
cs 61C L25 pipeline.1 Patterson Spring 99 ©UCB

CS61C
 Introduction to Pipelining

Lecture 25

April 28, 1999

Dave Patterson
(http.cs.berkeley.edu/~patterson)

www-inst.eecs.berkeley.edu/~cs61c/schedule.html

cs 61C L25 pipeline.2 Patterson Spring 99 ©UCB

Outline
°Review Parameter Passing on Stacks

°Pipelining Analogy

°Pipelining Instruction Execution

°Administrivia, “What’s this Stuff Bad for?”

°Hazards to Pipelining

°Solutions to Hazards

°Advanced Pipelining Concepts by Analogy

°Conclusion

cs 61C L25 pipeline.3 Patterson Spring 99 ©UCB

Review 1/1

°Every machine has a convention for how
arguments are passed.

° In MIPS, where do the arguments go if you
are passing more than 4 words? Stack!

° It is sometimes useful to have a variable
number of arguments.
• The C convention is to use “...”

• *fmt is used to determine the number of
variables and their types.

cs 61C L25 pipeline.4 Patterson Spring 99 ©UCB

Pipelining is Natural! Laundry Example

° Ann, Brian, Cathy, Dave
each have one load of
clothes to wash, dry,
fold, and put away

° Washer takes 30
minutes

° Dryer takes 30 minutes

° “Folder” takes 30
minutes

° “Stasher” takes 30
minutes to put clothes
into drawers

A B C D

cs 61C L25 pipeline.5 Patterson Spring 99 ©UCB

Sequential Laundry

°Sequential laundry takes
8 hours for 4 loads

30T

a

s

k

O

r

d

e

r

B

C

D

A
Time

3030 3030 30 3030 3030 3030 3030 3030

6 PM 7 8 9 10 11 12 1 2 AM

cs 61C L25 pipeline.6 Patterson Spring 99 ©UCB

Pipelined Laundry: Start work ASAP

°Pipelined laundry takes
3.5 hours for 4 loads!

T

a

s

k

O

r

d

e

r

12 2 AM6 PM 7 8 9 10 11 1

Time

B

C

D

A

303030 3030 3030

cs 61C L25 pipeline.7 Patterson Spring 99 ©UCB

Pipelining Lessons

° Pipelining doesn’t help
latency of single task, it
helps throughput of
entire workload

° Multiple tasks
operating
simultaneously using
different resources

° Potential speedup =
Number pipe stages

° Time to “fill” pipeline
and time to “drain” it
reduces speedup:
2.3X v. 4X in this
example

6 PM 7 8 9

Time

B

C

D

A

303030 3030 30 30

T

a

s

k

O

r

d

e

r

cs 61C L25 pipeline.8 Patterson Spring 99 ©UCB

Pipelining Lessons

° Suppose new
Washer takes 20
minutes, new
Stasher takes 20
minutes. How much
faster is pipeline?

° Pipeline rate limited
by slowest pipeline
stage

° Unbalanced lengths
of pipe stages also
reduces speedup

6 PM 7 8 9

Time

B

C

D

A

303030 3030 30 30

T

a

s

k

O

r

d

e

r

cs 61C L25 pipeline.9 Patterson Spring 99 ©UCB

Review: Steps in Executing MIPS (Lec. 20)

1) Ifetch: Fetch Instruction, Increment PC

2) Decode Instruction, Read Registers

3) Execute:
 Mem-ref: Calculate Address
 Arith-log: Perform Operation
 Branch: Compare if operands ==

4) Memory:
 Load: Read Data from Memory
 Store: Write Data to Memory
 Branch: if operands ==, Change PC

5) Write Back: Write Data to Register

cs 61C L25 pipeline.10 Patterson Spring 99 ©UCB

Pipelined Execution Representation

°Every instruction takes same number
of steps, also called pipeline “stages”

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WBProgram Flow

Time

cs 61C L25 pipeline.11 Patterson Spring 99 ©UCB

Review: A Datapath for MIPS (Lec. 20)

Data
CachePC Registers ALU

Instruction
Cache

Stage 1 Stage 2 Stage 3 (Stage 4)

Stage 5

IFtch Dcd Exec Mem WB

°Use data path figure to represent pipeline
A

L
U I$ Reg D$ Reg

cs 61C L25 pipeline.12 Patterson Spring 99 ©UCB

A
L

U I$ Reg D$ Reg

 I$

Graphical Pipeline Representation

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Add

Store

Sub

Or
A

L
U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

UReg D$ Reg

A
L

U I$ Reg D$ Reg

(right half highlight means read, left half write)

cs 61C L25 pipeline.13 Patterson Spring 99 ©UCB

Example

°Suppose 2 ns for memory access, 2 ns
for ALU operation, and 1 ns for register
file read or write

°Nonpipelined Execution:
• lw : IF + Read Reg + ALU + Memory + Write
Reg = 2 + 1 + 2 + 2 + 1 = 8 ns

• add: IF + Read Reg + ALU + Write Reg
= 2 + 1 + 2 + 1 = 6 ns

°Pipelined Execution:
• Max(IF,Read Reg,ALU, Memory,Write Reg)
= 2 ns

cs 61C L25 pipeline.14 Patterson Spring 99 ©UCB

Administrivia

°Project 6 (last): Due Today

°Next Readings: 7.5

°11th homework (last): Due Friday 4/30 7PM
• Exercises 2.6, 2.13, 6.1, 6.3, 6.4

cs 61C L25 pipeline.15 Patterson Spring 99 ©UCB

Administrivia: Rest of 61C
F 4/30 Review: Caches/TLB/VM; Section 7.5

M 5/3 Deadline to correct your grade record

W 5/5 Review: Interrupts / Polling; A.7
F 5/7 61C Summary / Your Cal heritage /

HKN Course Evalution
 (Due: Final 61C Survey in lab; Return)

Sun 5/9 Final Review starting 2PM (1 Pimintel)

W 5/12 Final (5PM 1 Pimintel)
• Need Alternative Final? Contact mds@cory

cs 61C L25 pipeline.16 Patterson Spring 99 ©UCB

“What’s This Stuff (Potentially) Bad For?”
Linking Entertainment to Violence 100s of studies in recent
decades have revealed a direct correlation between exposure to media
violence--including video games--and increased aggression.
•"We are reaching that stage of desensitization at which the inflicting
of pain and suffering has become a source of entertainment; vicarious
pleasure rather than revulsion. We are learning to kill, and we are
learning to like it." Like the tobacco industry, “the evidence is there."
• The 14-year-old boy who opened fire on a prayer group in a Ky.
school foyer in 1997 was a video-game expert. He had never fired a
pistol before, but in the ensuing melee, he fired 8 shots, hit 8 people,
and killed 3. The average law enforcement officer in the United
States, at a distance of 7 yards, hits fewer than 1 in 5 shots.
• Because of freedom of speech is a value that we don't want to
compromise, “it really comes down to the people creating these
games. That's where the responsibility lies."
N.Y. Times, 4/26/99

cs 61C L25 pipeline.17 Patterson Spring 99 ©UCB

Pipeline Hazard: Matching socks in later load

A depends on D; stall since folder tied up

T

a

s

k

O

r

d

e

r

12 2 AM6 PM 7 8 9 10 11 1

Time

B

C

D

A

E

F

bubble

303030 3030 3030

cs 61C L25 pipeline.18 Patterson Spring 99 ©UCB

Problems for Computers

°Limits to pipelining: Hazards prevent
next instruction from executing during
its designated clock cycle

• Structural hazards: HW cannot support
this combination of instructions (single
person to fold and put clothes away)

• Control hazards: Pipelining of branches &
other instructions stall the pipeline until
the hazard “bubbles” in the pipeline

• Data hazards: Instruction depends on
result of prior instruction still in the
pipeline (missing sock)

cs 61C L25 pipeline.19 Patterson Spring 99 ©UCB

 I$

Single Memory is a Structural Hazard

Load

Instr 1

Instr 2

Instr 3

Instr 4
A

L
U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg
A

L
UReg D$ Reg

A
L

U I$ Reg D$ Reg

Read same memory twice in same clock cycle

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

cs 61C L25 pipeline.20 Patterson Spring 99 ©UCB

Structural Hazards limit performance

°Example: if 1.3 memory accesses per
instruction (30% of instructions
executed loads and stores)
and only one memory access per
cycle then

• Average CPI ≥ 1.3

• Otherwise resource is more than 100%
utilized

cs 61C L25 pipeline.21 Patterson Spring 99 ©UCB

°Stall: wait until decision is clear
• Move up decision to 2nd stage by adding
hardware to check registers as being read

° Impact: 2 clock cycles per branch
instruction ⇒ slow

Control Hazard Solutions

Add

Beq

Load

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg
A

L
UReg D$ Reg I$

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

bub
ble

cs 61C L25 pipeline.22 Patterson Spring 99 ©UCB

°Predict: guess one direction, then
back up if wrong

• For example, Predict not taken

° Impact: 1 clock per branch instruction
if right, 2 if wrong (right ≈ 50% of time)

°More dynamic scheme: history of 1
branch (≈ 90%)

Control Hazard Solutions

Add

Beq

Load

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

 I$
A

L
UReg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

cs 61C L25 pipeline.23 Patterson Spring 99 ©UCB

°Redefine branch behavior (takes place
after next instruction) “delayed branch”

° Impact: 1 clock cycles per branch
instruction if can find instruction to put
in “slot” (≈ 50% of time)

Control Hazard Solutions

Add

Beq

Misc

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

 I$
A

L
UReg D$ Reg

Load I$

A
L

UReg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

cs 61C L25 pipeline.24 Patterson Spring 99 ©UCB

Example Nondelayed vs. Delayed Branch

add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Nondelayed Branch
add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Delayed Branch

Exit:Exit:

cs 61C L25 pipeline.25 Patterson Spring 99 ©UCB

Data Hazard on Register $1

add $1 ,$2,$3

sub $4, $1 ,$3

and $6, $1 ,$7

or $8, $1 ,$9

xor $10, $1 ,$11

cs 61C L25 pipeline.26 Patterson Spring 99 ©UCB

 Dependencies backwards in time are hazards

Data Hazard on $1:

add $1,$2,$3

sub $4,$1,$3

and $6,$1,$7

or $8,$1,$9

xor $10,r1,$11

IF ID/RF EX MEM WBA
L

UI$ Reg D$ Reg

A
L

UI$ Reg D$ Reg
A

L
UI$ Reg D$ Reg

I$

A
L

UReg D$ Reg

A
L

UI$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

cs 61C L25 pipeline.27 Patterson Spring 99 ©UCB

• “Forward” result from one stage to another

• “or” OK if define read/write properly

Data Hazard Solution:

add $1,$2,$3

sub $4,$1,$3

and $6,$1,$7

or $8,$1,$9

xor $10,r1,$11

IF ID/RF EX MEM WBA
L

UI$ Reg D$ Reg

A
L

UI$ Reg D$ Reg
A

L
UI$ Reg D$ Reg

I$

A
L

UReg D$ Reg

A
L

UI$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

cs 61C L25 pipeline.28 Patterson Spring 99 ©UCB

• Dependencies backwards in time are hazards

• Can’t solve with forwarding
• Must stall instruction dependent on loads

Forwarding (or Bypassing): What about Loads

lw $1,0($2)

sub $4,$1,$3

IF ID/RF EX MEM WBA
L

UI$ Reg D$ Reg

A
L

UI$ Reg D$ Reg

cs 61C L25 pipeline.29 Patterson Spring 99 ©UCB

• Must insert stall or bubble in pipeline

Data Hazard Even with Forwarding

lw $1, 0($2)

sub $4,$1,$6

and $6,$1,$7

or $8,$1,$9

IF ID/RF EX MEM WBA
L

UI$ Reg D$ Reg

A
L

UI$ Reg D$ Reg

A
L

UI$ Reg D$ Reg

I$

A
L

UReg D$

Time (clock cycles)

bub
ble

bub
ble

bub
ble

cs 61C L25 pipeline.30 Patterson Spring 99 ©UCB

Try producing fast code for
a = b + c;

d = e – f;

a, b, c, d ,e, and f in memory
Slow code:

lw $2,b
lw $3,c
add $1,$2,$3
sw $1,a
lw $5,e
lw $6,f
sub $4,$5,$6
sw $4,d

Software Scheduling to Avoid Load Hazards

Fast code:
lw $2,b
lw $3,c
lw $5,e
add $1,$2,$3
lw $6,f
sw $1,a
sub $4,$5,$6
sw $4,d

cs 61C L25 pipeline.31 Patterson Spring 99 ©UCB

Advanced Pipelining Concepts (if time)

°Out-of-order Execution

°Superscalar execution

°State-of-the-Art Microprocessor

cs 61C L25 pipeline.32 Patterson Spring 99 ©UCB

Pipeline Hazard: Stall

A depends on D; stall since folder tied up

T

a

s

k

O

r

d

e

r

12 2 AM6 PM 7 8 9 10 11 1

Time

B

C

D

A

E

F

bubble

303030 3030 3030

cs 61C L25 pipeline.33 Patterson Spring 99 ©UCB

Out-of-Order Laundry: Don’t Wait

A depends on D; rest continue; need
more resources to allow out-of-order

T

a

s

k

O

r

d

e

r

12 2 AM6 PM 7 8 9 10 11 1

Time

B

C

D

A

303030 3030 3030

E

F

bubble

cs 61C L25 pipeline.34 Patterson Spring 99 ©UCB

Superscalar Laundry: Parallel per stage

More resources, HW to match mix of
parallel tasks?

T

a

s

k

O

r

d

e

r

12 2 AM6 PM 7 8 9 10 11 1

Time

B

C

D

A

E

F

 (light clothing)
 (dark clothing)
 (very dirty clothing)

 (light clothing)
 (dark clothing)
 (very dirty clothing)

303030 3030

cs 61C L25 pipeline.35 Patterson Spring 99 ©UCB

Superscalar Laundry: Mismatch Mix

Task mix underutilizes extra resources

T

a

s

k

O

r

d

e

r

12 2 AM6 PM 7 8 9 10 11 1

Time
303030 3030 3030

 (light clothing)

 (light clothing)
 (dark clothing)

 (light clothing)

A

B

D

C

cs 61C L25 pipeline.36 Patterson Spring 99 ©UCB

State of the Art: Alpha 21264

° 15 Million transistors

° 2 64KB caches on chip;
16MB L2 cache off chip

° Clock cycle time <1.7 nsec,
or Clock Rate >600 MHz
(Fastest Cray Supercomputer: T90 2.2 nsec)
• 90 watts per chip!

° Superscalar: fetch up to 6 instructions/clock
cycle, retires up to 4 instruction/clock cycle

° Execution out-of-order

cs 61C L25 pipeline.37 Patterson Spring 99 ©UCB

Summary 1/2: Pipelining Introduction

°Pipelining is a fundamental concept
• Multiple steps using distinct resources

• Exploiting parallelism in instructions

°What makes it easy? (MIPS vs. 80x86)
• All instructions are the same length
 ⇒ simple instruction fetch

• Just a few instruction formats
 ⇒ read registers before decode instruction

• Memory operands only in loads and stores
 ⇒ fewer pipeline stages

• Data aligned ⇒ 1 memory access / load, store

cs 61C L25 pipeline.38 Patterson Spring 99 ©UCB

Summary 2/2: Pipelining Introduction

°What makes it hard?

°Structural hazards: suppose we had only
one cache?
⇒ Need more HW resources

°Control hazards: need to worry about
branch instructions?
 ⇒ Branch prediction, delayed branch

°Data hazards: an instruction depends on
a previous instruction?
 ⇒ need forwarding, compiler scheduling

