CS61C
Introduction to Pipelining

Lecture 25

April 28, 1999

Dave Patterson
(http.cs.berkeley.edu/~patterson)

www-inst.eecs.berkeley.edu/~cs61c/schedule.html

cs 61C L25 pipeline.1 Patterson Spring 99 ©UCB

Outline
°Review Parameter Passing on Stacks

°Pipelining Analogy

°Pipelining Instruction Execution
°Administrivia, “What'’s this Stuff Bad for?”
°Hazards to Pipelining

°Solutions to Hazards

°>Advanced Pipelining Concepts by Analogy

°Conclusion

cs 61C L25 pipeline.2 Patterson Spring 99 ©UCB

Review 1/1

°Every machine has a convention for how
arguments are passed.

°In MIPS, where do the arguments go If you
are passing more than 4 words? Stack!

°It 1Is sometimes useful to have a variable
number of arguments.

e The C convention is to use “...”
e *fmt Is used to determine the number of
variables and their types.

cs 61C L25 pipeline.3 Patterson Spring 99 ©UCB

Pipelining is Natural! Laundry Example

°Ann, Brian, Cathy, Dave

each have one load of 555555

clothes to wash, dry,
fold, and put away

°*Washer takes 30
minutes

o

°Dryer takes 30 minutes

*“Folder” takes 30
minutes

minutes to put clothes

°“Stasher” takes 30
INnto drawers ﬁ

cs 61C L25 pipeline.4 Patterson Spring 99 ©UCB

Sequential Laundry

6I PM 7 38 9 10 11 12 1 2 AM
. >
3030'3020/203013030 3030120130/ 3030130 20

T 3T(i)m360 30'3030'30'30'3030'30'30
O@F R
k| S 5 R 4

' C’ = ,
NS 85 A
d

e

" °Sequential laundry takes

8 hours for 4 loads

cs 61C L25 pipeline.5 Patterson Spring 99 ©UCB

Pipelined Laundry: Start work ASAP

6|PM V4 8 O 10 11 12 1 2 AM
|]|

T 30303030303030 Time
2| & @;%A

(| B Bl 4

& 824

ALC A

d
° °Pipelined laundry takes
" 3.5 hours for 4 loads!

cs 61C L25 pipeline.6 Patterson Spring 99 ©UCB

Pipelining Lessons

°Pipelining doesn’t help
6 PM 7 3 g latency of single task, it
, nelps throughput of
Time = entire workload

T l | I I

a 3030 30 30|3OI3O 30 o Multiple tasks

S| & : operating |

K = . simultaneously using
&S SIEPN different resources

O] >3 \ :

rvEB .@ A °Potential speedup =

i & = A Number pipe stages

e °Time to “fill” pipeline

r and time to “drain” it

reduces speedup:
2.3X V. 4XIn this
example

cs 61C L25 pipeline.7 Patterson Spring 99 ©UCB

Pipelining Lessons

> Suppose new

5PM 7 3 9 Washer takes 20
, Mminutes, new

Time = Stasher takes 20

T | \
=ll_| minutes. How much
2 5 ?’O 303030 30 faster is pipeline?
K 2 = . °Pipeline rate limited
B SIEPN by slowest pipeline
TSR =5 stage
D = : A °Unbalanced lengths

ofCFipe stages also
reduces speedup

= O 2 = 0O

cs 61C L25 pipeline.8 Patterson Spring 99 ©UCB

Review: Steps in Executing MIPS (Lec. 20)

1) Ifetch: Fetch Instruction, Increment PC

2) Decode Instruction, Read Registers

3) Execute:
Mem-ref: Calculate Address
Arith-log: Perform Operation
Branch: Compare iIf operands ==

4) Memory:
Load: Read Data from Memory
Store: Write Datato Memory
Branch: If operands ==, Change PC

5) Write Back: Write Data to Register

cs 61C L25 pipeline.9 Patterson Spring 99 ©UCB

Pipelined Execution Representation

Time

IFtch|Dcd JExec[Mem] WB
IFtCh|Dcd |Exec|Mem| WB
IFtch|Dcd |Exec|Mem| WB
IFtch|Dcd |Exec|Mem| WB
IFtch| Dcd |Exec|l\/lem| WB
vProgram Flow IFtch|Dcd JExec[Mem] WB

°Every instruction takes same number
of steps, also called pipeline “stages”

cs 61C L25 pipeline.10 Patterson Spring 99 ©UCB

Review: A Datapath for MIPS (Lec. 20)

Stage 5
Instruction . > Data
»| PC Cache _: Registers T>ALU Cache
< > < > < < >
Stage 1 Stage 2 Stage 3 (Stage 4)

°Use data path figure to represent pipeline

IFtchIDcd |Exec|Mem| WB

€cs 61C L25 pipeline.11

Patterson

Spring 99 ©UCB

Load
Add

I
n
S
t
r

Store

Sub

O

r

d |Or
e H
r v

(right half highlight means read, left half write)

cs 61C L25 pipeline.12 Patterson Spring 99 ©UCB

Example

°Sup£ose 2 ns for memory access, 2 ns

for ALU operation, and 1 ns for register
file read or write

°Nonpipelined Execution:

lw: IF + Read Reg + ALU + Memory + Write
Reg=2+1+2+2+1=8ns

add: IF + Read Reg + ALU + Write Reg
=2+1+2+1=6nS
°Pipelined Execution:

 Max(IF,Read Reg,ALU, Memory,Write Req)
=2Nns

cs 61C L25 pipeline.13 Patterson Spring 99 ©UCB

Administrivia

°Project 6 (last): Due Today
°Next Readings: 7.5

°11th homework (last): Due Friday 4/30 7PM
e Exercises 2.6, 2.13,6.1, 6.3, 6.4

cs 61C L25 pipeline.14 Patterson Spring 99 ©UCB

Iministrivia f
F 4/30 Review: Caches/TLB/VM: Section 7.5

M 5/3 Deadline to correct your gqrade record

W 5/5 Review: Interrupts / Polling; A.7

F 5/7 61C Summary /Your Cal heritage /
HKN Course Evalution

(Due: Final 61C Survey in lab; Return)

Sun 5/9 Final Review starting 2PM (1 Pimintel)

W 5/12 Final (5PM 1 Pimintel)
e Need Alternative Final? Contact mds@cory

cs 61C L25 pipeline.15 Patterson Spring 99 ©UCB

“What’s This Stuff (Potentially) Bad For?”

Linking Entertainment to Violence 100s of studiesin recent
decades have revealed a direct correlation between exposure to media
violence--including video games--and increased aggression.

*'\We are reaching that stage of desensitization at which the inflicting
of pain and suffering has become a source of entertainment; vicarious
pleasure rather than revulsion. We are learning to kill, and we are
learning to likeit." Like the tobacco industry, “the evidence is there."
 The 14-year-old boy who opened fire on aprayer group in aKy.
school foyer in 1997 was a video-game expert. He had never fired a
pistol before, but in the ensuing melee, he fired 8 shots, hit 8 people,
and killed 3. The average law enforcement officer in the United
States, at adistance of 7 yards, hits fewer than 1 in 5 shots.

» Because of freedom of speech is avalue that we don't want to
compromise, “it really comes down to the people creating these
games. That's where the responsibility lies."

N.Y. Times, 4/26/99

cs 61C L25 pipeline.l Patterson Spring 99 ©UCB

Pipeline Hazard: Matching socks in later load

6PM7 8 9 10 11 12 1 2AM
] |

T, 30303030303030 Time
a|B

S

kK| O

|8

| B

d| B

e

v O

cs 61C L25 pipeline.17 Patterson Spring 99 ©UCB

Problems for Computers

°Limits to pipelining: Hazards prevent
next instruction from executing during
Its designated clock cycle

e Structural hazards: HW cannot support
this combination of instructions (single
person to fold and put clothes away)

e Control hazards: Pipelining of branches &
other instructions stall the pipeline until
the hazard “bubbles” in the pipeline

e Data hazards: Instruction depends on
result of prior instruction still in the
pipeline (missing sock)

cs 61C L25 pipeline.18 Patterson Spring 99 ©UCB

I
n
S
t
r

O

0 Viemorv IS a

Q

L oad

Instr 1

Instr 2

Instr 3

r
d ¥Yinstr 4
e

Time (clock cycles)

{Reg]

[Ds$ |

ik

I Read same'memory twice in same clock cycle

€cs 61C L25 pipeline.19

Patterson Spring 99 ©UCB

Structural Hazards limit performance

*Example: if 1.3 memory accesses per
Instruction (30% of instructions
executed loads and stores)
and only one memory access per
cycle then

 Average CP| 3 1.3

e Otherwise resource is more than 100%
utilized

cs 61C L25 pipeline.20 Patterson Spring 99 ©UCB

Control Hazard Solutions
°Stall: wait until decision iIs clear

 Move up decision to 2nd stage by adding
hardware to check registers as being read

I
\ Time (clock cycles) X
t |Add ® *:[Reg_%_> | Ds Regé : ;
r
Beq |$
O |Load
r
d v
e

r°lmpact: 2 clock cycles per branch
Instruction b slow

cs 61C L25 pipeline.21 Patterson Spring 99 ©UCB

Control Hazard Solutions

°Predict: guess one direction, then
back up If wrong

| For example, Predict not taken
: _Time (clock cycles) _,
O |Load
r : : : : : : : :
d “Impact: 1 clock per branch instruction
€ if right, 2 if wrong (right » 50% of time)
:

°More dynamic scheme: history of 1
cs 61C L25 pipeline.22 branch (>> 90%) Patterson Spring 99 ©UCB

_Control Hazard Solutions

°Redefine branch behavior (takes place
after next instruction) “delayed branch”

Time (clock cycles) >

2
Add I$..[Reg

:D$=Reg§

S - N D -

Beg

Misc

jroad 11 [l e

°Impact: 1 clock cycles per branch
instruction If can find instruction to put
in “slot” (» 50% of time)

cs 61C L25 pipeline.23 Patterson Spring 99 ©UCB

ﬁCDQﬁO

Example Nondelayed vs. Delayed Branch

Nondelayed Branch Delayed Branch
or $8, $9 ,$10 | add $1 ,$2,$3
add $1 ,$2,%$3 sub $4, $5,%6
sub $4, $5,%6 eq $1, $4, Exit
- beq $1, $4, Exi r $8, $9 ,$10

xor $10, $1,%11 xor $10, $1,%11

Exit: Exit:

cs 61C L25 pipeline.24 Patterson Spring 99 ©UCB

Data Hazard on Register $1

add $1 ,%$2,%$3
sub $4, $1 ,%$3
and $6, $1 ,%7
or $8, $1 ,3$9
xor $10, $1 ,$11

cs 61C L25 pipeline.25 Patterson Spring 99 ©UCB

Data Hazard on $1:

Dependencies backwards in time are hazards

Time (clock cycles) . . .
IF i ID/RF NEXi MEM WB

add $1,%2,$3| '$ Regg ZJrios Reg
sub $4,$1,%$3 |$ _.[R >

—>

and 36,5187 [T A L)

l
or $8,$1,39 '$ IR ;\L D$ r._Reg

I N ¢ e J—

I
e vxor $1O1 ,$11 1$ IReg ‘T@V | D$ Ir- Reg

cs 61C L25 pipeline.26 Patterson Spring 99 ©UCB

e “Forward” result from one stage to another

| Time (clock cycles)

n I5 élD/RE_} :
s |add $1,$2,$3| '¢ -.[Reg :
"o |subsasigs []

and $6,51,$7 :

O

r [or $8,51,$9

d

e onr $1O1 1$11

r

« “or” OK if define read/write properly

cs 61C L25 pipeline.27 Patterson Spring 99 ©UCB

Forwarding (or Bypassing): What about Loads
 Dependencies backwards In time are hazards

IF i

w $1,0($2) | s

sub $4,$1,%$3

v

e Can’t solve with forwarding
 Must stall instruction dependent on loads

cs 61C L25 pipeline.28 Patterson Spring 99 ©UCB

Data Hazard Even with Forwarding

« Must insert stall or bubble in pipeline
Time (clock cycles)

>

($2) 1$.?.'Reg —%

sub $4,51,$6 | []

?D$ EReg

and $6,$1,$7

cs 61C L25 pipeline.29 Patterson Spring 99 ©UCB

" or $8,$1,$9

Software Scheduling to Avoid Load Hazards

Try producing fast code for
a=>b+ c;

d = e — F;
a, b, c, d ,e, and fin memory
Slow code: Fast code:
Iw $2.b Iw $2,b
Iw $3,cC Iw $3,cC
add $1,%$2,%3 Ilw $5,e
sw $1,a add $1,%2,%3
Ilw $5.e Ilw $6,F
Ilw $6,F sw $1,a

sub $4,%$5,%6 sub $4,%$5,%6
sw $4,d sw $4,d

cs 61C L25 pipeline.30 Patterson Spring 99 ©UCB

Advanced Pipelining Concepts (if time)

°Qut-of-order Execution
°Superscalar execution

°State-of-the-Art Microprocessor

cs 61C L25 pipeline.31 Patterson Spring 99 ©UCB

Pipeline Hazard: Stall

6PI\/I 7 38 9 10 11 12 1 2AM

>
| | -

T 30303030303030 Time
a| B

S

kK| O

5 O

| O

JKE

e

v O

cs 61C L25 pipeline.32 Patterson Spring 99 ©UCB

QOut-of-Order Laundry: Don’t Wait

6PM7 8 9 10 11 12 1 2AM
>
L] |

T, 30303030303030 Time
2| B @5 et A
(o B854
B SIEN
| B T A
d| B ﬁi;
?%5 = A

cs 61C L25 pipeline.33 Patterson Spring 99 ©UCB

Superscalar Laundry: Parallel per stage

2 AM

6 PM 7 8 9 10 11 12 1
|_I_I=l='

i
a|’
k| O
OE
| O
d| @
&

€cs 61C L25 pipeline.34

U,
3030303030 Time

& (light clothing)

= A (dark clothing)
J5): & (very dirty clothing)

7% & (light clothing)
/ A (dark clothing)

° A (very dirty clothing)

>

Superscalar Laundry: Mismatch Mix

6|PI\/I 7 38 9 10 11 12 1 2AM

>
| | -
30303030303030 Time

& & (light clothing)

~ 0 o H

(light clothing)
(dark clothing)

= O Q= 0O
G Iy

(light clothing)

cs 61C L25 pipeline.35 Patterson Spring 99 ©UCB

State of the Art: Alpha 21264
° 15 Million transistors

> 2 64KB caches on chip;
16MB L2 cache off chip

> Clock cycle time <1.7 nsec,
or Clock Rate >600 MHz
(Fastest Cray Supercomputer: T90 2.2 nsec)

* 90 watts per chip!

> Superscalar: fetch up to 6 instructions/clock
cycle, retires up to 4 instruction/clock cycle

° Execution out-of-order

cs 61C L25 pipeline.36 Patterson Spring 99 ©UCB

Summary 1/2: Pipelining Introduction

°Pipelining Is a fundamental concept
* Multiple steps using distinct resources
« Exploiting parallelism in instructions

*What makes it easy? (MIPS vs. 80x86)

* All instructions are the same length
P simple instruction fetch

e Just a few instruction formats _
P read registers before decode instruction

« Memory operands only in loads and stores
P fewer pipeline stages

« Data aligned P 1 memory access / load, store

cs 61C L25 pipeline.37 Patterson Spring 99 ©UCB

Summary 2/2: Pipelining Introduction
*What makes it hard?

°Structural hazards: suppose we had only
one cache?
P Need more HW resources

°Control hazards: need to worry about
branch instructions?
P Branch prediction, delayed branch

°Data hazards: an instruction depends on
a previous instruction?
P need forwarding, compiler scheduling

cs 61C L25 pipeline.38 Patterson Spring 99 ©UCB

