
1

Slide 1

Computers for the PostPC Era

Dave Patterson
University of California at Berkeley

Patterson@cs.berkeley.edu

http://iram.cs.berkeley.edu/
http://iram.CS.Berkeley.EDU/istore/

March 2001

Slide 2

Perspective on Post-PC Era

• PostPC Era will be driven 
by 2 technologies:

1) Mobile Consumer Devices
– e.g., successor to 

cell phone, PDA,  
wearable computers

2) Infrastructure to Support such Devices
– e.g., successor to Big Fat Web Servers, 

Database Servers (Yahoo+, Amazon+, …)

Slide 3

IRAM Overview
• A processor architecture for 
embedded/portable systems running media 
applications
– Based on media processing and embedded DRAM
– Simple, scalable, and efficient
– Good compiler target

• Microprocessor prototype with
– 256-bit media processor, 12-14 MBytes DRAM
– >100 million transistors, ~280 mm2

– 2.5-3.2 Gops, 2W at 170-200 MHz
– Industrial strength compiler
– Implemented by 6 graduate students

Slide 4

The IRAM Team
• Hardware: 

– Joe Gebis, Christoforos Kozyrakis, Ioannis Mavroidis, 
Iakovos Mavroidis, Steve Pope, Sam Williams

• Software: 
– Alan Janin, David Judd, David Martin, Randi Thomas

• Advisors:
– David Patterson, Katherine Yelick

• Help from:
– IBM Microelectronics, MIPS Technologies, Cray, 

Avanti 

Slide 5

PostPC processor applications
• Multimedia processing; (“90% desktop cycles”)

– image/video processing, voice/pattern recognition, 3D 
graphics, animation, digital music, encryption

– narrow data types, streaming data, real-time response
• Embedded and portable systems

– notebooks, PDAs, digital cameras, cellular phones, 
pagers, game consoles, set-top boxes

– limited chip count, limited power/energy budget
• Significantly different environment from that 
of workstations and servers

• And larger: ‘99 32-bit microprocessor market 
386 million for Embedded, 160 million for PCs;
>500M cell phones in 2001

Slide 6

Motivation and Goals
• Processor features for PostPC systems:

– High performance on demand for multimedia without 
continuous high power consumption

– Tolerance to memory latency 
– Scalable
– Mature, HLL-based software model

• Design a prototype processor chip
– Complete proof of concept
– Explore detailed architecture and design issues
– Motivation for software development



2

Slide 7

Key Technologies
• Media processing

– High performance on demand for media processing
– Low power for issue and control logic
– Low design complexity
– Well understood compiler technology

• Embedded DRAM
– High bandwidth for media processing
– Low power/energy for memory accesses
– “System on a chip”

Slide 8

Potential Multimedia Architecture
• “New” model: VSIW=Very Short Instruction 
Word!
– Compact: Describe N operations with 1 short instruct.
– Predictable (real-time) perf. vs. statistical perf. 

(cache)
– Multimedia ready: choose N*64b, 2N*32b, 4N*16b
– Easy to get high performance; N operations:

» are independent
» use same functional unit
» access disjoint registers
» access registers in same order as previous instructions
» access contiguous memory words or known pattern
» hides memory latency (and any other latency)

– Compiler technology already developed, for sale!

Slide 9

Operation & Instruction Count: 
RISC v. “VSIW” Processor

(from F. Quintana, U. Barcelona.)

Spec92fp   Operations (M)
Instructions (M)

Program   RISC   VSIW   R / V     RISC    VSIW  R / V

swim256 115 95 1.1x 115 0.8 142x
hydro2d 58 40 1.4x 58 0.8 71x
nasa7 69 41 1.7x 69 2.2 31x
su2cor 51 35 1.4x 51 1.8 29x
tomcatv 15 10 1.4x 15 1.3 11x
wave5 27 25 1.1x 27 7.2 4x
mdljdp2 32 52 0.6x 32 15.8 2x
VSIW reduces ops by 1.2X, instructions by 20X! 

Slide 10

Revive Vector (VSIW) Architecture!

• Cost: ~ $1M each?
• Low latency, high BW 

memory system?
• Code density?
• Compilers?
• Vector Performance?
• Power/Energy?
• Scalar performance?

• Real-time?

• Limited to scientific 
applications?

• Single-chip CMOS MPU/IRAM
• Embedded DRAM

• Much smaller than VLIW/EPIC
• For sale, mature (>20 years)
• Easy scale speed with technology
• Parallel to save energy, keep perf
• Include modern, modest CPU 

⇒ OK scalar
• No caches, no speculation

⇒ repeatable speed as vary input 
• Multimedia apps vectorizable too: 

N*64b, 2N*32b, 4N*16b

Slide 11

Vector Instruction Set
• Complete load-store vector instruction set

– Uses the MIPS64™ ISA coprocessor 2 opcode space
» Ideas work with any core CPU: Arm, PowerPC, ...

– Architecture state
» 32 general-purpose vector registers
» 32 vector flag registers

– Data types supported in vectors:
» 64b, 32b, 16b (and 8b)

– 91 arithmetic and memory instructions
• Not specified by the ISA

– Maximum vector register length
– Functional unit datapath width

Slide 12

Vector IRAM ISA Summary

s.int
u.int
s.fp
d.fp

.v
.vv
.vs
.sv

s.int
u.int

unit stride
constant stride

indexed

load
store

Vector
ALU

Vector
Memory

Scalar MIPS64 scalar instruction set

alu op

8
16
32
64

•91 instructions
•660 opcodes

ALU operations:  
integer, floating-point, convert, logical, 
vector processing, flag processing



3

Slide 13

Support for DSP

• Support for fixed-point numbers, 
saturation, rounding modes

• Simple instructions for intra-register 
permutations for reductions and butterfly 
operations
– High performance for dot-products and FFT 

without the complexity of a random permutation

sat

Round

a

w

y

z

+
*

x

n/2

n/2

n

n

n

n

Slide 14

Compiler/OS Enhancements
• Compiler support

– Conditional execution of vector instruction
» Using the vector flag registers

– Support for software speculation of load operations
• Operating system support

– MMU-based virtual memory
– Restartable arithmetic exceptions
– Valid and dirty bits for vector registers
– Tracking of maximum vector length used

Slide 15

VIRAM Prototype Architecture

MIPS64™

5Kc Core

Instr. Cache 
(8KB)

Data Cache (8KB)

C
P

  I
F

FPU

Vector Register File (8KB)

Flag Register File (512B)

Flag Unit 0

Memory Unit

DMA
256b

Memory Crossbar

256b 256b

64b

DRAM0

(2MB)

DRAM1

(2MB)

DRAM7

(2MB)
…

SysAD IF

64b

Arithmetic

Unit 0

Arithmetic

Unit 1

Flag Unit 1

JTAG

JTAG IF

TLB

Slide 16

Architecture Details (1)
• MIPS64™ 5Kc core (200 MHz)

– Single-issue core with 6 stage pipeline
– 8 KByte, direct-map instruction and data caches
– Single-precision scalar FPU

• Vector unit (200 MHz)
– 8 KByte register file (32 64b elements per register)
– 4 functional units:

» 2 arithmetic (1 FP), 2 flag processing
» 256b datapaths per functional unit

– Memory unit
» 4 address generators for strided/indexed accesses
» 2-level TLB structure: 4-ported, 4-entry microTLB 

and single-ported, 32-entry main TLB
» Pipelined to sustain up to 64 pending memory accesses

Slide 17

Architecture Details (2)
• Main memory system

– No SRAM cache for the vector unit
– 8 2-MByte DRAM macros

» Single bank per macro, 2Kb page size
» 256b synchronous, non-multiplexed I/O interface
» 25ns random access time, 7.5ns page access time

– Crossbar interconnect
» 12.8 GBytes/s peak bandwidth per direction 

(load/store)
» Up to 5 independent addresses transmitted per 

cycle

• Off-chip interface
– 64b SysAD bus to external chip-set (100 MHz)
– 2 channel DMA engine Slide 18

Vector Unit Pipeline
• Single-issue, in-order pipeline
• Efficient for short vectors

– Pipelined instruction start-up
– Full support for instruction chaining, the vector 

equivalent of result forwarding
• Hides long DRAM access latency



4

Slide 19

Modular Vector Unit Design

• Single 64b “lane” design replicated 4 times
– Reduces design and testing time
– Provides a simple scaling model (up or down) without major control 

or datapath redesign
• Most instructions require only intra-lane interconnect

– Tolerance to interconnect delay scaling

256b

Control

64b

Xbar IF

Integer Datapath 
0

Flag Reg. Elements
& Datapaths

Vector Reg.
Elements

FP Datapath

Integer Datapath 
1

64b

Xbar IF

Integer Datapath 
0

Flag Reg. Elements
& Datapaths

Vector Reg.
Elements

FP Datapath

Integer Datapath 
1

64b

Xbar IF

Integer Datapath 
0

Flag Reg. Elements
& Datapaths

Vector Reg.
Elements

FP Datapath

Integer Datapath 
1

64b

Xbar IF

Integer Datapath 
0

Flag Reg. Elements
& Datapaths

Vector Reg.
Elements

FP Datapath

Integer Datapath 
1

Slide 20

Floorplan
• Technology: IBM SA-27E

– 0.18µm CMOS
– 6 metal layers (copper)

• 280 mm2 die area
– 18.72 x 15 mm
– ~200 mm2 for memory/logic
– DRAM: ~140 mm2

– Vector lanes: ~50 mm2

• Transistor count: >100M
• Power supply

– 1.2V for logic, 1.8V for DRAM 

15 mm

18
.7

 m
m

Slide 21

Alternative Floorplans (1)

“VIRAM-7MB”
4 lanes, 8 Mbytes
190 mm2

3.2 Gops at 200 
MHz
(32-bit ops)

“VIRAM-2Lanes”

2 lanes, 4 Mbytes

120 mm2

1.6 Gops at 200 MHz

“VIRAM-Lite”

1 lane, 2 Mbytes

60 mm2

0.8 Gops at 200 MHz

Slide 22

Power Consumption
• Power saving techniques

– Low power supply for logic (1.2 V)
» Possible because of the low clock rate (200 MHz)
» Wide vector datapaths provide high performance

– Extensive clock gating and datapath disabling
» Utilizing the explicit parallelism information of 

vector instructions and conditional execution
– Simple, single-issue, in-order pipeline

• Typical power consumption: 2.0 W
– MIPS core: 0.5 W 
– Vector unit: 1.0 W   (min ~0 W)
– DRAM: 0.2 W   (min ~0 W)
– Misc.: 0.3 W   (min ~0 W)

Slide 23

VIRAM Compiler

• Based on the Cray’s PDGCS production environment 
for vector supercomputers 

• Extensive vectorization and optimization capabilities 
including outer loop vectorization

• No need to use special libraries or variable types for 
vectorization

Optimizer

C

Fortran95

C++

Frontends Code Generators

Cray’s

PDGCS

T3D/T3E

SV2/VIRAM

C90/T90/SV1

Slide 24

Compiling Media Kernels on IRAM
• The compiler generates code for narrow data widths, 

e.g., 16-bit integer
• Compilation model is simple, more scalable (across 

generations) than MMX, VIS, etc.

0

500

1000

1500

2000

2500

3000

3500

M
F
LO

PS

colorspace composite FIR filter

1 lane

2 lane

4 lane

8 lane

– Strided and 
indexed 
loads/stores 
simpler than 
pack/unpack

– Maximum 
vector length is 
longer than 
datapath width 
(256 bits); all 
lane scalings 
done with single 
executable



5

Slide 25

Performance: Efficiency

89.4%Average

99.6%1.59 GFLOPS1.6 GFLOPSFP VM Multiply

93.7%3.00 GOPS3.2 GOPSInteger VM Multiply

98.7%3.16 GOPS3.2 GOPSImage Convolution

96.0%3.07 GOPS3.2 GOPSColor Conversion

48.4%3.10 GOPS6.4 GOPSiDCT

100%6.40 GOPS6.4 GOPSImage Composition

% of PeakSustainedPeak

What % of peak delivered by superscalar or VLIW designs?

50%? 25%?
Slide 26

Comparison of Matrix-Vector 
Multiplication Performance

• Double precision floating point
– compiled for VIRAM (note: chip only does single)
– hand- or Atlas-optimized for other machines

0

100

200

300

400

500

600

VIRA
M

4 row

VIRA
M

8 row

VIRA
M

4 col

VIRA
M

8 col

S
un U

ltra I

S
un U

ltra II

M
IPS

 12K

A
lpha 21164

A
lpha 21264

A
lpha 21264 1K

Pow
er PC 604e

Pow
er 3 630

As matrix size 
increases, 
performance:

– drops on cache-
based designs

– increases on 
vector designs

– but 64x64 
about 20% 
better on 
VIRAM

M
FL

O
PS

100x100 matrix

25X power,10X board area?

Slide 27

IRAM Statistics
• 2 Watts, 3 GOPS, Multimedia ready (including 
memory) AND can compile for it

• >100 Million transistors
– Intel @ 50M?

• Industrial strength compilers
• Tape out June 2001?
• 6 grad students
• Thanks to

– DARPA: fund effort
– IBM: donate masks, fab
– Avanti: donate CAD tools
– MIPS: donate MIPS core
– Cray: Compilers

Slide 28

IRAM Conclusion
• One thing to keep in mind

– Use the most efficient solution to exploit each level of 
parallelism

– Make the best solutions for each level work together
– Vector processing is very efficient for data level parallelism

MT? SMT? CMP?

VLIW? Superscalar?

VECTOR

Clusters? NUMA? SMP?

Data

Irregular ILP

Thread

Multi-programming

Levels of Parallelism Efficient Solution

Slide 29

Goals,Assumptions of last 15 years
• Goal #1: Improve performance
• Goal #2: Improve performance
• Goal #3: Improve cost-performance
• Assumptions

– Humans are perfect (they don’t make mistakes during 
installation, wiring, upgrade, maintenance or repair)

– Software will eventually be bug free 
(good programmers write bug-free code)

– Hardware MTBF is already very large (~100 years 
between failures), and will continue to increase

Slide 30

After 15 year improving Perfmance
• Availability is now a vital metric for servers!

– near-100% availability is becoming mandatory
» for e-commerce, enterprise apps, online services, ISPs

– but, service outages are frequent
» 65% of IT managers report that their websites were 

unavailable to customers over a 6-month period
• 25%: 3 or more outages

– outage costs are high
» NYC stockbroker: $6,500,000/hr
» EBay: $225,000/hr
» Amazon.com: $180,000/hr
» social effects: negative press, loss of customers who 

“click over” to competitor

Source: InternetWeek 4/3/2000



6

Slide 31

ISTORE as an Example of 
Storage System of the Future

• Availability, Maintainability, and Evolutionary 
growth key challenges for storage systems

– Maintenance Cost ~ >10X Purchase Cost per year, 
– Even 2X purchase cost for 1/2 maintenance cost wins
– AME improvement enables even larger systems

• ISTORE also cost-performance advantages
– Better space, power/cooling costs 

($ @ collocation site)
– More MIPS, cheaper MIPS, no bus bottlenecks
– Single interconnect, supports evolution of technology, 

single network technology to maintain/understand
• Match to future software storage services

– Future storage service software target clusters

Slide 32

Jim Gray: Trouble-Free Systems  
• Manager 

– Sets goals
– Sets policy
– Sets budget
– System does the rest.

• Everyone is a CIO 
(Chief Information Officer)

• Build a system 
– used by millions of people each day
– Administered and managed by a ½ time person.

» On hardware fault, order replacement part
» On overload, order additional equipment
» Upgrade hardware and software automatically.

“What Next?  
A dozen remaining IT problems”

Turing Award Lecture, 
FCRC, 

May 1999
Jim Gray
Microsoft

Slide 33

Hennessy: What Should the “New World” 
Focus Be?• Availability

– Both appliance & service
• Maintainability

– Two functions:
» Enhancing availability by preventing failure
» Ease of SW and HW upgrades

• Scalability
– Especially of service

• Cost
– per device and per service transaction

• Performance
– Remains important, but its not SPECint

“Back to the Future: 
Time to Return to Longstanding

Problems in Computer Systems?” 
Keynote address, 

FCRC, 
May 1999

John Hennessy
Stanford

Slide 34

The real scalability problems: AME
• Availability

– systems should continue to meet quality of service 
goals despite hardware and software failures

• Maintainability
– systems should require only minimal ongoing human 

administration, regardless of scale or complexity: 
Today, cost of maintenance = 10-100 cost of purchase

• Evolutionary Growth
– systems should evolve gracefully in terms of 

performance, maintainability, and availability as they 
are grown/upgraded/expanded

• These are problems at today’s scales, and will 
only get worse as systems grow

Slide 35

Lessons learned from Past Projects 
for which might help AME

• Know how to improve performance (and cost)
– Run system against workload, measure, innovate, repeat
– Benchmarks standardize workloads, lead to competition, 

evaluate alternatives; turns debates into numbers
• Major improvements in Hardware Reliability

– 1990 Disks 50,000 hour MTBF to 1,200,000 in 2000
– PC motherboards from 100,000 to 1,000,000 hours

• Yet Everything has an error rate
– Well designed and manufactured HW: >1% fail/year
– Well designed and tested SW: > 1 bug / 1000 lines
– Well trained, rested people doing routine tasks: >1%??
– Well run collocation site (e.g., Exodus): 

1 power failure per year, 1 network outage per year
Slide 36

Lessons learned from Past Projects 
for AME

• Maintenance of machines (with state) expensive
– ~10X cost of HW per year
– Stateless machines can be trivial to maintain (Hotmail)

• System administration primarily keeps system 
available
– System +  clever human = uptime
– Also plan for growth, fix performance bugs, do backup

• Software upgrades necessary, dangerous
– SW bugs fixed, new features added, but stability?
– Admins try to skip upgrades, be the last to use one



7

Slide 37

  Cause of System Crashes       

20%
10% 5%

50%

18%

5%

15%

53%

69%

15% 18% 21%

0%

20%

40%

60%

80%

100%

1985 1993 2001

Other: app, power,  
network failure

System management: 
actions + N/problem

Operating System
failure

Hardware failure

(est.)

Lessons learned from Past Projects 
for AME

• Failures due to people up, hard to measure
– VAX crashes ‘85, ‘93 [Murp95]; extrap. to ‘01
– HW/OS 70% in ‘85 to 28% in ‘93. In ‘01, 10%?
– How get administrator to admit mistake? (Heisenberg?)

Slide 38

Lessons learned from Past Projects 
for AME

• Components fail slowly
– Disks, Memory, Software give indications before fail
(Interfaces don’t pass along this information)

• Component performance varies
– Disk inner track vs. outer track: 1.8X Bandwidth
– Refresh of DRAM
– Daemon processes in nodes of cluster
– Error correction, retry on some storage accesses
– Maintenance events in switches
(Interfaces don’t pass along this information)

Slide 39

Lessons Learned from Other Fields
Common threads in accidents ~3 Mile Island
1.More multiple failures than you believe 

possible (like the birthday paradox?)
2. Operators cannot fully understand system 

because errors in implementation, and errors 
in measurement system.  Also complex 
interactions that are hard to predict

3.Tendency to blame operators afterwards (60-80%), 
but they must operate with missing, wrong information

4.The systems are never all working fully properly:    
bad indicator lights, sensors out, things in repair

5.Systems that kick in when trouble often flawed.  A 3 
Mile Island problem 2 valves left in the wrong position-
they were symmetric parts of a redundant system used 
only in an emergency.  The fact that the facility runs 
under normal operation masks these errors

Charles Perrow, Normal Accidents: Living with High Risk Technologies, Perseus Books, 1990
Slide 40

An Approach to AME 
"If a problem has no solution, it may not be a 
problem, but a fact, not be solved, but to be 
coped with over time." 

Shimon Peres, quoted in Rumsfeld's Rules
• Rather than aim towards (or expect) perfect 
hardware, software, & people, assume flaws

• Focus on Mean Time To Repair (MTTR), for 
whole system including people who maintain it
– Availability = MTTR / MTBF, so 

1/10th MTTR just as valuable as 10X MTBF
– Improving MTTR and hence availability should improve 

cost of administration/maintenance as well

Slide 41

An Approach to AME 

• 4 Parts to Time to Repair: 
1) Time to detect error, 
2) Time to pinpoint error 

(“root cause analysis”), 
3) Time to chose try several possible solutions 

fixes error, and 
4) Time to fix error

Slide 42

An Approach to AME 

1) Time to Detect errors
• Include interfaces that report 
faults/errors from components
– May allow application/system to predict/identify 

failures
• Periodic insertion of test inputs into 
system with known results vs. wait for 
failure reports



8

Slide 43

An Approach to AME 

2) Time to Pinpoint error 
• Error checking at edges of each 
component

• Design each component so it can be 
isolated and given test inputs to see if 
performs

• Keep history of failure symptoms/reasons 
and recent behavior (“root cause 
analysis”) 

Slide 44

An Approach to AME 
• 3) Time to try possible solutions: 
• History of errors/solutions
• Undo of any repair to allow trial of 
possible solutions
– Support of snapshots, transactions/logging 

fundamental in system
– Since disk capacity, bandwidth is fastest growing 

technology, use it to improve repair?
– Caching at many levels of systems provides 

redundancy that may be used for transactions?

Slide 45

An Approach to AME 
4) Time to fix error: 
• Create Repair benchmarks

– Competition leads to improved MTTR
• Include interfaces that allow Repair events 
to be systematically tested
– Predictable fault insertion allows debugging of 

repair as well as benchmarking MTTR
• Since people make mistakes during repair, 
“undo” for any maintenance event
– Replace wrong disk in RAID system on a failure; 

undo and replace bad disk without losing info
– Undo a software upgrade

Slide 46

Other Ideas for AME
• Use interfaces that report, expect performance 
variability vs. expect consistency?
– Especially when trying to repair
– Example: work allocated per server based on recent 

performance vs. based on expected performance
• Queued interfaces, flow control accommodate 
performance variability, failures?
– Example: queued communication vs. Barrier/Bulk 

Synchronous communication for distributed program

Slide 47

Overview towards AME
• New foundation to reduce MTTR

– Cope with fact that people, SW, HW fail (Peres)
– Transactions/snapshots to undo failures, bad repairs
– Repair benchmarks to evaluate MTTR innovations
– Interfaces to allow error insertion, input insertion, 

report module errors, report module performance
– Module I/O error checking and module isolation
– Log errors and solutions for root cause analysis, give 

ranking to potential solutions to problem problem 
• Significantly reducing MTTR (HW/SW/LW) 
=> Significantly increased availability

Slide 48

Benchmarking availability
• Results

– graphical depiction of quality of service behavior

Time

Q
o

S
 M

et
ri

c

0

– graph visually describes availability behavior
– can extract quantitative results for:

» degree of quality of service degradation
» repair time (measures maintainability)
» etc.

Repair Time

QoS degradation
injected

fault

normal behavior
(99% conf.)



9

Slide 49

Time (minutes)
0 10 20 30 40 50 60 70 80 90 100 110

80

100

120

140

160

0

1

2

Hits/sec
# failures tolerated

0 10 20 30 40 50 60 70 80 90 100 110

H
it

s 
p

er
 s

ec
o

n
d

190

195

200

205

210

215

220

#f
ai

lu
re

s 
to

le
ra

te
d

0

1

2

Reconstruction

Reconstruction

Example: single-fault in SW RAID

• Compares Linux and Solaris reconstruction
– Linux: minimal performance impact but longer window of 

vulnerability to second fault
– Solaris: large perf. impact but restores redundancy fast
– Windows: does not auto-reconstruct!

Linux

Solaris

Slide 50

Software RAID: QoS behavior
• Response to transient errors

– Linux is paranoid with respect to transients
» stops using affected disk (and reconstructs) on any

error, transient or not
– Solaris and Windows are more forgiving

» both ignore most benign/transient faults
– neither policy is ideal!

» need a hybrid that detects streams of transients

Time (minutes)
0 5 10 15 20 25 30 35 40 45

H
it

s 
p

er
 s

ec
o

n
d

130

135

140

145

150

155

160

#f
ai

lu
re

s 
to

le
ra

te
d

0

1

2

Hits/sec
# failures toleratedSolaris

Time (minutes)
0 10 20 30 40 50 60 70 80 90 100 110

H
it

s 
p

er
 s

ec
o

n
d

190

195

200

205

210

215

220

#f
ai

lu
re

s 
to

le
ra

te
d

0

1

2

Hits/sec
# failures tolerated

Reconstruction

Linux

Slide 51

Software RAID: QoS behavior
• Response to double-fault scenario

– a double fault results in unrecoverable loss of data on 
the RAID volume

– Linux: blocked access to volume
– Windows: blocked access to volume
– Solaris: silently continued using volume, delivering 

fabricated data to application!
» clear violation of RAID availability semantics
» resulted in corrupted file system and garbage data at 

the application level
» this undocumented policy has serious availability 

implications for applications

Slide 52

Software RAID: maintainability
• Human error rates

– subjects attempt to repair RAID disk failures
» by replacing broken disk and reconstructing data

– each subject repeated task several times
– data aggregated across 5 subjects

313335Total number of trials
MMMMMMMUser Error – User Recovered
MMMMUser Error – Intervention Required
MSystem ignored fatal input
MUnsuccessful Repair
MMMFatal Data Loss
LinuxSolarisWindowsError type

Slide 53

Example Server:
ISTORE-1 hardware platform

• 64-node x86-based cluster, 1.1TB storage
– cluster nodes are plug-and-play, intelligent, network-
attached storage “bricks”

»a single field-replaceable unit to simplify 
maintenance

– each node is a full x86 PC w/256MB DRAM, 18GB disk
– more CPU than NAS; fewer disks/node than cluster

Intelligent Disk “Brick”
Portable PC CPU: Pentium II/266 + DRAM

Redundant NICs (4 100 Mb/s links)
Diagnostic Processor 

Disk

Half-height canister

ISTORE Chassis
64 nodes, 8 per tray
2 levels of switches
•20 100 Mbit/s
•2 1 Gbit/s
Environment Monitoring:
UPS, redundant PS,
fans, heat and vibration 
sensors...

Slide 54

ISTORE Brick Node
• Pentium-II/266MHz
• 18 GB SCSI (or IDE) disk
• 4x100Mb Ethernet,256 MB DRAM
• m68k diagnostic processor & CAN diagnostic network
• Includes Temperature, Motion Sensors, Fault injection, 

network isolation
• Packaged in standard half-height RAID array canister



10

Slide 55

ISTORE Cost Performance
• MIPS: Abundant Cheap, Low Power

– 1 Processor per disk, amortizing disk enclosure, power 
supply, cabling, cooling vs. 1 CPU per 8 disks

– Embedded processors 2/3 perf, 1/5 cost, power?
• No Bus Bottleneck

– 1 CPU, 1 memory bus, 1 I/O bus, 1 controller, 1 disk 
vs. 1-2 CPUs, 1 memory bus, 1-2 I/O buses, 2-4 
controllers, 4-16 disks 

• Co-location sites (e.g., Exodus) offer space, 
expandable bandwidth, stable power
– Charge ~$1000/month per rack ( ~ 10 sq. ft.). 

+ $200 per extra 20 amp circuit
⇒⇒ Density-optimized systems (size, cooling) vs. 
SPEC optimized systems @ 100s watts

Slide 56

Common Question: RAID?
• Switched Network sufficient for all types of 
communication, including redundancy
– Hierarchy of buses is generally not superior to 

switched network
• Veritas, others offer software RAID 5 and 
software Mirroring (RAID 1)

• Another use of processor per disk

Slide 57

Initial Applications
• Future: services over WWW
• Initial ISTORE apps targets are services

– information retrieval for multimedia data (XML 
storage?)

» self-scrubbing data structures, structuring 
performance-robust distributed computation

» Example: home video server using XML interfaces
– email service?

» statistical identification of normal behavior
» Undo of upgrade

• ISTORE-1 is not one super-system that 
demonstrates all techniques, but an example
– Initially provide middleware, library to support AME

Slide 58

A glimpse into the future?
• System-on-a-chip enables computer, memory, 
redundant network interfaces without 
significantly increasing size of disk

• ISTORE HW in 5 years:

– 2006 brick: System On a Chip 
integrated with MicroDrive 

» 9GB disk, 50 MB/sec from disk
» connected via crossbar switch
» From brick to “domino”

– If low power, 10,000 nodes fit 
into one rack! 

• O(10,000) scale is our 
ultimate design point

Slide 59

Conclusion #1: ISTORE as 
Storage System of the Future

• Availability, Maintainability, and Evolutionary 
growth key challenges for storage systems

– Maintenance Cost ~ 10X Purchase Cost per year, so 
over 5 year product life, ~ 95% of cost of ownership

– Even 2X purchase cost for 1/2 maintenance cost wins
– AME improvement enables even larger systems

• ISTORE has cost-performance advantages
– Better space, power/cooling costs ($@colocation site)
– More MIPS, cheaper MIPS, no bus bottlenecks
– Single interconnect, supports evolution of technology, 

single network technology to maintain/understand
• Match to future software storage services

– Future storage service software target clusters

Slide 60

Conclusion #2: 
IRAM and ISTORE Vision

• Integrated processor in memory provides 
efficient access to high memory bandwidth

• Two “Post-PC” applications:
– IRAM: Single chip system for 
embedded and portable 
applications

» Target media processing 
(speech, images, video, audio)

– ISTORE: Building block when 
combined with disk for 
storage and retrieval servers

» Up to 10K nodes in one rack
» Non-IRAM prototype addresses 

key scaling issues: availability, 
manageability, evolution

Photo from Itsy, Inc.



11

Slide 61

Questions?

Contact us if you’re interested:
email: patterson@cs.berkeley.edu

http://iram.cs.berkeley.edu/
http://iram.cs.berkeley.edu/istore

“If it’s important, how can you say if it’s 
impossible if you don’t try?”

Jean Morreau, 
a founder of European Union

Slide 62

ISTORE-1 Brick
• Webster’s Dictionary: 
“brick: a handy-sized unit of building or 
paving material typically being rectangular and 
about 2 1/4 x 3 3/4 x 8 inches”

• ISTORE-1 Brick: 2 x 4 x 11 inches (1.3x)
– Single physical form factor, fixed cooling required, 

compatible network interface to simplify physical 
maintenance, scaling over time

– Contents should evolve over time: contains most cost 
effective MPU, DRAM, disk, compatible NI

– If useful, could have special bricks (e.g., DRAM rich, 
disk poor)

– Suggests network that will last, evolve: Ethernet

Slide 63

Embedded DRAM in the News
• Sony ISSCC 2001
• 462-mm2 chip with 256-Mbit of on-chip 
embedded DRAM (8X Emotion engine in PS/2)
– 0.18-micron design rules                                
– 21.7 x 21.3-mm and contains 287.5 million transistors 

• 2,000-bit internal buses can deliver 48 
gigabytes per second of bandwidth

• Demonstrated at Siggraph 2000
• Used in multiprocessor graphics system?

Slide 64

Cost of Bandwidth, Safety
• Network bandwidth cost is significant

– 1000 Mbit/sec/month => $6,000,000/year
• Security will increase in importance for 
storage service providers

• XML => server format conversion for gadgets
=> Storage systems of future need greater 
computing ability
– Compress to reduce cost of network bandwidth 3X; 

save $4M/year?
– Encrypt to protect information in transit for B2B

=> Increasing processing/disk for future 
storage apps

Slide 65

Disk Limit: Bus Hierarchy
CPU Memory 

bus

Memory

External
I/O 
bus

(SCSI)

(PCI)

Internal
I/O bus

• Data rate vs. Disk rate
– SCSI: Ultra3 (80 MHz), 

Wide (16 bit): 160 MByte/s
– FC-AL: 1 Gbit/s = 125 MByte/s

n Use only 50% of a bus
m Command overhead (~ 20%)
m Queuing Theory (< 70%)

(15 disks/bus)

Storage Area
Network

(FC-AL)

Server

Disk
Array

Mem

RAID bus

Slide 66

Vector Vs. SIMD

Simple scalar loads; multiple 
instructions needed to load a 
vector

Strided and indexed vector load 
and store instructions

Short vectors must be aligned in 
memory; otherwise multiple 
instructions needed to load them

No alignment restriction for 
vectors; only individual elements 
must be aligned to their width

Wide datapaths can be used either 
after changing the ISA or after 
changing the issue width

Wide datapaths can be used 
without changes in ISA or issue 
logic redesign

One instruction keeps one 
datapath busy for one cycle

One instruction keeps multiple 
datapaths busy for many cycles

SIMDVector



12

Slide 67

Performance: FFT (1)

FFT (Floating-point, 1024 points)

36

16.8
25

69

92

124.3

0

40

80

120

160

E
xe

cu
ti

o
n

 T
im

e 
(u

se
c)

VIRAM

Pathfinder-2

Wildstar

TigerSHARC

ADSP-21160

TMS320C6701

Slide 68

Performance: FFT (2)

FFT (Fixed-point, 256 points)

7.2 8.1 9 7.3

87

151

0

40

80

120

160

E
xe

cu
ti

o
n

 T
im

e 
(u

se
c)

VIRAM

Pathfinder-1

Carmel

TigerSHARC

PPC 604E

Pentium

Slide 69

Vector Vs. SIMD: Example
• Simple example: conversion from RGB to YUV

Y = [( 9798*R + 19235*G + 3736*B) / 32768]

U = [(-4784*R - 9437*G + 4221*B) / 32768] + 128 

V = [(20218*R – 16941*G – 3277*B) / 32768] + 128

Slide 70

VIRAM Code (22 instrs, 16 arith)
RGBtoYUV:

vlds.u.b    r_v,  r_addr, stride3, addr_inc    # load R

vlds.u.b    g_v,  g_addr, stride3, addr_inc    # load G

vlds.u.b    b_v,  b_addr, stride3, addr_inc    # load B

xlmul.u.sv  o1_v, t0_s,   r_v                  # calculate Y

xlmadd.u.sv o1_v, t1_s,   g_v

xlmadd.u.sv o1_v, t2_s,   b_v

vsra.vs     o1_v, o1_v,   s_s

xlmul.u.sv  o2_v, t3_s,   r_v                  # calculate U

xlmadd.u.sv o2_v, t4_s,   g_v

xlmadd.u.sv o2_v, t5_s,   b_v

vsra.vs     o2_v, o2_v,   s_s

vadd.sv     o2_v, a_s,    o2_v

xlmul.u.sv  o3_v, t6_s,   r_v                  # calculate V

xlmadd.u.sv o3_v, t7_s,   g_v

xlmadd.u.sv o3_v, t8_s,   b_v

vsra.vs     o3_v, o3_v,   s_s

vadd.sv     o3_v, a_s,    o3_v

vsts.b      o1_v, y_addr, stride3, addr_inc    # store Y

vsts.b      o2_v, u_addr, stride3, addr_inc    # store U

vsts.b      o3_v, v_addr, stride3, addr_inc    # store V

subu        pix_s,pix_s,  len_s

bnez        pix_s, RGBtoYUV

Slide 71

MMX Code (part 1)
RGBtoYUV:

movq    mm1,    [eax]

pxor    mm6,    mm6

movq    mm0,    mm1

psrlq   mm1,    16

punpcklbw       mm0,    ZEROS

movq    mm7,    mm1

punpcklbw       mm1,    ZEROS

movq    mm2,    mm0

pmaddwd mm0,    YR0GR

movq    mm3,    mm1

pmaddwd mm1,    YBG0B

movq    mm4,    mm2

pmaddwd mm2,    UR0GR

movq    mm5,    mm3

pmaddwd mm3,    UBG0B

punpckhbw       mm7,    mm6;

pmaddwd mm4,    VR0GR

paddd   mm0,    mm1

pmaddwd mm5,    VBG0B

movq    mm1,    8[eax]

paddd   mm2,    mm3

movq    mm6,    mm1

paddd   mm4,    mm5

movq    mm5,    mm1

psllq   mm1,    32

paddd   mm1,    mm7

punpckhbw       mm6,    ZEROS

movq    mm3,    mm1

pmaddwd mm1,    YR0GR

movq    mm7,    mm5

pmaddwd mm5,    YBG0B

psrad   mm0,    15

movq    TEMP0,  mm6

movq    mm6,    mm3

pmaddwd mm6,    UR0GR

psrad   mm2,    15

paddd   mm1,    mm5

movq    mm5,    mm7

pmaddwd mm7,    UBG0B

psrad   mm1,    15

pmaddwd mm3,    VR0GR

packssdw        mm0,    mm1

pmaddwd mm5,    VBG0B

psrad   mm4,    15

movq    mm1,    16[eax]

Slide 72

MMX Code (part 2)
paddd   mm6,    mm7

movq    mm7,    mm1

psrad   mm6,    15

paddd   mm3,    mm5

psllq   mm7,    16

movq    mm5,    mm7

psrad   mm3,    15

movq    TEMPY,  mm0

packssdw        mm2,    mm6

movq    mm0,    TEMP0

punpcklbw       mm7,    ZEROS

movq    mm6,    mm0

movq    TEMPU,  mm2

psrlq   mm0,    32

paddw   mm7,    mm0

movq    mm2,    mm6

pmaddwd mm2,    YR0GR

movq    mm0,    mm7

pmaddwd mm7,    YBG0B

packssdw        mm4,    mm3

add     eax,    24

add     edx,    8

movq    TEMPV,  mm4

movq    mm4,    mm6

pmaddwd mm6,    UR0GR

movq    mm3,    mm0

pmaddwd mm0,    UBG0B

paddd   mm2,    mm7

pmaddwd         mm4,

pxor    mm7,    mm7

pmaddwd mm3,    VBG0B

punpckhbw       mm1,

paddd   mm0,    mm6

movq    mm6,    mm1

pmaddwd mm6,    YBG0B

punpckhbw       mm5,

movq    mm7,    mm5

paddd   mm3,    mm4

pmaddwd mm5,    YR0GR

movq    mm4,    mm1

pmaddwd mm4,    UBG0B

psrad   mm0,    15

paddd   mm0,    OFFSETW

psrad   mm2,    15

paddd   mm6,    mm5

movq    mm5,    mm7



13

Slide 73

MMX Code (pt. 3: 121 instrs, 40 
arith)

pmaddwd mm7,    UR0GR

psrad   mm3,    15

pmaddwd mm1,    VBG0B

psrad   mm6,    15

paddd   mm4,    OFFSETD

packssdw        mm2,    mm6

pmaddwd mm5,    VR0GR

paddd   mm7,    mm4

psrad   mm7,    15

movq    mm6,    TEMPY

packssdw        mm0,    mm7

movq    mm4,    TEMPU

packuswb        mm6,    mm2

movq    mm7,    OFFSETB

paddd   mm1,    mm5

paddw   mm4,    mm7

psrad   mm1,    15

movq    [ebx],  mm6

packuswb        mm4,

movq    mm5,    TEMPV

packssdw        mm3,    mm4

paddw   mm5,    mm7

paddw   mm3,    mm7

movq    [ecx],  mm4

packuswb        mm5,    mm3

add     ebx,    8

add     ecx,    8

movq    [edx],  mm5

dec     edi

jnz     RGBtoYUV

Slide 74

Clusters and TPC Software 8/’00
• TPC-C: 6 of Top 10 performance are 
clusters, including all of Top 5; 4 SMPs

• TPC-H: SMPs and NUMAs
– 100 GB  All SMPs (4-8 CPUs)
– 300 GB  All NUMAs (IBM/Compaq/HP 32-64 CPUs)

• TPC-R: All are clusters 
– 1000 GB :NCR World Mark 5200

• TPC-W: All web servers are clusters (IBM)

Slide 75

Clusters and TPC-C Benchmark
Top 10 TPC-C Performance (Aug. 2000) Ktpm
1. Netfinity 8500R c/s Cluster 441
2. ProLiant X700-96P Cluster 262
3. ProLiant X550-96P Cluster 230
4. ProLiant X700-64P Cluster 180
5. ProLiant X550-64P Cluster 162
6. AS/400e 840-2420 SMP 152
7. Fujitsu GP7000F Model 2000 SMP 139
8. RISC S/6000 Ent. S80 SMP 139
9.   Bull Escala EPC 2400 c/s SMP 136
10. Enterprise 6500 Cluster Cluster 135 Slide 76

Cost of Storage System v. Disks
• Examples show cost of way we build current 
systems (2 networks, many buses, CPU, …)

Disks Disks
Date Cost Main. Disks /CPU 

/IObus
– NCR WM: 10/97 $8.3M -- 1312 10.2 5.0
– Sun 10k: 3/98 $5.2M -- 668 10.4 7.0
– Sun 10k: 9/99 $6.2M $2.1M 1732 27.0 12.0
– IBM Netinf: 7/00 $7.8M $1.8M 7040 55.0 9.0
=>Too complicated, too heterogenous

• And Data Bases are often CPU or bus bound! 
– ISTORE disks per CPU: 1.0
– ISTORE disks per I/O bus: 1.0

Slide 77

Common Question: Why Not Vary 
Number of Processors and Disks?

• Argument: if can vary numbers of each to 
match application, more cost-effective solution?

• Alternative Model 1: Dual Nodes + E-switches
– P-node: Processor, Memory, 2 Ethernet NICs
– D-node: Disk, 2 Ethernet NICs

• Response
– As D-nodes running network protocol, still need 

processor and memory, just smaller; how much save?
– Saves processors/disks, costs more NICs/switches: 

N ISTORE nodes vs. N/2 P-nodes + N D-nodes
– Isn't ISTORE-2 a  good HW prototype for this model? 

Only run the communication protocol on N nodes, run 
the full app and OS on N/2

Slide 78

Common Question: Why Not Vary 
Number of Processors and Disks?

• Alternative Model 2: N Disks/node
– Processor, Memory, N disks, 2 Ethernet NICs

• Response
– Potential I/O bus bottleneck as disk BW grows
– 2.5" ATA drives are limited to 2/4 disks per ATA bus
– How does a research project pick N? What’s natural? 
– Is there sufficient processing power and memory to run 

the AME monitoring and testing tasks as well as the 
application requirements?

– Isn't ISTORE-2 a good HW prototype for this model? 
Software can act as simple disk interface over network 
and run a standard disk protocol,  and then run that on 
N nodes per apps/OS node. Plenty of Network BW 
available in redundant switches



14

Slide 79

SCSI v. IDE $/GB

• Prices from PC Magazine, 1995-2000

$-

$150

$300

$450

P
ri

ce
 p

er
 g

ig
ab

yt
e

-

0.50

1.00

1.50

2.00

2.50

3.00

P
ri

ce
 r

at
io

 p
er

 g
ig

ab
ye

: 
SC

SI
 v

. 
ID

E

SCSI

IDE

Ratio SCSI/IDE

Slide 80

Grove’s Warning

“...a strategic inflection point is a time in 
the life of a business when its fundamentals 
are about to change. ... Let's not mince 
words: A strategic inflection point can be 
deadly when unattended to. Companies that 
begin a decline as a result of its changes 
rarely recover their previous greatness.”

Only the Paranoid Survive, Andrew S. Grove, 
1996

Slide 81

Availability benchmark methodology
• Goal: quantify variation in QoS metrics as 
events occur that affect system availability

• Leverage existing performance benchmarks
– to generate fair workloads
– to measure & trace quality of service metrics

• Use fault injection to compromise system
– hardware faults (disk, memory, network, power)
– software faults (corrupt input, driver error returns)
– maintenance events (repairs, SW/HW upgrades)

• Examine single-fault and multi-fault workloads
– the availability analogues of performance micro- and 

macro-benchmarks

Slide 82

Time

P
er

fo
rm

an
ce }normal behavior

(99% conf)

injected
disk failure reconstruction

0

• Results are most accessible graphically
– plot change in QoS metrics over time
– compare to “normal” behavior?

» 99% confidence intervals calculated from no-fault runs

Benchmark Availability?
Methodology for reporting results

Slide 83

ISTORE-2 Improvements 
(1): Operator Aids

• Every Field Replaceable Unit (FRU) has a 
machine readable unique identifier (UID)
=> introspective software determines if storage system 

is wired properly initially, evolved properly
» Can a switch failure disconnect both copies of data?
» Can a power supply failure disable mirrored disks?

– Computer checks for wiring errors, informs operator 
vs. management blaming operator upon failure

– Leverage IBM Vital Product Data (VPD) technology?
• External Status Lights per Brick

– Disk active, Ethernet port active, Redundant HW 
active, HW failure, Software hickup, ...

Slide 84

ISTORE-2 Improvements 
(2): RAIN

• ISTORE-1 switches 1/3 of space, power, cost, 
and for just 80 nodes!

• Redundant Array of Inexpensive Disks (RAID): 
replace large, expensive disks by many small, 
inexpensive disks, saving volume, power, cost

• Redundant Array of Inexpensive Network  
switches: replace large, expensive switches by 
many small, inexpensive switches, saving volume, 
power, cost?
– ISTORE-1: Replace 2 16-port 1-Gbit switches by fat 

tree of 8 8-port switches, or 24 4-port switches?



15

Slide 85

ISTORE-2 Improvements 
(3): System Management Language

• Define high-level, intuitive, non-abstract 
system management language
– Goal: Large Systems managed by part-time operators!

• Language interpretive for observation, but 
compiled, error-checked for config. changes

• Examples of tasks which should be made easy
– Set alarm if any disk is more than 70% full
– Backup all data in the Philippines site to Colorado site
– Split system into protected subregions
– Discover & display  present routing topology 
– Show correlation between brick temps and crashes

Slide 86

ISTORE-2 Improvements 
(4): Options to Investigate

• TCP/IP Hardware Accelerator
– Class 4: Hardware State Machine
– ~10 microsecond latency, full Gbit bandwidth +

full TCP/IP functionality, TCP/IP APIs
• Ethernet Sourced in Memory Controller 
(North Bridge)

• Shelf of bricks on researchers’ desktops?
• SCSI over TCP Support
• Integrated UPS

Slide 87

Why is ISTORE-2 a big machine?
• ISTORE is all about managing truly large 
systems - one needs a large system to discover 
the real issues and opportunities
– target  1k nodes in UCB CS, 1k nodes in IBM ARC 

• Large systems attract real applications
– Without real applications CS research runs open-loop

• The geographical separation of ISTORE-2 
sub-clusters exposes many important issues
– the network is NOT transparent
– networked systems fail differently, often insidiously

Slide 88

UCB ISTORE Continued Funding
• New NSF Information Technology Research, 
larger funding (>$500K/yr)

• 1400 Letters
• 920 Preproposals
• 134 Full Proposals Encouraged
• 240 Full Proposals Submitted
• 60 Funded
• We are 1 of the 60; starts Sept 2000

Slide 89

NSF ITR Collaboration with Mills
• Mills: small undergraduate liberal arts college 
for women; 8 miles south of Berkeley
– Mills students can take 1 course/semester at Berkeley
– Hourly shuttle between campuses
– Mills also has re-entry MS program for older students

• To increase women in Computer Science 
(especially African-American women):
– Offer undergraduate research seminar at Mills
– Mills Prof leads; Berkeley faculty, grad students help 
– Mills Prof goes to Berkeley for meetings, sabbatical
– Goal: 2X-3X increase in Mills CS+alumnae to grad school

• want to help? Helping teach, mentor ...

Slide 90

Deriving ISTORE
• Implication of Ethernet network? 
• Need computer associated with disk to handle 
network protocol stack

• Blue Gene I/O using a processor per disk?
• Compare checkpoints across multiple snapshots 
to reduce disks storage: 2X? 4X? 6X?
– Reduce cost of purchase, cost of maintenance, size

• Anticipate disk failures: 25000 =>=> 2 fail/day
– Record history of sensor logs/disk
– History allows 95% error prediction > 1 day in advance

• Check accuracy of snapshot? (Assertion tests)
• Help with maintenance: despite hope, likely 
many here will run it; expensive SysAdmin!


