
CS61C L26 Interrupt Review © UC Regents 1

CS61C - Machine Structures

Lecture 26 - Review of Interrupts

December 6,  2000

David Patterson

http://www-inst.eecs.berkeley.edu/~cs61c/

CS61C L26 Interrupt Review © UC Regents 2

Outline

° Instruction Set Support for Interrupts

° Prioritized Interrupts

° Re-entrant Interrupt Routine

° Start course review (if time permits)

CS61C L26 Interrupt Review © UC Regents 3

Crossing the System Boundary

° System loads user program into
memory and ‘gives’ it  use of the
processor

° Switch back

• SYSCALL

- request  service

- I /O

• TRAP (overflow)

• Interrupt

Proc Mem

I/O Bus

cmd reg.
data reg.

 System

 User

CS61C L26 Interrupt Review © UC Regents 4

Reasons for Exceptions/Interrupts

° Hardware errors: memory parity error

° External I /O Event

• High Priority and Low Priority I/O events

° Illegal instruction
° Virtual memory

• TLB miss
• Write protection violation

• Page fault -  page is on disk
• Invalid Address - outside of address range

° Arithmetic overflow
• Floating Point Exceptions

° System call  ( invoke Op Sys routine)

CS61C L26 Interrupt Review © UC Regents 5

Syscall

° How does user invoke the OS?

•syscall instruction: invoke the kernel
(Go to 0x80000080, change to kernel
mode)

• By software convention, $v0 has system
service requested: OS performs request

CS61C L26 Interrupt Review © UC Regents 6

Software/Hardware Resources for Exceptions

° Registers to use in interrupt routine

• $k1, $k2 reserved for use; don’t have to
be saved

° Enable/Disable Interrupt Bit

° Kernel/User mode to protect when can
Disable Interrupt

° Register showing cause of interrupt

° PC address of interrupted instruction

° Register with virtual address if it
caused an interrupt



CS61C L26 Interrupt Review © UC Regents 7

Review of Coprocessor 0 Registers

° Coprocessor 0 Registers:
name number usage
BadVAddr $8 Addr of bad instr
Status $12 Interrupt enable
Cause $13 Exception type
EPC $14 Instruction address

° Different registers from integer
registers, just as Floating Point has
another set of registers independent
from integer registers

• Floating Point called “Coprocessor 1”,
has own set of registers and data
transfer instructions

CS61C L26 Interrupt Review © UC Regents 8

Nested Interrupt Support

° If  going to support nested interrupts,
what must be saved/restored on entry/exit
of nested interrupt?

• Save/restore all things associated with
current interrupt: Exception PC, BadVaddr,
Cause, Interrupt Enable, Kernel/User state

• Any registers use beyond $k0, $k1

° What’s hard to save/restore?

• Interrupt Enable, Kernel/User, want to
restore at same time, so put back into same
state at same time: no chance Enable
Interrupts before set Kernel/User properly

• Add instruction to restore both

CS61C L26 Interrupt Review © UC Regents 9

Nested Interrupt Support

° How many levels deep must hardware
support for IE, KU?

• Either max number of nested interrupts

• or just 2, since SW could save/restore once
interrupted

° M IPS Hardware saves restores user
program, interupt routine, nested
interrupt routine

CS61C L26 Interrupt Review © UC Regents 10

Prioritizing Interrupts

° To support interrupts of interrupts, have
3 deep stack in Status for IE,K/U bits:
Current (1:0), Previous (3:2), Old (5:4)

IEK U
Status 

Register
IEK UIEK UIM

CPO

0 0

° Then restore previous KU,IE bits of
Status (via rfe)

rfe

IEK U IEK UIEK UIM
Status Reg After

IEK U Status Reg BeforeIEK UIEK UIM

CurrentPre.Old

CS61C L26 Interrupt Review © UC Regents 11

Handling a Single Interrupt (1/3)

° An interrupt has occurred, then what?

• Automatically, the hardware copies PC
into EPC ($14 on cop0) and puts correct
code into Cause Reg ($13 on cop0)

• Automatically, PC is set to 0x80000080,
process enters kernel mode, and
interrupt handler code begins execution

• Interrupt Handler code: Checks Cause
Register (bits 5 to 2 of $13 in cop0) and
jumps to portion of interrupt handler
which handles the current exception

CS61C L26 Interrupt Review © UC Regents 12

Multiple Interrupts

° Problem: What if  we’re handling an
Overflow interrupt and an I/O interrupt
(printer ready, for example) comes in?

° Options:

• drop any conflicting interrupts:
unrealistic, they may be important

• simultaneously handle multiple interrupts:
unrealistic, may not be able to synchronize
them (such as with multiple I /O interrupts)

• queue them for later handling: sounds
good



CS61C L26 Interrupt Review © UC Regents 13

Administrivia: Rest of 61C
•Fri 12/8 Last Lecture: Stanford v. Cal
Sun 12/10 Final Review, 2PM (155 Dwinelle)
Tues 12/12 Final (5PM 1 P imintel)
Mon 12/11 Beta test of Final
    Contact Sumeet (cs61c-tf) to find place, time

°See TA ASAP about grade disagreements:
scores should include lab6 as of today

°Final: Just bring pencils: leave home back
packs, cell phones, calculators

°2 sheets of paper, both sides, #2 pencils
(no calculators)

• Will check that notes are handwritten

CS61C L26 Interrupt Review © UC Regents 14

Prioritized Interrupts (1/3)

° Question: Suppose we’re dealing with
a computer running a nuclear facility.
What if  we’re handling an Overflow
interrupt and a Nuclear Meltdown
Imminent interrupt comes in?

° Answer: We need to categorize and
prioritize interrupts so we can handle
them in order of urgency: emergency
vs. luxury.

CS61C L26 Interrupt Review © UC Regents 15

Supporting Multiple Interrupts in Software

° Exception/Interrupt behavior
determined by combination of
hardware mechanisms and operating
system strategies

° same hardware with different OS acts
differently

° A popular software model for multiple
interrupts/exceptions, often used in
Unix OS, is to set priority levels

• This is an OS concept,  not a HW concept

• HW just needs mechanisms to support i t

CS61C L26 Interrupt Review © UC Regents 16

Prioritized Interrupts (2/3)

° OS convention to simplify software:

• Process cannot be preempted by
interrupt at  same or lower "level"

• Return to interrupted code as soon as no
more interrupts at a higher level

• When an interrupt is handled, take the
highest priority interrupt on the queue

- may be part ia l ly  handled,  may not ,  so we
may need to save state of  interrupts(! )

CS61C L26 Interrupt Review © UC Regents 17

Prioritized Interrupts (3/3)

° To implement,  we need an Exception
Stack:

• portion of address space allocated for
stack of “Exception Frames”

• each frame represents one interrupt:
contains priority level as well as enough
info to restart handling it if necessary

CS61C L26 Interrupt Review © UC Regents 18

Modified Interrupt Handler (1/3)

° Problem: When an interrupt comes in,
EPC and Cause get overwritten
immediately by hardware.  Lost EPC
means loss of user program.

° Solution: Modify interrupt handler.
When first interrupt comes in:

• disable interrupts (in Status Register)

• save EPC, Cause, Status and Priority
Level on Exception Stack

• re-enable interrupts

• continue handling current interrupt



CS61C L26 Interrupt Review © UC Regents 19

Modified Interrupt Handler (2/3)

° When next (or any later) interrupt comes
in:

• interrupt the first one

• disable interrupts (in Status Register)

• save EPC, Cause, Status and Priority Level
(and maybe more) on Exception Stack

• determine whether new one preempts old
one

- i f  no,  re-enable interrupts and continue with
old  one

- i f  yes,  may have to save state for  the old one,
then re-enable interrupts,  then handle new one

CS61C L26 Interrupt Review © UC Regents 20

Modified Interrupt Handler (3/3)

° Notes:

• Disabling interrupts is dangerous

• So we disable them for as short a t ime as
possible: long enough to save vital info
onto Exception Stack

° This new scheme al lows us to handle
many interrupts effectively.

CS61C L26 Interrupt Review © UC Regents 21

Details not covered

° M IPS has a field to record all  pending
interrupts so that none are lost while
interrupts are off; in Cause register

° The Interrupt Priority Level that the
CPU is running at is set in memory
(since it ’s a Software Concept v. HW)

° M IPS has a f ield in that can mask
interrupts of different priorities to
implement priority levels; in Status
register

CS61C L26 Interrupt Review © UC Regents 22

Interrupts while serving interrupts?

° Suppose there was an interrupt while
the interrupt enable or mask bit is off:
what should you do? (cannot ignore)

° Cause register has field--Pending
Interrupts (PI)-- 5 bits wide (bits15:11)
for each of the 5 HW interrupt levels

• Bit becomes 1 when an interrupt at its
level has occurred but not yet serviced

• Interrupt routine checks pending
interrupts ANDed with interrupt mask to
decide what to service

Cause RegisterExcCodePI

CS61C L26 Interrupt Review © UC Regents 23

Re-entrant Interrupt Routine?

° How allow interrupt of interrupts and
safely save registers?

° Stack?

• Resources consumed by each exception,
so cannot tolerate arbitrary deep nesting
of exceptions/interrupts

° W ith priority level system only
interrupted by higher priority interrupt,
so cannot be recursive

° ⇒⇒  Only need one save area
(“exception frame”) per priority level

CS61C L26 Interrupt Review © UC Regents 24

From First Lecture

° 15 weeks to learn big ideas in CS&E

• Principle of abstraction, used to build systems
as layers

• Compilation v. interpretation to move down
layers of system

• Pliable Data: a program determines what it  is

• Stored program concept: instructions are data

• Principle of Locality, exploited via a memory
hierarchy (cache)

• Greater performance by exploiting parallelism

• Principles/pitfalls of performance
measurement



CS61C L26 Interrupt Review © UC Regents 25

Stored program concept: instructions as data

° Allows computers to switch personalit ies

° Simplifies compile, assembly, l ink, load

° Distributing programs easy: on any disk,
just like data

⇒⇒ binary compatibility, upwards compatibility
(8086, 80286, 80386, 80486, Pentium I, II, III, 4)

° Makes it  easier for viruses: Send message
that overflows stack, starts executing code
in stack area, take over machine

CS61C L26 Interrupt Review © UC Regents 26

Principle of Locality

° Exploited by memory hierarchy

° Registers assume Temporal Locality:
data in registers will  be reused

° Disk seeks faster in practice: short
seeks are much faster,  so disk accesses
take less time  ⇒⇒  due to Spatial Locality

° Disks transfer in 512 Byte blocks
assuming spatial locality: more than
just 4 bytes useful to program

° Networks: most traffic is local, so local
area network vs. wide area network

CS61C L26 Interrupt Review © UC Regents 27

Cache (1/2)

° Memory hierarchy

° Spatial locality vs. temporal locality

° N-way set associative

• N=1: direct mapped

• N=# cache blocks: fully associative

° Block size tradeoff

° Average access t ime

• Hit time, hit rate, miss penalty, miss rate

CS61C L26 Interrupt Review © UC Regents 28

Cache (2/2)

° Cache misses

• Compulsory, conflict, capacity

° Replacement policy

• LRU, random

° Multi-level caches

° Write-through vs. write-back

CS61C L26 Interrupt Review © UC Regents 29

Greater performance by exploiting parallelism

° Pipelining

• Overlap execution to increase instruction
throughput vs. instruction latency

° Input/Output

• Overlap program execution with I /O,
only interrupt when I/O complete

• DMA data while processor does other work

° RAID (Redundant Array of Inexp. Disks)

• Replace a few number of large disks with a
large number of small  disks ⇒⇒ more arms
moving, more heads transferring
(even though small  disks maybe slower)

CS61C L26 Interrupt Review © UC Regents 30

Pipeline (1/2)

° Remember laundry analogy!

° Latency vs. throughput

° Structural hazards

• exist in register file and memory

• f ix memory by adding another level 1 $

• fix register by specifying first half cycle
writes and second half cycle reads



CS61C L26 Interrupt Review © UC Regents 31

Performance measurement Principles/Pitfalls
° Processors

• only quoting one factor of 3-part product:
clock rate but not CPI, instruction count

• Benchmarks v.  Clock rate of Pentium 4

• Cache miss rate vs.  Average memory t ime

° Networks

• only looking peak bandwidth, not including
software start-up overhead for message

° Disks

• Seek time much better than quoted (3X)

• Data transfer rate worse than quoted (0.75X)
CS61C L26 Interrupt Review © UC Regents 32

Rapid Change AND Litt le Change

° Continued Rapid Improvement in
Computing

• 2X every 1.5 years (10X/5yrs, 1000X/15yrs)

• Processor speed, Memory size -  Moore’s
Law as enabler (2X transistors/chip/1.5
yrs); Disk capacity too (not Moore’s Law)

• Caches, Pipelining, Branch Prediction, ...

° 5 classic components of al l  computers

  1. Control
2. Datapath
3.  Memory
4. Input
5. Output

} Processor  (or CPU)

CS61C L26 Interrupt Review © UC Regents 33

Things to Remember

° Kernel  Mode v.  User Mode: OS can
provide security and fairness

° Syscall:  provides a way for a
programmer to avoid having to know
details of each I/O device

° To be acceptable, interrupt handler
must:

• service all interrupts (no drops)

• service by priority

• make all users believe that no interrupt
has occurred


