
CS 61C Fall 1998 MIPS Programming Project 2

1

Interrupt-Driven I/O

Administrative details

Submit a solution to this project by noon on November 18.

The project should be done in a partnership. Everything
you turn in should include the names and lab section times of
everyone in your partnership. Put two files of program source code,
one named iout.s and the other named iecho.s, in a directory named
mips2 and submit it as you did for earlier assignments.

Background reading

P&H, pages 679–682 and section A.7 ; G&M, chapter 12.
The frameworks for the iout.s and iecho.s programs were described
in lab+homework assignment 10.

Project exercise 1

Fill in the body of the interrupt handler in iout.s. Do not
modify either the print procedure or the main program. Here is a
list of things the interrupt handler must do:
a. If the transmitter is not ready, then the interrupt handler

should not do anything. (You shouldn’t have gotten an
interrupt in the first place if the transmitter isn’t ready,
but it’s a good idea to check anyway; you’ll need the check
in exercise 2 below.)

b. If the output buffer isn’t empty, the interrupt handler
should copy the next character from the output buffer to
the Transmitter Data Register and advance nextOut
circularly.

c. If the output buffer is empty, the interrupt handler should
turn off the “interrupt enable” bit in the transmitter
control register. Otherwise continuous interrupts will
occur. (The interrupt handler in G&M deals with this
situation differently.)

d. The interrupt handler must save and restore any registers
that it uses, even temporary registers like $8 and $9. This
is necessary because interrupts can occur at any time and
those registers could have been in use at the time of the
interrupt. These registers are to be saved on the stack. The
only exceptions to this rule are registers $26 and $27,

which are reserved for use by interrupt routines; these
registers need not be saved and restored. One of these
registers, $26, is used to return from the interrupt routine
back to the code that was interrupted.

Your code should output lines continuously, with each line
containing the characters “Just wasting time”. Debugging
interrupt-driven software is very tricky. You can’t always single-
step to get to the point of a problem, because it may take a large
number of instructions before an interrupt occurs. In these cases
you’ll have to set breakpoints at key places (like the beginning of
the interrupt routine) and then single-step from there.

Project exercise 2

Extend the code from exercise 1 to handle interrupt-driven
input. The file iecho.s described in lab+homework assignment 10
contains a skeleton for the program. This program does output in
the same way as iout.s: there is a copy of the print procedure in
iecho.s and you should copy your interrupt routine from iout.s to
iecho.s. However, you’ll need to add buffered interrupt-driven input
to the program. It should work in the same fashion as the buffering
in iout.s except that the roles of the interrupt and background
routines are reversed: the interrupt routine will add characters to
the input buffer and a background routine getchar will remove
characters from the input buffer. You should do the following:

a. Define variables for an input buffer that are analogous to
the buffer, nextIn, and nextOut variables used for the output
buffer. The input buffer should only contain 8 characters
worth of space in contrast to the output buffer’s 32
characters. This will make it easier to test the “buffer-full”
condition below.

b. Extend your interrupt routine to also check the receiver. If
the receiver is ready, the interrupt routine should read the
input character from the Receiver Data Register, place it in
the input buffer, and advance the appropriate index
variable circularly. If the input buffer is already full, then
the interrupt routine should discard the character read
from the receiver: don’t add it to the input buffer.

c. Fill in the body of the procedure getchar. This procedure
takes no arguments and returns the next character from
the input buffer. If the input buffer is empty then getchar
should just check the input buffer indices over and over

CS 61C Fall 1998 MIPS Programming Project 2

2

again until eventually a character appears in the buffer.
(In a real system like Unix the operating system will run a
different user’s process while waiting for a character to
arrive.)

iecho.s already contains a main program to test both the
input and output. The main program is an infinite loop: it calls
getchar to wait for a character to be typed, then it places the
character in the middle of a string, then it calls print to output the
string. The result should be one line of output for each character
you type. For example, if you type the character “z”, the following
output line should appear:

Received character ’z’

If you type some other character, the same line should appear with
the “z” replaced by the character you typed. The program will not
stop until you type control-C.

Try typing characters rapidly to make sure your program
can handle the case where either the output buffer or the input
buffer fills up. For example, if you type two or three characters
rapidly the output buffer should fill up. However, no output should
be lost: the print procedure will simply have to spin for a bit, during
which time additional input characters will be buffered in the input
buffer. If you type eight or ten characters very rapidly then the
input buffer will fill up. When this happens your interrupt routine
will have to discard characters: the program should continue to
function but there won’t be any printout for the discarded input
characters you typed. Once the output catches up with the input
your program should accept input again just as if the input buffer
had never filled up. We’d suggest setting a stop at an instruction in
your interrupt routine that is only executed when an input
character is about to be discarded; this way you can be sure that
the code is being exercised. In a real system like Unix the input
buffer is much larger than 8 characters (256 characters is common
in Unix systems) so that it virtually never overflows.

Modify the driver program so that some work is done
between getting characters. For example, set up a register
initialized to zero and do an (unsigned) add to it in a tight loop.
Print out the value in decimal in that register along with the input
character, and then set that register to zero. SPIM is quite slow
compared to a “real” machine, so this is not a very good measure of
how much can be done between key clicks.

