CS61C - Machine Structures

Lecture 25 - Review Cache/VM

December 2, 2000
David Patterson
http://www-inst.eecs.berkeley.edu/~cs61c/

Review-(2/2)

°Pipelining a Big Idea: widely used
concept
°What makes it less than perfect?

 Structural hazards: suppose we had
only one cache?
P Need more HW resources

«Control hazards: need to worry about
branch instructions?
b Delayed branch or branch prediction

eData hazards: an instruction depends on
a previous instruction? ,

Memory-Hierarchy Pyramid

T Central Procegsor Unit (CPU)

“ " v Increasin

Upper /\ Distanceg
from CPU,

H Lever L -
Levelsin N Decreasing
memory tever2 ost/ MB

ierarchy 3 \&

1]
CCTVTT
« L(y/ __
Leveln
v v
« . Size of memory at each level >
Principle of Locality'(in time, in space) +

ierarchy of Memories of different speed,
cost; exploit to improve cost-performance

Review (1/2)

°Optimal Pipeline
«Each stage is executing part of an
instruction each clock cycle.
*One instruction finishes during each
clock cycle.
*On average, execute far more quickly.

°What makes this work?

«Similarities between instructions allow
us to use same stages for all instructions
(generally).

«Each stage takes about the same amount
of time as all others: little wasted time.

Why Caches?

_—
v uProc

1000 U
60%yr.

rocessor-Memory
erformance Gap:
""Qrtrwsﬂ)i% /year)
—=—=5 DRAM
o 7%lyr.

10

Performance

© 1999 gap “Tax”; 37% area of Alpha 21164,
61% StrongArm SA110, 64% Pentium Pro

4

Why virtual-memory?(1/2)

° Protection

eregions of the address space can be read
only, execute only, . ..

° Flexibility
eportions of aprogram can be placed
anywhere, without relocation
° Expandability
ecan leave room in virtual address space for
objects to grow
° Storage management

°€‘Iocation/dea|ocag(?n of variable sized
ocks Is costly and leads to (externa

fragmentation; paging solves this

Why virtual memory? (2/2)
° Generality

«ability to run programs larger than size of
physical memory

° Storage efficiency

eretain only most important portions of the
program in memory

°Concurrent I/O

eexecute other processes while
loading/dumping page

Virtual-Memory-Review-(2/4)

°Virtual memory provides:
eillusion of contiguous memory

«all programs starting at same set
address

eillusion of infinite memory
eprotection

Why-Transtation-Lookaside Buffer(TLB)?

°Paging is most popular
implementation of virtual memory
(vs. base/bounds)

°Every paged virtual memory access
must be checked against
Entry of Page Tableé in memory to
provide protection

°Cache of Page Table Entries makes
address translation possible without
memory access in common case to
make fast

Virtual Memory Review (1/4)

°User program view of memory:
«Contiguous
«Start from some set address
«Infinitely large
«lIs the only running program
°Reality:
*Non-contiguous
« Start wherever available memory is
*Finite size
*«Many programs running at atime

Virtual-Memory-Review-(3/4)

°Implementation:
*Divide memory into “chunks” (pages)

«Operating system controls pagetable that
maps virtual addresses into physical
addresses

*Think of memory as a cache for disk
*TLB is a cache for the pagetable

Virtual-Memory Review (4/4)

°Let’'s say we're fetching some data:

*Check TLB (input: VPN, output: PPN)
- hit: fetch translation
- miss: check pagetable (in memory)
— pagetable hit: fetch translation
— pagetable miss: page fault, fetch page
from disk to memory, return translation
to TLB
*Check cache (input: PPN, output: data)
- hit: return value
- miss: fetch value from memory

Paging/Virtual Memory Review

User A: User B:
Virtual Memory) TLB Virtual Memory
Physical
Memory Stack
v 64 MB |
1) 1
2 >
Static \X Static
A B
ol Page 0 Page
0 Table Table 0@

Three Advantages of Virtual Memory

2) Protection:

«Different processes protected from each other
«Different pages can be given special behavior
- (Read Only, Invisible to user programs, etc).
«Kernel data protected from User programs
*Very important for protection from malicious
programs b Far more “viruses” under
Microsoft Windows

3) Sharing:
«Can map same physical page to multiple users
(“Shared memory”)

4-Questions-for Memory Hierarchy

°Q1: Where can a block be placed in the
upper level? (Block placement)

°Q2: How is a block found if it is in the
ugper level?
(Block identification)

°Q3: Which block should be replaced on
amiss?
(Block replacement)

°Q4: What happens on a write?
(Write strategy)

Three Advantages of Virtual Memory
1) Translation:

*Program can be given consistent view of
memory, even though physical memory is
scrambled

*Makes multiple processes reasonable

*Only the most important part of program
(“Working Set”) must be in physical memory

»Contiguous structures (like stacks) use only
as much physical memory as necessary yet
still grow later

1

Administrivia: Rest of 61C
*Rest of 61C slower pace
F 12/1 Review: Caches/TLB/VM; Section 7.5
M 12/4 Deadline to correct your grade record
W 12/6 Review: Interrupts (A.7); Feedback lab

F 12/8 61C Summary / Your Cal heritage /
HKN Course Evaluation

Sun 12/10 Final Review, 2PM (155 Dwinelle)
Tues 12/12 Final (5PM 1 Pimintel)

°Final: Just bring pencils: leave home back
packs, cell phones, calculators

°Will check that notes are handwritten

Q1 Where block placed in upper level?
°Block 12 placed in 8 block cache:

*Fully associative, direct mapped, 2-way set
associative

*S.A. Mapping = Block Number Mod

Fully associative:
block 12 can go
anywhere

Direct mapped:
block 12 can go Set associative:
only into block 4 block 12 can go
12 mod 8 anywhere in set 0

A

Block 1111111111222222222233
M0 01234567890123456789012345678901

Q2: How is a block found in upper level?

Block Addre I Block

Set Select

Data Select

°Direct indexing (using index and block
offset), tag compares, or combination

°Increasing associativity shrinks index,
expands tag

Q4: What happens on a write?
°Write throu%h—The information is written
0 both the block in the cache and to the
block in the lower-level memory.

°Write back—The information is written
only o the block in the cache. The
modified cache block is written to main
memory only when it is replaced.

«is block clean or dirty?

°Pros and Cons of each?
*WT: read misses cannot result in writes
*WB: no writes of repeated writes

Address Translation Exercise (1)
°Exercise:

*40-bit VA, 16 KB pages, 36-bit PA
°Number of bits in Virtual Page Number?
°a) 18; b) 20; c) 22; d) 24, e) 26; f) 28
°Number of bits in Page Offset?

°a) 8; b) 10; c) 12; d) 14; e) 16; f) 18
°Number of bits in Physical Page Number?

*a) 18; b) 20; c) 22; d) 24; e) 26; f) 28

Q3: Which block replaced on a miss?
°Easy for Direct Mapped
°Set Associative or Fully Associative:

*« Random
¢ LRU (Least Recently Used)

Miss Rates
Associativity:2-way 4-way 8-way

Size LRU Ran LRU Ran LRU Ran
16 KB 5.2% 57% 4.7% 53% 4.4% 5.0%
64 KB 1.9% 2.0% 15% 1.7% 1.4% 15%
256 KB 1.15%1.17% 1.13% 1.13% 1.12% 1.12°/g

Address Translation & 3 Exercises
Virtual Address

\/PN INDEX J
T N
TCD
AW = N | PN
\ALEEERAD LENCLEELA I
Virtual Physical
> | Page Page
Nuber Numhar
M v v
WA = N N1 D D Nl DD 1
\ALEEERAD LA D

Physical Address

Address Translation Exercise (2)
°Exercise:

«40-bit VA, 16 KB pages, 36-bit PA

«2-way set-assoc TLB: 256 "slots", 2 per slot

°Number of bits in TLB Index?

a) 18; b) 20; c) 22; d) 24; e) 26;) 28
°Number of bits in TLB Tag?

a) 8; b) 10; ¢) 12; d) 14; e) 16; f) 18
°Approximate Number of bits in TLB Entry?

a) 32; b) 36; c) 40; d) 42; e) 44;) 46

Address Translation Exercise (3)
°Exercise:
*40-bit VA, 16 KB pages, 36-bit PA
«2-way set-assoc TLB: 256 "slots", 2 per slot
«64 KB data cache, 64 Byte blocks, 2 way S.A.

°Number of bits in Cache Offset?
a) 6; b) 8; ¢) 10; d) 12; e) 14, f) 16

°Number of bits in Cache Index?
a) 6; b) 8; c) 10; d) 12; e) 14, f) 16

°Number of bits in Cache T %
a) 18; b) 20; c) 22; d) 24, e) 26; f) 28

°Approximate No. of bits in Cache Entry?

Quicksort vs. Radix as vary number keys:
Instructions

Radix sort

\ —=- Radix (Instr/key)

700
600 \'
500 \
400 \
300 \
100 & Instructions / key

0 T T T 1

1000 10000 100000 100000 1E+07

Set size in keys

Quicksort vs. Radix as vary number keys:

Cache misses
What is proper approach to fast algorithms?
Radix sort

—— Quick(miss/key)
\ —&-Radix(miss/key)

4
N

, / Cache misses / key
NN

0 T T T 1
1000 10000 100000 1000000 1000000

Set size in keys

Impact of What Learned About Caches?

° 1960-1985: Speed
= f(no. operations)

° 1990s 1000 ceu
« Pipelined /
Execution &
Fast Clock Rate /
* Qut-of-Order,,

execution

* Superscalar |
°©1999:Speed= §53FEEEEEEEEEEEEE5EEE
f(non-cached memory accesses)

° Superscalar, Out-of-Order machines hide L1 data cache
miss (5 clocks) but not L2 cache miss (50 clocks)?

Quicksortvs.-Radix-as-vary-number keys:
Instructions and Time

800 Ra‘d|x sort -8- Quick (Instr/key)
\ —e- Radix (Instr/key)
700 \- —#+ Quick (Clocks/key)
. Radix (clocks/key)
600 \ Time /Key
500 \
400 \ /
300 ui
200 -?OI’ i
100 3 tions / key
0 T T T d

1000 10000 100000 100000 1E+07

Set size in ?<eys

Cache/VM/TLB -Summary: #1/3

°The Principle of Locality:

*Program access a relatively small portion
of the address space at any instant of time.

- Temporal Locality: Locality in Time
- Spatial Locality: Locality in Space

°Caches, TLBs, Virtual Memory all
understood by examining how they deal
with 4 questions:
1) Where can block be placed’7
2) How is block found?
3) What block is replaced on miss?
4) How are writes handled?

Cache/VM/TLB Summary: #2/3

°Virtual Memory allows protected sharing of
memory betwéen processes with less
swapping to disk, less fragmentation than
always swap or base/bound

°3 Problems:

1) Not enough memory: Spatial Locality
means small Working Set of pages OK

2) TLB to reduce performance cost of VM

3) Need more compact representation to
reduce memory size cost of simple 1-level
page table, especially for 64-bit address
(See Cs 162)

Cache/VM/TLB Summary: #3/3

°Virtual memory was controversial at the
time: can SW automatically manage 64KB
across many programs?

+1000X DRAM growth removed controversy

°Today VM allows many processes to
share single memory without having to
swap all processes to disk;
VM protection today is more important
than memory hierarchy

°Today CPU time is a function of
(oRs, cache misses) vs. just f(ops):
What does this mean to Compilers,
Data structures, Algorithms?

