance © UC Regents 3

Review (2/2)

° Pipelining a Big Idea: widely used
concept

° What makes it less than perfect?

• Structural hazards: suppose we had
only one cache?

⇒⇒ Need more HW resources

• Control hazards: need to worry about
branch instructions?

 ⇒⇒ Delayed branch

• Data hazards: an instruction depends on
a previous instruction?

CS61C L221 Performance © UC Regents 4

Outline

° Performance Calculation

° Benchmarks

° Virtual Memory Review

CS61C L221 Performance © UC Regents 5

Performance

° Purchasing Perspective: given a
collection of machines, which has the

- best performance ?

- least cost ?

- best performance / cost ?

° Computer Designer Perspective: faced
with design options, which has the

- best performance improvement ?

- least cost ?

- best performance / cost ?

° Both require: basis for comparison and
metric for evaluation CS61C L221 Performance © UC Regents 6

Two Notions of “Performance”

Plane

Boeing
747

BAD/Sud
Concorde

Top
Speed

DC to
Paris

Passen-
gers

Throughput
(pmph)

610
mph

6.5
hours 470 286,700

1350
mph

3
hours 132 178,200

•Which has higher performance?

•Time to deliver 1 passenger?
•Time to deliver 400 passengers?
•In a computer, time for 1 job called
Response Time or Execution Time
•In a computer, jobs per day called

 Throughput or Bandwidth

CS61C L221 Performance © UC Regents 7

Definitions

° Performance is in units of things per sec

• bigger is better

° If we are primarily concerned with response
time

• performance(x) = 1
execution_time(x)

" X is n times faster than Y" means

Performance(X)
n =

Performance(Y)
CS61C L221 Performance © UC Regents 8

Example of Response Time v. Throughput

• Time of Concorde vs. Boeing 747?
• Concord is 6.5 hours / 3 hours

= 2.2 times faster

• Throughput of Boeing vs. Concorde?
• Boeing 747: 286,700 pmph / 178,200 pmph

= 1.6 times faster

• Boeing is 1.6 times (“60%”) faster in
terms of throughput

• Concord is 2.2 times (“120%”) faster in
terms of flying time (response time)

We will focus primarily on execution
time for a single job

CS61C L221 Performance © UC Regents 9

Confusing Wording on Performance

° W ill (try to) stick to “n times faster”;
its less confusing than “m % faster”

° As faster means both increased
performance and decreased execution
time, to reduce confusion will use
“improve performance” or
“improve execution time”

CS61C L221 Performance © UC Regents 10

What is Time?

° Straightforward definition of time:

• Total time to complete a task, including disk
accesses, memory accesses, I /O activities,
operating system overhead, . . .

• “real time”, “response time” or
“elapsed time”

° Alternative: just time processor (CPU)
is working only on your program (since
multiple processes running at same time)

• “CPU execution t ime” or “CPU t ime ”

• Often divided into system CPU time (in OS)
and user CPU t ime (in user program)

CS61C L221 Performance © UC Regents 11

How to Measure Time?

° User Time ⇒ seconds

° CPU Time: Computers constructed
using a clock that runs at a constant
rate and determines when events take
place in the hardware

• These discrete time intervals called
clock cycles (or informally clocks or
cycles)

• Length of clock period: clock cycle t ime
(e.g., 2 nanoseconds or 2 ns) and clock
rate (e.g., 500 megahertz, or 500 MHz),
which is the inverse of the clock period;
use these!

CS61C L221 Performance © UC Regents 12

Measuring Time using Clock Cycles (1/2)

° or

= Clock Cycles for a program
 Clock Rate

° CPU execution time for program

 = Clock Cycles for a program
 x Clock Cycle Time

CS61C L221 Performance © UC Regents 13

Measuring Time using Clock Cycles (2/2)

° One way to define clock cycles:

Clock Cycles for program

 = Instructions for a program
(called “Instruction Count”)

 x Average C lock cycles Per Instruction
 (abbreviated “CPI”)

° CPI one way to compare two machines
with same instruction set, since
Instruction Count would be the same

CS61C L221 Performance © UC Regents 14

Performance Calculation (1/2)

° CPU execution t ime for program
= Clock Cycles for program

 x Clock Cycle Time

° Substituting for clock cycles:

CPU execution t ime for program
= (Instruction Count x CPI)

 x Clock Cycle Time

= Instruction Count x CPI x Clock Cycle Time

CS61C L221 Performance © UC Regents 15

Performance Calculation (2/2)

CPU time = Instructions x Cycles x Seconds

Program Instruction Cycle

CPU time = Instructions x Cycles x Seconds

Program Instruction Cycle

CPU time = Instructions x Cycles x Seconds

Program Instruction Cycle
CPU time = Seconds

Program

• Product of all 3 terms: if missing a term, can’t
predict time, the real measure of performance

CS61C L221 Performance © UC Regents 16

Administrivia: Rest of 61C
•Rest of 61C slower pace

• 1 project, 1 lab, no more homeworks

F 11/17 Performance; Cache Sim Project
W 11/24 X86, PC buzzwords and 61C; RAID Lab

W 11/29 Review: Pipelines; Feedback “lab”
F 12/1 Review: Caches/TLB/VM; Section 7.5

M 12/4 Deadline to correct your grade record

W 12/6 Review: Interrupts (A.7); Feedback lab
F 12/8 61C Summary / Your Cal heritage /

HKN Course Evaluation

Sun 12/10 Final Review, 2PM (155 Dwinelle)
Tues 12/12 Final (5PM 1 P imintel)

CS61C L221 Performance © UC Regents 17

How Calculate the 3 Components?

° Clock Cycle Time: in specification of
computer (Clock Rate in advertisements)

° Instruction Count:

• Count instructions in loop of small program

• Use simulator to count instructions

• Hardware counter in spec. register (Pentium II)

° CPI:

• Calculate: Execution Time / Clock cycle time
Instruction Count

• Hardware counter in special register (PII)

CS61C L221 Performance © UC Regents 18

Calculating CPI Another Way

° First calculate CPI for each individual
instruction (add, sub, and, etc.)

° Next calculate frequency of each
individual instruction

° Finally multiply these two for each
instruction and add them up to get
final CPI

CS61C L221 Performance © UC Regents 19

Example (RISC processor)

Op Freqi CPIi Prod (% Time)

ALU 50% 1 .5 (23%)
Load 20% 5 1.0 (45%)
Store 10% 3 .3 (14%)

Branch 20% 2 .4 (18%)
 2.2

• What if Branch instructions twice as fast?

Instruction Mix (Where time spent)

CS61C L221 Performance © UC Regents 20

Example: What about Caches?

• Can Calculate Memory portion of CPI separately

• Miss rates: say L1 cache = 5%, L2 cache = 10%
• Miss penalties: L1 = 5 clock cycles, L2 = 50 clocks
• Assume miss rates, miss penalties same for instruction
accesses, loads, and stores
• CPImemory

 = Instruction Frequency * L1 Miss rate *
(L1 miss penalty + L2 miss rate * L2 miss penalty)
+ Data Access Frequency * L1 Miss rate *
(L1 miss penalty + L2 miss rate * L2 miss penalty)
 = 100%*5%*(5+10%*50)+(20%+10%)*5%*(5+10%*50)

 = 5%*(10)+(30%)*5%*(10) = 0.5 + 0.15 = 0.65
Overall CPI = 2.2 + 0.65 = 2.85

CS61C L221 Performance © UC Regents 21

What Programs Measure for Comparison?

° Ideally run typical programs with
typical input before purchase,
or before even build machine

• Called a “workload”; For example:

• Engineer uses compiler, spreadsheet

• Author uses word processor, drawing
program, compression software

° In some situations its hard to do

• Don’t have access to machine to
“benchmark” before purchase

• Don’t know workload in future

CS61C L221 Performance © UC Regents 22

Benchmarks

° Obviously, apparent speed of
processor depends on code used to
test it

° Need industry standards so that
different processors can be fairly
compared

° Companies exist that create these
benchmarks: “typical” code used to
evaluate systems

° Need to be changed every 2 or 3 years
since designers could target these
standard benchmarks

CS61C L221 Performance © UC Regents 23

Example Standardized Workload Benchmarks

° Workstations: Standard Performance
Evaluation Corporation (SPEC)

• SPEC95: 8 integer (gcc, compress, li, ijpeg,
perl, . . .) & 10 floating-point programs
(hydro2d, mgrid, applu, turbo3d, ...)

• www.spec.org

• Separate average for integer (CINT95) and FP
(CFP95) relative to base machine

• Benchmarks distributed in source code

• Company representatives select workload

• Compiler, machine designers target
benchmarks, so try to change every 3 years

CS61C L221 Performance © UC Regents 24

SPECint95base Performance (Oct. 1997)

0
2
4
6
8

10
12
14
16
18
20

g
o

88
ks

im

g
cc

co
m

p
re

ss li

ijp
eg

p
er

l

vo
rt

ex

S
P

E
C

in
t

PA-8000
21164
PPro

Intel Pentium Pro

Compaq/DEC Alpha HP PA

CS61C L221 Performance © UC Regents 25

SPECfp95base Performance (Oct. 1997)

0

10

20

30

40

50

60

to
m

ca
tv

sw
im

su
2c

o
r

h
yd

ro
2d

m
g

ri
d

ap
p

lu

tu
rb

3d

ap
si

fp
p

p
p

w
av

e5

S
P

E
C

fp

PA-8000
21164
PPro

Intel Pentium Pro

Compaq/DEC Alpha HP PA

CS61C L221 Performance © UC Regents 26

Example PC Workload Benchmark

° PCs: Ziff Davis W inStone 99 Benchmark

• “Winstone 99 is a system-level, application-
based benchmark that measures a PC's overall
performance when running today's top-sell ing
Windows-based 32-bit applications through a
series of scripted activities and uses the time a
PC takes to complete those activities to
produce its performance scores. Winstone's
tests don't mimic what these programs do; they
run actual application code.”

• www1.zdnet.com/zdbop/winstone/winstone.html

• (See site)

CS61C L221 Performance © UC Regents 27

From Sunday Chronicle Ads (4/18/99)

(Ads from Circuit City, CompUSA, Office Depot, Staples)

Company Clock (MHz)Processor Price
emachines *333 Cyrix MII 499$
CompUSA 400 Intel Celeron 780$
Compaq 350 AMD K6-2 900$
HP 366 Intel Celeron 1,100$
Compaq 450 AMD K6-2 1,530$
Compaq 400 AMD K6-3 1,599$
HP 400 Intel Pentium II 1,450$
NEC 400 Intel Pentium III 1,800$

CS61C L221 Performance © UC Regents 28

From Sunday Chronicle Ads (4/18/99)

° Adjusted Price: 128 MB (+$1/MB if less),
10 GB disk ($18/GB), -$100 if included printer,
15” monitor: -$120 if 17”, +$50 if 14” monitor

* “Megahertz equivalent performance level.”
(Actually 250 MHz Clock Rate)

(Ads from Circuit City, CompUSA, Office Depot, Staples)

Company Clock (MHz)Processor Price Adj Price
emachines *333 Cyrix MII 499$ 653$
CompUSA 400 Intel Celeron 780$ 764$
Compaq 350 AMD K6-2 900$ 902$
HP 366 Intel Celeron 1,100$ 1,070$
Compaq 450 AMD K6-2 1,530$ 1,453$
Compaq 400 AMD K6-3 1,599$ 1,479$
HP 400 Intel Pentium II 1,450$ 1,483$
NEC 400 Intel Pentium III 1,800$ 1,680$

CS61C L221 Performance © UC Regents 29

W instone 99 (W99) Results

° Note: 2 Compaq Machines using K6-2 v. 6-3:
K6-2 Clock Rate is 1.125 times faster, but
K6-3 W instone 99 rating is 1.25 times faster!

Company Processor Price Clock W99
emachines Cyrix MII 653$ 250 14.5
CompUSA Intel Celeron 764$ 400 18.0
Compaq AMD K6-2 902$ 350 15.4
HP Intel Celeron 1,070$ 366 17.6
Compaq AMD K6-2 1,453$ 450 17.9
Compaq AMD K6-3 1,479$ 400 22.3
HP Intel Pentium II 1,483$ 400 18.9
NEC Intel Pentium III 1,680$ 400 22.0

CS61C L221 Performance © UC Regents 30

Adjusted Price v. Clock Rate, Winstone99

0
50

100
150
200
250
300
350
400
450
500

$- $500 $1,000 $1,500 $2,000

Adjusted Price

Clock Rate

Winstone99
(x20)

Cyrix MII

Celeron

AMD K6-2

AMD K6-3
Pentium III

Pentium II

Is MII “Megahertz
equivalent

performance level”
333?

CS61C L221 Performance © UC Regents 31

Performance Evaluation

° Good products created when have:

• Good benchmarks

• Good ways to summarize performance

° Given sales is a function of performance
relative to competition, should invest in
improving product as reported by
performance summary?

° I f benchmarks/summary inadequate, then
choose between improving product for real
programs vs. improving product to get
more sales; Sales almost always wins!

CS61C L221 Performance © UC Regents 32

Things to Remember

° Latency v. Throughput

° Performance doesn’t depend on any
single factor: need to know Instruction
Count, Clocks Per Instruction and Clock
Rate to get valid estimations

° User Time: t ime user needs to wait for
program to execute: depends heavily on
how OS switches between tasks

° CPU Time: t ime spent executing a single
program: depends solely on design of
processor (datapath, pipelining
effectiveness, caches, etc.)

