CS 61C

Administrative Details

This project is to be programmed in C. Your TAs
will help you with details on C file input and
output, memory allocation, and pointers, all of
which are required to complete this program. It is
due at Noon on Wednesday, October 14.

Storing Pictures

As you are well aware, pictures can be stored
inside computers in various ways. Even a text file
is a kind of picture. Other pictures are stored as
arrays of colored dots or pixels.

Optical scanners are becoming quite inexpensive
and allow you to read in pages of material, not as
text, but as a map of individual bits, a scan-line at
a time. Usually computers do not store this bit-
map directly, but use some kind of encoding that
is simultaneously more compact and faster to
process. We introduce a simple alternative to a
bit-map here. Imagine you have scanned a black-
and-white (or 2-level, no color, no gray) image
into the computer and have stored it (somewhat
clumsily) as a file of characters. Below you see a
small piece of such a scanned image, 67 by 115
pixels where we have printed the black pixels as
“@" and the white pixels as blank. If you stand
back, you might notice that it is the image of a
digit 3. This was, in reality, scanned in at 600
dots per inch by a page scanner. (How large was
it in real life?)

We want you to take a file with such information
and produce a Run Length Encoded (RLE)
version of the picture. In particular, the top line
(line 114) will store the information (25,40),
signifying that there is one segment of black dots
including all the pixel positions from 25 through
40. For more variety, row 105 has two black
segments, (10,24) and (38,47).

PART I

Your task is to take a "text picture" such as the
one shown on page 3, or available in the file
I'ib/rle.txt)andcompute the length of the
longest line (that is, the width), the number of
lines in the file, and a list of all the lines. Each
line in the file will be translated into a linked list
of start and stop pairs. To be more specific, for
the picture below you would produce a linked list
of 114 line structures. Internally, each line should
itself be a list of pairs (start, stop, *pair).

page 1

Project 2: RLE Representation

Fall 1998

Your program must be general enough to allow
for any size picture, though as a practical matter
you can assume all coordinates of pixels are
between 0 and 32,000. There can be very few or a
large number of RLE pairs on any line (16,000 if
32,000 bits are alternately black and white). You
must allocate structures only as needed.

You should be careful that your program works
for entirely blank lines, which are surprisingly
common in normal text. A blank line has no
pairs.

You must also write a ¢l ean_up program that
returns all the allocated structures from a run of
your program so that you can write a loop to read
in any number of text pictures without
permanently storing material in memory.

Your main program should call your program
rl e_readtoread in a file, and then

(a) print on st dout the height and width of the
picture.

(b) print the RLE encoding, line by line as:
line O: ((start,stop),(start,stop), ...)
line 1: ((start,stop),(start,stop), ...)

(c) print a count of how many RLE pairs were
needed for the picture.

(d) print a count of how many black pixels were
encoded.

You should provide, for debugging purposes, a
program to print the RLE encoding back as a text
picture.

PART 11

You should write in complete English sentences,
a comparison of the following ways of storing
black and white scanned pictures of text in a
computer. Assume that whole pages of size 8.5 by
11 inches are scanned at 600 dots per inch, and
you are scanning typical pages from a book. Come
up with a figure on how many black-white and
white-black transitions there are in a typical scan
line. Using this information, consider these
representations:



CS61C Project 2. RLE Representation Fall 1998

1. The text pictures as given, essentially a fixed
array of bytes.

2. The text pictures, but using 0,1 bits, 8 bits per
byte, instead of our clumsy @ and blank
representation.

3. The RLE version of a picture stored in memory.
(Be sure to specify how you are counting up the
storage.)

4. RLE pictures stored on disk in the following
way: First a 16-bit unsigned integer N, the count
of the number of RLE pairs in this "scan line".
Then 2*N 16-bit unsigned integers representing
the N start/stop pairs. Then the next line’'s count
(or end-of file).

(11- A) Write up your comparison based on
efficiency of storage in the computer memory or
(for 1,2,4) on disk.

(11-B) Comment on speed. Speculate (or if you
wish, you can even try some experiments to time
this). For representations 1,2,3: How efficiently
you can answer part (d): how many black pixels
are there in the picture?

Here's some data

the top line is 114, the last non-blank one is 0

Part 111 (optional)

You may, if you are curious, poke around on our
HP machines, and learn about many advanced
variations on static (non-animated) picture
encoding. The xv program on UNIX systems
provides GIF, PM, PBM, X11 bitmap, Postscript,
JPEG,; there is also a system called FlashPix.
Then there are video encodings such as MPEG.
Your favorite internet search engine may be
useful in learning more.

page 2



