
CS61C L25 Review Cache © UC Regents 1

CS61C - Machine Structures

Lecture 25 - Review Cache/VM

December 2, 2000

David Patterson

http://www-inst.eecs.berkeley.edu/~cs61c/

CS61C L25 Review Cache © UC Regents 2

Review (1/2)

°Optimal Pipeline
• Each stage is executing part of an
instruction each clock cycle.

• One instruction finishes during each
clock cycle.

• On average, execute far more quickly.

°What makes this work?
• Similarities between instructions allow
us to use same stages for all instructions
(generally).

• Each stage takes about the same amount
of time as all others: little wasted time.

CS61C L25 Review Cache © UC Regents 3

Review (2/2)

°Pipelining a Big Idea: widely used
concept

°What makes it less than perfect?
• Structural hazards: suppose we had
only one cache?
⇒ Need more HW resources

• Control hazards: need to worry about
branch instructions?
 ⇒ Delayed branch or branch prediction

• Data hazards: an instruction depends on
a previous instruction?

CS61C L25 Review Cache © UC Regents 4

Why Caches?

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

P
er

fo
rm

an
ce

“Moore’s Law”

° 1989 first Intel CPU with cache on chip;

° 1999 gap “Tax”; 37% area of Alpha 21164,
61% StrongArm SA110, 64% Pentium Pro

CS61C L25 Review Cache © UC Regents 5

Memory Hierarchy Pyramid

Levels in
memory

hierarchy

Central Processor Unit (CPU)

Size of memory at each level
Principle of Locality (in time, in space) +

Hierarchy of Memories of different speed,
cost; exploit to improve cost-performance

Level 1
Level 2

Level n

Increasing
Distance

from CPU,
Decreasing
cost / MB

“Upper”

“Lower”
Level 3

. . .

CS61C L25 Review Cache © UC Regents 6

Why virtual memory? (1/2)
° Protection

• regions of the address space can be read
only, execute only, . . .

° Flexibility
• portions of a program can be placed
anywhere, without relocation

° Expandability
• can leave room in virtual address space for
objects to grow

° Storage management
• allocation/deallocation of variable sized
blocks is costly and leads to (external)
fragmentation; paging solves this

CS61C L25 Review Cache © UC Regents 7

Why virtual memory? (2/2)
° Generality

• ability to run programs larger than size of
physical memory

° Storage efficiency
• retain only most important portions of the
program in memory

° Concurrent I/O
• execute other processes while
loading/dumping page

CS61C L25 Review Cache © UC Regents 8

Virtual Memory Review (1/4)

°User program view of memory:
• Contiguous
• Start from some set address
• Infinitely large
• Is the only running program

°Reality:
• Non-contiguous
• Start wherever available memory is
• Finite size
• Many programs running at a time

CS61C L25 Review Cache © UC Regents 9

Virtual Memory Review (2/4)

°Virtual memory provides:
• illusion of contiguous memory
• all programs starting at same set
address

• illusion of infinite memory
• protection

CS61C L25 Review Cache © UC Regents 10

Virtual Memory Review (3/4)

° Implementation:
• Divide memory into “chunks” (pages)
• Operating system controls pagetable that
maps virtual addresses into physical
addresses

• Think of memory as a cache for disk
• TLB is a cache for the pagetable

CS61C L25 Review Cache © UC Regents 11

Why Translation Lookaside Buffer (TLB)?

°Paging is most popular
implementation of virtual memory
(vs. base/bounds)

°Every paged virtual memory access
must be checked against
Entry of Page Table in memory to
provide protection

°Cache of Page Table Entries makes
address translation possible without
memory access in common case to
make fast

CS61C L25 Review Cache © UC Regents 12

Virtual Memory Review (4/4)

°Let’s say we’re fetching some data:
• Check TLB (input: VPN, output: PPN)

- hit: fetch translation
- miss: check pagetable (in memory)

– pagetable hit: fetch translation
– pagetable miss: page fault, fetch page

from disk to memory, return translation
to TLB

• Check cache (input: PPN, output: data)
- hit: return value
- miss: fetch value from memory

CS61C L25 Review Cache © UC Regents 13

Paging/Virtual Memory Review
User B:

Virtual Memory
∞

Code

Static

Heap

Stack

0
Code

Static

Heap

Stack

A
Page
Table

B
Page
Table

User A:
Virtual Memory
∞

0
0

Physical
 Memory

64 MB

TLB

CS61C L25 Review Cache © UC Regents 14

Three Advantages of Virtual Memory
1) Translation:

• Program can be given consistent view of
memory, even though physical memory is
scrambled

• Makes multiple processes reasonable
• Only the most important part of program
(“Working Set”) must be in physical memory

• Contiguous structures (like stacks) use only
as much physical memory as necessary yet
still grow later

CS61C L25 Review Cache © UC Regents 15

Three Advantages of Virtual Memory
2) Protection:

• Different processes protected from each other
• Different pages can be given special behavior

- (Read Only, Invisible to user programs, etc).
• Kernel data protected from User programs
• Very important for protection from malicious
programs ⇒ Far more “viruses” under
Microsoft Windows

3) Sharing:
• Can map same physical page to multiple users
(“Shared memory”)

CS61C L25 Review Cache © UC Regents 16

Administrivia: Rest of 61C
•Rest of 61C slower pace
F 12/1 Review: Caches/TLB/VM; Section 7.5

M 12/4 Deadline to correct your grade record

W 12/6 Review: Interrupts (A.7); Feedback lab
F 12/8 61C Summary / Your Cal heritage /

HKN Course Evaluation

Sun 12/10 Final Review, 2PM (155 Dwinelle)
Tues 12/12 Final (5PM 1 Pimintel)

°Final: Just bring pencils: leave home back
packs, cell phones, calculators

°Will check that notes are handwritten

CS61C L25 Review Cache © UC Regents 17

4 Questions for Memory Hierarchy

°Q1: Where can a block be placed in the
upper level? (Block placement)

°Q2: How is a block found if it is in the
upper level?
 (Block identification)

°Q3: Which block should be replaced on
a miss?
(Block replacement)

°Q4: What happens on a write?
(Write strategy)

CS61C L25 Review Cache © UC Regents 18

°Block 12 placed in 8 block cache:
• Fully associative, direct mapped, 2-way set
associative

• S.A. Mapping = Block Number Mod Number Sets
0 1 2 3 4 5 6 7Block

no.

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

0 1 2 3 4 5 6 7Block
no.

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

Set
0

Set
1

Set
2

Set
3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Block-frame address

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block
no.

Q1: Where block placed in upper level?

CS61C L25 Review Cache © UC Regents 19

°Direct indexing (using index and block
offset), tag compares, or combination

° Increasing associativity shrinks index,
expands tag

Block
offset

Block Address
Tag Index

Q2: How is a block found in upper level?

Set Select

Data Select

CS61C L25 Review Cache © UC Regents 20

°Easy for Direct Mapped

°Set Associative or Fully Associative:
• Random
• LRU (Least Recently Used)

Miss Rates
Associativity:2-way 4-way 8-way

Size LRU Ran LRU Ran LRU Ran
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%

64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Q3: Which block replaced on a miss?

CS61C L25 Review Cache © UC Regents 21

°Write through—The information is written
to both the block in the cache and to the
block in the lower-level memory.

°Write back—The information is written
only to the block in the cache. The
modified cache block is written to main
memory only when it is replaced.

• is block clean or dirty?

°Pros and Cons of each?
• WT: read misses cannot result in writes
• WB: no writes of repeated writes

Q4: What happens on a write?

CS61C L25 Review Cache © UC Regents 22

Address Translation & 3 Exercises

PPN Offset
Physical Address

VPN Offset
Virtual Address

INDEX

TLB

Physical
Page
Number
P. P. N.
P. P. N.

P. P. N.
...

V. P. N.
Virtual
Page
Number
V. P. N.
V. P. N.

CS61C L25 Review Cache © UC Regents 23

Address Translation Exercise (1)
°Exercise:

• 40-bit VA, 16 KB pages, 36-bit PA

°Number of bits in Virtual Page Number?

°a) 18; b) 20; c) 22; d) 24; e) 26; f) 28

°Number of bits in Page Offset?
• a) 8; b) 10; c) 12; d) 14; e) 16; f) 18

°Number of bits in Physical Page Number?
• a) 18; b) 20; c) 22; d) 24; e) 26; f) 28

CS61C L25 Review Cache © UC Regents 25

Address Translation Exercise (2)
°Exercise:

• 40-bit VA, 16 KB pages, 36-bit PA
• 2-way set-assoc TLB: 256 "slots", 2 per slot

°Number of bits in TLB Index?

a) 18; b) 20; c) 22; d) 24; e) 26; f) 28

°Number of bits in TLB Tag?

a) 8; b) 10; c) 12; d) 14; e) 16; f) 18

°Approximate Number of bits in TLB Entry?

a) 32; b) 36; c) 40; d) 42; e) 44; f) 46

CS61C L25 Review Cache © UC Regents 27

Address Translation Exercise (3)
°Exercise:

• 40-bit VA, 16 KB pages, 36-bit PA
• 2-way set-assoc TLB: 256 "slots", 2 per slot
• 64 KB data cache, 64 Byte blocks, 2 way S.A.

°Number of bits in Cache Offset?
a) 6; b) 8; c) 10; d) 12; e) 14; f) 16

°Number of bits in Cache Index?
a) 6; b) 8; c) 10; d) 12; e) 14; f) 16

°Number of bits in Cache Tag?
 a) 18; b) 20; c) 22; d) 24; e) 26; f) 28

°Approximate No. of bits in Cache Entry?
CS61C L25 Review Cache © UC Regents 29

Impact of What Learned About Caches?

° 1960-1985: Speed
= ƒ(no. operations)

° 1990s

• Pipelined
Execution &
Fast Clock Rate

• Out-of-Order
execution

• Superscalar
° 1999: Speed =

ƒ(non-cached memory accesses)

° Superscalar, Out-of-Order machines hide L1 data cache
miss (5 clocks) but not L2 cache miss (50 clocks)?

1

10

100

1000

1
9

8
0

1
9

8
1

1
9

8
2

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

DRAM

CPU

CS61C L25 Review Cache © UC Regents 30

Quicksort vs. Radix as vary number keys:
Instructions

0

100

200

300

400

500

600

700

800

1000 10000 100000 100000
0

1E+07

Quick (Instr/key)
Radix (Instr/key)

Set size in keys

Instructions / key

Radix sort

Quick
sort

CS61C L25 Review Cache © UC Regents 31

Quicksort vs. Radix as vary number keys:
Instructions and Time

0

100

200

300

400

500

600

700

800

1000 10000 100000 100000
0

1E+07

Quick (Instr/key)
Radix (Instr/key)
Quick (Clocks/key)
Radix (clocks/key)

Time / key

Set size in keys

Instructions / key

Radix sort

Quick
sort

CS61C L25 Review Cache © UC Regents 32

Quicksort vs. Radix as vary number keys:
Cache misses

0

1

2

3

4

5

1000 10000 100000 1000000 1000000
0

Quick(miss/key)
Radix(miss/key)

Cache misses / key

Set size in keys

Radix sort

Quick
sort

What is proper approach to fast algorithms?

CS61C L25 Review Cache © UC Regents 33

Cache/VM/TLB Summary: #1/3

°The Principle of Locality:
• Program access a relatively small portion
of the address space at any instant of time.

- Temporal Locality: Locality in Time
- Spatial Locality: Locality in Space

°Caches, TLBs, Virtual Memory all
understood by examining how they deal
with 4 questions:
1) Where can block be placed?
2) How is block found?
3) What block is replaced on miss?
4) How are writes handled?

CS61C L25 Review Cache © UC Regents 34

Cache/VM/TLB Summary: #2/3
°Virtual Memory allows protected sharing of
memory between processes with less
swapping to disk, less fragmentation than
always swap or base/bound

°3 Problems:

1) Not enough memory: Spatial Locality
means small Working Set of pages OK

2) TLB to reduce performance cost of VM

3) Need more compact representation to
reduce memory size cost of simple 1-level
page table, especially for 64-bit address
(See CS 162)

CS61C L25 Review Cache © UC Regents 35

Cache/VM/TLB Summary: #3/3
°Virtual memory was controversial at the
time: can SW automatically manage 64KB
across many programs?

• 1000X DRAM growth removed controversy

°Today VM allows many processes to
share single memory without having to
swap all processes to disk;
VM protection today is more important
than memory hierarchy

°Today CPU time is a function of
(ops, cache misses) vs. just f(ops):
What does this mean to Compilers,
Data structures, Algorithms?

