
CS 61C Fall 1998 MIPS program 1

1

Administrative details

Submit a solution to this project by noon on Wednesday 9/30. The
project should be done with your partner(s). Everything you turn in
should include the names and lab section times of everyone in your
partnership. Put a file of program source code named mips1.s in a
directory named mips1 and submit it as you did for earlier assignments.
Any notes you wish to share with the readers can be placed in comments
in the program.

NOTE: THIS IS due BEFORE the C Project 2 which you may have
already looked at.

Project description

Write a MAL implementation of a string-formatting routine inspired by
the C function sprintf: int sprintf (char *outbuf, char *format, ...)

sprintf turns the characters that would be printed by a corresponding
printf into a string. (You may have already encountered C++’s string
streams, which provide a nicer version of this facility. Java’s string
buffers provide equivalent functionality. There is an especially elaborate
version of formatted output available in Lisp, a facility that I suspect
was put together in an attempt to mock all such formatting routines. It
includes Roman numerals, spelled-out numbers like "one trillion five
billion seventy-five", and the plural facility indicated below. You can
look on-line in chapter 22 of the standard book on Common Lisp if you
are curious about what other weird stuff might be included in format
strings. A network browser pointed to
http://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node1.html

will get you to this reference.) Your function must accept any number of
arguments, all passed on the stack as described below. The first
argument is the address of a character array into which your procedure
will put its results. The second argument is a format string in which
each occurrence of a percent sign ("%") indicates where one of the
subsequent arguments is to be substituted and how it is to be
formatted. The remaining arguments are values that are to be
converted to printable character form according to the format
instructions. sprintf returns the number of characters in its output
string (not including the null at the end).

Here are the format specifications you must implement. You might add
some others if you have time on your hands. We suggest you not do any
floating-point, because it is tedious:

%d convert integer to decimal

%x convert integer to hexadecimal

%c include one character argument in result

%s include string of characters in result

%% include a percent sign in result

%p (plural-normal): includes "s" if arg is 0 or >1 else nothing

%P (plural-y) includes "ies" if arg is 0 or >1 else includes "y"

Don’t implement width or precision modifiers (e.g., %6d).

The plurals modifiers can be used to conveniently print format strings
like "7 tries and 1 win" by sprintf ("%d tr%P and %d win%p",7,7,1,1).

Background

The procedure-calling convention we’ve been using up to now uses four
registers ($a0-$a3) for passing arguments down to procedures.

What if there are more than four arguments? That approach won’t work.
For the sprintf project you will use an alternative convention, in which
all arguments are passed on the stack, not in registers at all. Each
argument gets one word of stack space. (One of the versions of the swap
function you worked with in lab assignment 5 did this.) Suppose we are
trying to write in MIPS assembler a program like this:

int foo (int x, int y) {
 int a, b;
 ...
 a = y;
 ...
}
int main () {
 int c, d;
 ...
 foo (3, 4);
 ...
}

Procedure foo has two integer arguments. The space for those
arguments is allocated on the stack as part of the caller’s stack frame. In
other words, main, not foo, must allocate the space. The arguments go at
the bottom of main’s stack frame. That is, main will use 0($ sp) to hold
the argument x, and 4($sp) to hold the argument y. (The first argument
is always at the top of the stack-you have to be consistent about this so
that foo knows which argument is which.)
main:

addi $sp, $sp, -20 # five wds: $ra, c, d, arg x, arg y
sw $ra, 20($sp) # save $ra
...
addi $t0, $0, 3 # first argument value is 3
sw $t0, 0($sp) # save on stack
addi $t0, $0, 4 # second argument value is 4
sw $t0, 4($sp) # save on stack

CS 61C Fall 1998 MIPS program 1

2

jal foo
...
addi $sp, $sp, 20
jr $ra

foo:
addi $sp, $sp, -12 # three wds: $ra, a, b
sw $ra, 8($sp) # save $ra
...
lw $t0, 16($sp) # get argument y *** (see below)
sw $t0, 4($sp) # store as a
...
addi $sp, $sp, 12
jr $ra

*** This instruction is the key to understanding the stack method of
argument passing. Procedure foo is referring to a word of stack memory
that’s beyond the boundary of its own stack frame. (Its own frame
includes only the three words 0($sp), 4($sp), and 8($sp).) It thereby
refers to the stack frame of its caller. This is legal only to the extent that
the caller’s stack frame contains foo’s arguments! (foo doesn’t know
what’s where on the rest of its caller’s stack frame; it doesn’t even know
which procedure called it.)

For this project, although the arguments are passed on the stack, the
return value should still be in $v0.

Miscellaneous requirements

Your sprintf procedure should work with the following main program.
(Of course, it should not have any assumptions about this particular
main program built into it!)

 .data
buffer: .space 200
format: .asciiz "%d%% of all %ss say %d %c %x!\n"
str: .asciiz "American"
chrs: .asciiz " characters:\n"

.text
__start:

addi $sp, $sp, -32
la $t0, buffer # first arg: place to put formatted

version
sw $t0, 0($sp)
la $t0, format # second arg: format string
sw $t0, 4($sp)
addi $t0, $0, 87 # third arg: 87
sw $t0, 8($sp)
la $t0, str # fourth arg: "American"
sw $t0, 12($sp)
addi $t0, $0, -5002 # fifth arg: -5002
sw $t0, 16($sp)
addi $t0, $0, 60 # sixth arg: ’<’
sw $t0, 20($sp)

addi $t0, $0, 3840 # seventh arg: 0xf00
sw $t0, 24($sp)
jal sprintf
add $a0, $v0, $0 # should now contain 38
jal putint
puts chrs
puts buffer
addi $sp, $sp, 32
done

putint:
addi $sp, $sp, -8 # void Print (int value) {
sw $ra, 0($sp) # if (value/10 != 0) {
rem $t0, $a0, 10 # Print (value/10);
addi $t0, $t0, ’0’ # }
div $a0, $a0, 10 # print value%10;
beqz $a0, onedig # }
sw $t0, 4($sp)
jal putint
lw $t0, 4($sp)

onedig:
putc $t0
lw $ra, 0($sp)
addi $sp, $sp, 8
jr $ra

This program is online in ~cs61c/lib/spf-main.s.

P.S. The real MIPS argument passing convention is a combination of the
two we’ve used. Stack space is allocated for all the arguments, but the
first four arguments are passed in registers anyway; their stack space is
unused.

