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CS61C - Machine Structures

Lecture 25 - Review Cache/VM

December 2, 2000

David Patterson

http://www-inst.eecs.berkeley.edu/~cs61c/
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Review (1/2)

°Optimal Pipeline
• Each stage is executing part of an
instruction each clock cycle.

• One instruction finishes during each
clock cycle.

• On average, execute far more quickly.

°What makes this work?
• Similarities between instructions allow
us to use same stages for all instructions
(generally).

• Each stage takes about the same amount
of time as all others: little wasted time.
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Review (2/2)

°Pipelining a Big Idea: widely used
concept

°What makes it less than perfect?
• Structural hazards:   suppose we had
only one cache?
⇒ Need more HW resources

• Control hazards:  need to worry about
branch instructions?
 ⇒ Delayed branch or branch prediction

• Data hazards:  an instruction depends on
a previous instruction?
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Why Caches?
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° 1989 first Intel CPU with cache on chip;

° 1999 gap “Tax”; 37%  area of Alpha 21164,
61% StrongArm SA110, 64% Pentium Pro
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Memory Hierarchy Pyramid

Levels in
memory

hierarchy

Central Processor Unit (CPU)

Size of memory at each level
Principle of Locality (in time, in space) +

Hierarchy of Memories of different speed,
cost; exploit to improve cost-performance

Level 1
Level 2

Level n

Increasing
Distance

from CPU,
Decreasing
cost / MB

“Upper”

“Lower”
Level 3

. . .
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Why virtual memory? (1/2)
° Protection

• regions of the address space can be read
only, execute only, . . .

° Flexibility
• portions of a program can be placed
anywhere, without relocation

° Expandability
• can leave room in virtual address space for
objects to grow

° Storage management
• allocation/deallocation of variable sized
blocks is costly and leads to (external)
fragmentation; paging solves this
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Why virtual memory? (2/2)
° Generality

• ability to run programs larger than size of
physical memory

° Storage efficiency
• retain only most important portions of the
program in memory

° Concurrent I/O
• execute other processes while
loading/dumping page
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Virtual Memory Review (1/4)

°User program view of memory:
• Contiguous
• Start from some set address
• Infinitely large
• Is the only running program

°Reality:
• Non-contiguous
• Start wherever available memory is
• Finite size
• Many programs running at a time
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Virtual Memory Review (2/4)

°Virtual memory provides:
• illusion of contiguous memory
• all programs starting at same set
address

• illusion of infinite memory
• protection
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Virtual Memory Review (3/4)

° Implementation:
• Divide memory into “chunks” (pages)
• Operating system controls pagetable that
maps virtual addresses into physical
addresses

• Think of memory as a cache for disk
• TLB is a cache for the pagetable
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Why Translation Lookaside Buffer (TLB)?

°Paging is most popular
implementation of virtual memory
(vs. base/bounds)

°Every paged virtual memory access
must be checked against
Entry of Page Table in memory to
provide protection

°Cache of Page Table Entries makes
address translation possible without
memory access in common case to
make fast
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Virtual Memory Review (4/4)

°Let’s say we’re fetching some data:
• Check TLB (input: VPN, output: PPN)

- hit: fetch translation
- miss: check pagetable (in memory)

– pagetable hit: fetch translation
– pagetable miss: page fault, fetch page

from disk to memory, return translation
to TLB

• Check cache (input: PPN, output: data)
- hit: return value
- miss: fetch value from memory
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Paging/Virtual Memory Review
User B: 

Virtual Memory
∞

Code

Static

Heap

Stack

0
Code

Static

Heap

Stack

A 
Page
Table

B 
Page
Table

User A: 
Virtual Memory
∞

0
0

Physical
 Memory

64 MB

TLB

CS61C L25 Review Cache © UC Regents 14

Three Advantages of Virtual Memory
1) Translation:

• Program can be given consistent view of
memory, even though physical memory is
scrambled

• Makes multiple processes reasonable
• Only the most important part of program
(“Working Set”) must be in physical memory

• Contiguous structures (like stacks) use only
as much physical memory as necessary yet
still grow later
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Three Advantages of Virtual Memory
2) Protection:

• Different processes protected from each other
• Different pages can be given special behavior

-  (Read Only, Invisible to user programs, etc).
• Kernel data protected from User programs
• Very important for protection from malicious
programs ⇒ Far more “viruses” under
Microsoft Windows

3) Sharing:
• Can map same physical page to multiple users
(“Shared memory”)
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Administrivia: Rest of 61C
•Rest of 61C slower pace
F  12/1 Review: Caches/TLB/VM; Section 7.5

M 12/4 Deadline to correct your grade record

W 12/6 Review: Interrupts (A.7); Feedback lab
F 12/8 61C Summary / Your Cal heritage /

HKN Course Evaluation

Sun 12/10 Final Review, 2PM (155 Dwinelle)
Tues 12/12 Final (5PM 1 Pimintel)

°Final: Just bring pencils: leave home back
packs, cell phones, calculators

°Will check that notes are handwritten
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4 Questions for Memory Hierarchy

°Q1: Where can a block be placed in the
upper level? (Block placement)

°Q2: How is a block found if it is in the
upper level?
 (Block identification)

°Q3: Which block should be replaced on
a miss?
(Block replacement)

°Q4: What happens on a write?
(Write strategy)
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°Block 12 placed in 8 block cache:
• Fully associative, direct mapped, 2-way set
associative

• S.A. Mapping = Block Number Mod Number Sets
0 1 2 3 4 5 6 7Block

no.

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

0 1 2 3 4 5 6 7Block
no.

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

Set
0

Set
1

Set
2

Set
3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Block-frame address

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block
no.

Q1: Where block placed in upper level?
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°Direct indexing (using index and block
offset), tag compares, or combination

° Increasing associativity shrinks index,
expands tag

Block
offset

Block Address
Tag Index

Q2: How is a block found in upper level?

Set Select

Data Select
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°Easy for Direct Mapped

°Set Associative or Fully Associative:
• Random
• LRU (Least Recently Used)

Miss Rates
Associativity:2-way     4-way        8-way

Size LRU  Ran  LRU  Ran  LRU  Ran
16 KB 5.2% 5.7%    4.7% 5.3%     4.4% 5.0%

64 KB 1.9% 2.0%    1.5% 1.7%     1.4% 1.5%

256 KB 1.15% 1.17%   1.13%  1.13%  1.12%  1.12%

Q3: Which block replaced on a miss?
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°Write through—The information is written
to both the block in the cache and to the
block in the lower-level memory.

°Write back—The information is written
only to the block in the cache. The
modified cache block is written to main
memory only when it is replaced.

• is block clean or dirty?

°Pros and Cons of each?
• WT: read misses cannot result in writes
• WB: no writes of repeated writes

Q4: What happens on a write?
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Address Translation & 3 Exercises

PPN Offset
Physical Address

VPN Offset
Virtual Address

INDEX

TLB

Physical
Page
Number
P. P. N.
P. P. N.

P. P. N.
...

V. P. N.
Virtual
Page
Number
V. P. N.
V. P. N.
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Address Translation Exercise (1)
°Exercise:

• 40-bit VA, 16 KB pages, 36-bit PA

°Number of bits in Virtual Page Number?

°a) 18; b) 20; c) 22; d) 24; e) 26; f) 28

°Number of bits in Page Offset?
• a) 8; b) 10; c) 12; d) 14; e) 16; f) 18

°Number of bits in Physical Page Number?
• a) 18; b) 20; c) 22; d) 24; e) 26; f) 28
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Address Translation Exercise (2)
°Exercise:

• 40-bit VA, 16 KB pages, 36-bit PA
• 2-way set-assoc TLB: 256 "slots", 2 per slot

°Number of bits in TLB Index?

a) 18; b) 20; c) 22; d) 24; e) 26; f) 28

°Number of bits in TLB Tag?

a) 8; b) 10; c) 12; d) 14; e) 16; f) 18

°Approximate Number of bits in TLB Entry?

a) 32; b) 36; c) 40; d) 42; e) 44; f) 46
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Address Translation Exercise (3)
°Exercise:

• 40-bit VA, 16 KB pages, 36-bit PA
• 2-way set-assoc TLB: 256 "slots", 2 per slot
• 64 KB data cache, 64 Byte blocks, 2 way S.A.

°Number of bits in Cache Offset?
a) 6; b) 8; c) 10; d) 12; e) 14; f) 16

°Number of bits in Cache Index?
a) 6; b) 8; c) 10; d) 12; e) 14; f) 16

°Number of bits in Cache Tag?
 a) 18; b) 20; c) 22; d) 24; e) 26; f) 28

°Approximate No. of bits in Cache Entry?
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Impact of What Learned About Caches?

° 1960-1985: Speed
= ƒ(no. operations)

° 1990s

• Pipelined
Execution &
Fast Clock Rate

• Out-of-Order
execution

• Superscalar
° 1999: Speed =

ƒ(non-cached memory accesses)

° Superscalar, Out-of-Order machines hide L1 data cache
miss (5 clocks) but not L2 cache miss (50 clocks)?
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Quicksort vs. Radix as vary number keys:
Instructions
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Quicksort vs. Radix as vary number keys:
Instructions and Time
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Quicksort vs. Radix as vary number keys:
Cache misses
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What is proper approach to fast algorithms?
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Cache/VM/TLB Summary: #1/3

°The Principle of Locality:
• Program access a relatively small portion
of the address space at any instant of time.

- Temporal Locality: Locality in Time
- Spatial Locality: Locality in Space

°Caches, TLBs, Virtual Memory all
understood by examining how they deal
with 4 questions:
1) Where can block be placed?
2) How is block found?
3) What block is replaced on miss?
4) How are writes handled?
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Cache/VM/TLB Summary: #2/3
°Virtual Memory allows protected sharing of
memory between processes with less
swapping to disk, less fragmentation than
always swap or base/bound

°3 Problems:

1) Not enough memory: Spatial Locality
means small Working Set of pages OK

2) TLB to reduce performance cost of VM

3) Need more compact representation to
reduce memory size cost of simple 1-level
page table, especially for 64-bit address
(See CS 162)
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Cache/VM/TLB Summary: #3/3
°Virtual memory was controversial at the
time: can SW automatically manage 64KB
across many programs?

• 1000X DRAM growth removed controversy

°Today VM allows many processes to
share single memory without having to
swap all processes to disk;
VM protection today is more important
than memory hierarchy

°Today CPU time is a function  of
(ops, cache misses) vs. just f(ops):
What does this mean to Compilers,
Data structures, Algorithms?


