
CS 61C Project 1: Disassembler Fall 1998

Administrative details

Submit a solution to this project by Noon,
September 16. Homework assignment 4 is
also due on this date.

The project should be done in partnerships of
two or three students. (Partners should be in
the same lab section.) Put your names and lab
section times on everything you turn in. Your
solution will be partly graded by computer;
put a file of program source code named
proj1.c or proj1.scm in a directory named proj1
and submit it as you did for earlier assign-
ments. We are indeed allowing you to write a
version in Scheme, although the rest of your
programming for this course will be in C or
MAL.

Project description

Complete a disassembler for MIPS machine
language by filling in code in one of the
framework files proj1framework.c, or for
Scheme, proj1framework.scm. A disassembler
reads a file containing binary MIPS
instructions and prints a listing of the cor-
responding TAL instructions. Just as an
assembler translates from assembly language
to machine language, your disassembler will
translate in the opposite direction. This is
rather like what spim gives if you ask it to
print the instructions in your program, except
without symbolic labels.

Your program should handle all instructions
listed in Appendix C of Goodman and Miller
except for instructions with opcode 16 or 17
(base 10). This includes a number of
instructions that you have not yet used in
programs. Don’t be too concerned; all you
have to do is print the instruction, not
understand how it works.

For memory accesses you should print
something like

lw $8, 248($29)

with a signed offset and a base register as in
the instruction. Immediate operands for
instructions that sign-extend the operand
should be printed in decimal; immediate
operands for instructions that do not sign-

extend should be printed in hexadecimal,
preceded by “0x”. Incorporate the program
counter in the address you produce for a
branch instruction; for example, given a
binary file corresponding to the program
main: bltz $4,label1
 add $8,$0,$0
 j label2
label1: ori $8,1
label2: ...

your output would look something like
00400000 04800002 bltz $4, 0x0040000c
00400004 00004020 add $8, $0, $0
00400008 08100004 j 0x00400010
0040000c 35080001 ori $8, $8, 0x1

00400010 ...

(Note: spim loads instructions starting at
0x00400000, not at zero! This matters because
of branch offsets.) For an instruction not in
the Goodman and Miller table, you should
just print the message “unrecognized
instruction”.

The name of the file containing the binary
machine language program should be
provided as a command line argument. The
program frameworks handle the processing of
the command line arguments (including a
debugging switch that you may wish to use)
as well as input from the file.

The file ~cs61c/lib/spim.dump may be used to
test your program. It contains binary machine
instructions corresponding to the spim source
file ~cs61c/lib/proj1test.s (but just the text
part, not the data part)*. If you want to make
your own test files, give spim the command
dump; this will create a file called spim.dump
in your working directory that corresponds to
whatever source file has just been loaded.
(The dump command is not available on the
Mac or PC versions of spim.) Make sure,
however, that the architecture on which you
generate a spim.dump file is the same as the

* proj1test.s is a MAL program that

contains assembler directives as well as
pseudoinstructions. The assembler directives
won’t appear in the spim.dump file at all; the
pseudoinstructions will appear as the
instruction sequences to which they were
translated by the assember.

CS 61C Project 1: Disassembler Fall 1998

one your disassembler is running on, since
the byte order on the little-endian Intel
computers is the reverse of that on the big-
endian DEC and HP workstations.

You shouldn’t need to change the existing
code in the framework files proj1framework.c
or proj1framework.scm. These programs use
the technique of data-directed programming
that you learned in CS 61A (see chapter 2 of
Abelson and Sussman). In C, this is done with
function pointers.

Note: The decode table in figure A.19 is
wrong in the 2nd printing of 2nd edition. The
3rd printing is OK. (If your book says lb is 32
decimal, it is correct)!.

