
CS61C L24 Review Pipeline © UC Regents 1

CS61C - Machine Structures

Lecture 24 - Review Pipelined Execution

November 29, 2000

David Patterson

http://www-inst.eecs.berkeley.edu/~cs61c/

CS61C L24 Review Pipeline © UC Regents 2

Steps in Executing MIPS

1) IFetch: Fetch Instruction, Increment PC

2) Decode Instruction, Read Registers

3) Execute:
 M e m -ref: Calculate Address
 Arith-log: Perform Operation

4) Memory:
 Load: Read Data from Memory
 Store: Write Data to Memory

5) Write Back: Write Data to Register

CS61C L24 Review Pipeline © UC Regents 3

Pipelined Execution Representation

° Every instruction must take same number
of steps, also called pipeline “stages”, so
some wil l go idle sometimes

IFtch Dcd Exec M e m W B

IFtch Dcd Exec M e m W B

IFtch Dcd Exec M e m W B

IFtch Dcd Exec M e m W B

IFtch Dcd Exec M e m W B

IFtch Dcd Exec M e m W B

Time

CS61C L24 Review Pipeline © UC Regents 4

Review: Datapath for MIPS

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

° Use datapath figure to represent pipeline

IFtch Dcd Exec M e m W B

A
L

U I$ Reg D$ Reg

P
C

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs

rd

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

1. Instruction
Fetch

2. Decode/
 Register Read

3. Execute 4. Memory
5. Write

Back

CS61C L24 Review Pipeline © UC Regents 5

Problems for Computers

° Limits to pipelining: Hazards prevent
next instruction from executing during
its designated clock cycle

• Structural hazards: HW cannot support
this combination of instructions (e.g.,
read instruction and data from memory)

• Control hazards: Pipelining of branches &
other instructions stall the pipeline until
the hazard “bubbles” in the pipeline

• Data hazards: Instruction depends on
result of prior instruction still in the
pipeline (read and write same data)

CS61C L24 Review Pipeline © UC Regents 6

Structural Hazard #1: Single Memory (1/2)

Read same memory twice in same clock cycle

 I$

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

UReg D$ Reg

A
L

U I$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L24 Review Pipeline © UC Regents 7

Structural Hazard #1: Single Memory (2/2)

° Solution:

• infeasible and inefficient to create
second main memory

• so simulate this by having two Level 1
Caches

• have both an L1 Instruction Cache and
an L1 Data Cache

• need more complex hardware to control
when both caches miss

CS61C L24 Review Pipeline © UC Regents 8

Structural Hazard #2: Registers (1/2)

Read and write registers simultaneously?

 I$

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg
A

L
U I$ Reg D$ Reg

A
L

UReg D$ Reg

A
L

U I$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L24 Review Pipeline © UC Regents 9

Structural Hazard #2: Registers (2/2)

° Solution:

• Build registers with multiple ports, so
can both read and write at the same time

° What if read and write same register?

• Design to that it writes in first half of
clock cycle, read in second half of clock
cycle

• Thus will read what is written, reading
the new contents

CS61C L24 Review Pipeline © UC Regents 10

Data Hazards (1/2)

add $t0, $t1, $t2

sub $t4, $t0 ,$t3

and $t5, $t0 ,$t6

or $t7, $t0 ,$t8

xor $t9, $t0 ,$t10

° Consider the following sequence of
instructions

CS61C L24 Review Pipeline © UC Regents 11

 Dependencies backwards in t ime are hazards

Data Hazards (2/2)

sub $t4,$t0,$t3

A
L

UI$ Reg D$ Reg

and $t5,$t0,$t6

A
L

UI$ Reg D$ Reg

or $t7,$t0,$t8 I$

A
L

UReg D$ Reg

xor $t9,$t0,$t10

A
L

UI$ Reg D$ Reg

add $t0,$t1,$t2
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L24 Review Pipeline © UC Regents 12

• Forward result from one stage to another

Data Hazard Solution: Forwarding

sub $t4,$t0,$t3

A
L

UI$ Reg D$ Reg

and $t5,$t0,$t6

A
L

UI$ Reg D$ Reg

or $t7,$t0,$t8 I$

A
L

UReg D$ Reg

xor $t9,$t0,$t10

A
L

UI$ Reg D$ Reg

add $t0,$t1,$t2
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

 “or” hazard solved by register hardware

CS61C L24 Review Pipeline © UC Regents 13

• Dependencies backwards in t ime are
hazards

Data Hazard: Loads (1/2)

sub $t3,$t0,$t2

A
L

UI$ Reg D$ Reg

lw $t0,0($t1)
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

• Can’t solve with forwarding
• Must stall instruction dependent on
load, then forward (more hardware)

CS61C L24 Review Pipeline © UC Regents 14

• Hardware must insert no-op in pipeline

Data Hazard: Loads (2/2)

sub $t3,$t0,$t2

A
L

UI$ Reg D$ Reg
bub
ble

and $t5,$t0,$t4

A
L

UI$ Reg D$ Regbub
ble

or $t7,$t0,$t6 I$

A
L

UReg D$bub
ble

lw $t0, 0($t1)
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

CS61C L24 Review Pipeline © UC Regents 15

Administrivia: Rest of 61C
•Rest of 61C slower pace
F 12/1 Review: Caches/TLB/VM; Section 7.5

M 12/4 Deadline to correct your grade record

W 12/6 Review: Interrupts (A.7); Feedback lab
F 12/8 61C Summary / Your Cal heritage /

HKN Course Evaluation

Sun 12/10 Final Review, 2PM (155 Dwinelle)
Tues 12/12 Final (5PM 1 P imintel)

°Final: Just bring pencils: leave home back
packs, cell phones, calculators

°W ill check that notes are handwritten

°Got a final conflict? Email now for Beta CS61C L24 Review Pipeline © UC Regents 16

Control Hazard: Branching (1/6)

° Suppose we put branch decision-
making hardware in ALU stage

• then two more instructions after the
branch will always be fetched, whether or
not the branch is taken

° Desired functionality of a branch

• if we do not take the branch, don’t waste
any time and continue executing
normally

• if we take the branch, don’t execute any
instructions after the branch, just go to
the desired label

CS61C L24 Review Pipeline © UC Regents 17

Control Hazard: Branching (2/6)

° Initial Solution: Stall until decision is
made

• insert “no-op” instructions: those that
accomplish nothing, just take time

• Drawback: branches take 3 clock cycles
each (assuming comparator is put in
ALU stage)

CS61C L24 Review Pipeline © UC Regents 18

Control Hazard: Branching (3/6)

° Optimization #1:

• move comparator up to Stage 2

• as soon as instruction is decoded
(Opcode identifies is as a branch),
immediately make a decision and set the
value of the PC (if necessary)

• Benefit: since branch is complete in
Stage 2, only one unnecessary
instruction is fetched, so only one no-op
is needed

• Side Note: This means that branches are
idle in Stages 3, 4 and 5.

CS61C L24 Review Pipeline © UC Regents 19

° Insert a single no-op (bubble)

Control Hazard: Branching (4/6)

Add

Beq

Load

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

UReg D$ Reg I$

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

bub
ble

° Impact: 2 clock cycles per branch
instruction ⇒ slow

CS61C L24 Review Pipeline © UC Regents 20

Forwarding and Moving Branch Decision

° Forwarding/bypassing currently affects
Execution stage:

• Instead of using value from register read in
Decode Stage, use value from ALU output
or Memory output

° Moving branch decision from Execution
Stage to Decode Stage means
forwarding /bypassing must be
replicated in Decode Stage for branches.
I.e., Code below must stil l work:

addiu $s1, $s1, -4
beq $s1, $s2, Exit

CS61C L24 Review Pipeline © UC Regents 21

Control Hazard: Branching (5/6)

° Optimization #2: Redefine branches

• Old definition: if we take the branch,
none of the instructions after the branch
get executed by accident

• New definition: whether or not we take
the branch, the single instruction
immediately following the branch gets
executed (called the branch-delay slot)

CS61C L24 Review Pipeline © UC Regents 22

Control Hazard: Branching (6/6)

° Notes on Branch-Delay Slot

• Worst-Case Scenario: can always put a
no-op in the branch-delay slot

• Better Case: can find an instruction
preceding the branch which can be
placed in the branch-delay slot without
affecting flow of the program

- re-order ing instruct ions is a common
method of speeding up programs

- compi ler must be very smart in order to f ind
instructions to do this

- usual ly can f ind such an instruct ion at least
50% of the t ime

CS61C L24 Review Pipeline © UC Regents 23

Example: Nondelayed vs. Delayed Branch

add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Nondelayed Branch

add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Delayed Branch

Exit: Exit:

CS61C L24 Review Pipeline © UC Regents 24

Try “Peer-to-Peer” Instruction

° Given question, everyone has one
minute to pick an answer

° First raise hands to pick

° Then break into groups of 5, talk about
the solution for a few minutes

° Then vote again (each group all votes
together for the groups choice)

° discussion should lead to convergence

° Give the answer, and see if there are
questions

° W ill try this twice today

CS61C L24 Review Pipeline © UC Regents 25

How long to execute?
° Assume delayed branch, 5 stage

pipeline, forwarding/bypassing,
interlock on unresolved load hazards

Loop: lw $t0, 0($s1)
addiu $t0, $t0, $s2
sw $t0, 0($s1)
addiu $s1, $s1, -4
bne $s1, $zero, Loop
nop

° How many clock cycles on average to
execute this code per loop iteration?
a)<= 5 b) 6 c) 7 d) 8 e) >=9

° (after 1000 iterations, so pipeline is full)
CS61C L24 Review Pipeline © UC Regents 26

How long to execute?
° Assume delayed branch, 5 stage

pipeline, forwarding/bypassing,
interlock on unresolved hazards

° Look at this code:

Loop: lw $t0, 0($s1)
addiu $t0, $t0, $s2
sw $t0, 0($s1)
addiu $s1, $s1, -4
bne $s1, $zero, Loop
nop

° How many clock cycles to execute this
code per loop iteration?
 a)<= 5 b) 6 c) 7 d) 8 e) >=9

1.
2. (data hazard so stall)

3.
4.
5.
6.
7. (delayed branch so execute nop)

CS61C L24 Review Pipeline © UC Regents 27

Rewrite the loop to improve performance
° Rewrite this code to reduce clock cycles

per loop to as few as possible:

Loop: lw $t0, 0($s1)
addu $t0, $t0, $s2
sw $t0, 0($s1)
addiu $s1, $s1, -4
bne $s1, $zero, Loop
nop

° How many clock cycles to execute your
revised code per loop iteration?
a) 4 b) 5 c) 6 d) 7

CS61C L24 Review Pipeline © UC Regents 28

Rewrite the loop to improve performance
° Rewrite this code to reduce clock cycles

per loop to as few as possible:

Loop: lw $t0, 0($s1)
addiu $s1, $s1, -4
addu $t0, $t0, $s2
bne $s1, $zero, Loop
sw $t0, +4($s1)

° How many clock cycles to execute your
revised code per loop iteration?
a) 4 b) 5 c) 6 d) 7

(no hazard since extra cycle)

1.

3.
4.
5.

2.

(modif ied s w to put past addiu)

CS61C L24 Review Pipeline © UC Regents 29

State of the Art: Pentium 4

° 1 8KB Instruction cache, 1 8 KB Data
cache, 256 KB L2 cache on chip

° Clock cycle = 0.67 nanoseconds, or 1500
MHz clock rate (667 picoseconds, 1.5 GHz)

° HW translates from 80x86 to MIPS-like
micro-ops

° 20 stage pipeline

° Superscalar: fetch, retire up to 3
instructions /clock cycle; Execution out-
of-order

° Faster memory bus: 400 MHz
CS61C L24 Review Pipeline © UC Regents 30

Things to Remember (1/2)

° Optimal Pipeline

• Each stage is executing part of an
instruction each clock cycle.

• One instruction finishes during each
clock cycle.

• On average, execute far more quickly.

° What makes this work?

• Similarities between instructions allow
us to use same stages for all instructions
(generally).

• Each stage takes about the same amount
of time as all others: little wasted time.

CS61C L24 Review Pipeline © UC Regents 31

Things to Remember (2/2)

° Pipelining a Big Idea: widely used
concept

° What makes it less than perfect?

• Structural hazards: suppose we had
only one cache?

⇒⇒ Need more HW resources

• Control hazards: need to worry about
branch instructions?

 ⇒⇒ Delayed branch or branch prediction

• Data hazards: an instruction depends on
a previous instruction?

