A simplified proof of a Lee-Yang type theorem

PIYUSH SRIVASTAVA∗ MARIO SZEGEDY†

July 24, 2014

In this short note, we give a simple proof of a Lee-Yang type theorem which appeared in [SS14]. Given an undirected graph $G = (V, E)$, we denote the partition function of the (ferromagnetic) Ising model as

$$Z(G, \beta, z) := \sum_{\sigma : V \rightarrow \{+, -\}} \beta^{d(\sigma)} \prod_{v : \sigma(v) = +} z_v,$$

where $d(\sigma)$ is the number of edges $e = \{i, j\}$ such that $\sigma(i) \neq \sigma(j)$, and $0 < \beta < 1$ is the edge activity. The arguments z_i of the partition function are called vertex activities or fugacities. We then define the operator D_G

$$D_G = \sum_{v \in V} z_v \frac{\partial}{\partial z_v},$$

which derives its importance from the fact that the mean magnetization $M(G, \beta, z)$ of the Ising model on G for a given setting of the edge activity and the fugacities can be written as

$$M(G, \beta, z) = \frac{D_G Z(G, \beta, z)}{Z(G, \beta, z)}.$$

The theorem whose proof in this note we simplify is the following:

Theorem 1 ([SS14]). Let $G = (V, E)$ be a connected undirected graph on n vertices, and assume $0 < \beta < 1$. Then $D_G Z(G, \beta, z) \neq 0$ if for all $v \in V$, z_v is a complex number with absolute value one.

In [SS14], the theorem was proved using a sequence of Asano-type contractions [Asa70], a technique which originated in Asano’s proof of the Lee-Yang theorem [LY52]. The proof we present here completely eschews the Asano contraction in favor of a simpler analytic argument. In our proof we need the following version of the Lee-Yang theorem:

Theorem 2 ([LY52, Asa70]). Let $G = (V, E)$ be a connected undirected graph on n vertices, and suppose $0 < \beta < 1$. Then $Z(G, \beta, z) \neq 0$ if $|z_v| \geq 1$ for all $v \in V$ and in addition $|z_u| > 1$ for some $u \in V$. By symmetry, the conclusion also holds when $|z_v| \leq 1$ for all $v \in V$ and in addition $|z_u| < 1$ for some $u \in V$.

Observe that given any vertex $u \in V$, we can decompose the partition function as

$$Z(G, \beta, z) = Az_u + B$$

$$A = A(z) = \beta^{\deg(u)} Z(G - \{u\}, \beta, z')$$

$$B = B(z) = Z(G - \{u\}, \beta, z'')$$

where $z' = \left\{ \begin{array}{ll} z_w & \text{when } w \not\sim u \text{ in } G \\ z_w / \beta & \text{when } w \sim u \text{ in } G \end{array} \right.$

$$z'' = \left\{ \begin{array}{ll} z_w & \text{when } w \not\sim u \text{ in } G \\ z_w / \beta & \text{when } w \sim u \text{ in } G \end{array} \right.$$
Neither \(z'\) nor \(z''\) contains \(z_u\) and \(G - \{u\}\) denotes the graph that we obtain from \(G\) by leaving out node \(u\). The Lee-Yang theorem has the following simple consequence, which was also used in [SS14].

Lemma 3. If \(G\) is connected, \(0 < \beta < 1\), and all vertex activities have absolute value 1, then \(A\) of eq. (2) is not zero.

Proof. Since \(\beta \neq 0\), it is sufficient to prove that \(Z(G - \{u\}, \beta, z') \neq 0\). We observe that the latter is a product of the partition functions of the connected components of \(G - \{u\}\), and furthermore, any neighbor \(w\) of \(u\) in \(G\) in each such component has a vertex activity \(z'_w = z_w/\beta\) with \(|z_w/\beta| = |z_w|/\beta = 1/\beta > 1\). Due to \(G\) being connected, we find such a neighbor \(w\) of \(u\) in all components of \(G - \{u\}\). We apply Theorem 2 to each connected component of \(G - \{u\}\) separately to show that none of the factors is zero.

Proof of Theorem 1. Let \(G\) and \(\beta\) be as in the hypotheses of the theorem. Suppose now that there exists a point \(z^0\) such that \(|z^0_v| = 1\) for all \(v\), and \(D_G Z(G, \beta, z^0) = 0\). We will show that this leads to a contradiction. For our subsequent argument it will be helpful to define the univariate polynomial

\[
 f(t) := Z_G(G, \beta, tz^0) \quad \text{where} \quad tz^0 = (t_{z^0_v})_{v \in V}
\]

Lemma 4. \(Z(G, \beta, z^0) = 0\)

Proof. A comparison of the individual terms gives that \(f'(1) = D_G Z(G, \beta, z^0)\), which is zero by our assumption. From the Lee-Yang theorem we obtain that \(f(t) \neq 0\) when \(|t| \neq 1\), so all zeros of \(f\) must lie on the unit circle. This together with the Gauss-Lucas lemma implies that the derivative of \(f\) cannot disappear on a point of the unit circle unless \(f\) disappears at the same point. Thus, since \(f'(1) = 0\), we get that \(Z(G, \beta, z^0) = f(1) = 0\).

We have that \(f(1 - \epsilon) = f(1) - \epsilon f'(1) \pm O(\epsilon^2) = \pm O(\epsilon^2)\), since the first two terms are zero. Let \(e_u\) be the vertex activity (fugacity) vector with all zero vertex activities except at vertex \(u\) that has activity 1. The key to the proof is to consider the linear perturbation

\[
 Z(G, \beta, (1 - \epsilon)z^0 + \tau e_u)
\]

We show that (3) disappears for some \(\tau \in \mathbb{C}, |\tau| < \epsilon\), in contradiction with the Lee-Yang theorem, since under this assumption all components of \((1 - \epsilon)z^0 + \tau e_u\) have absolute value less than one. By (1):

\[
 Z(G, \beta, (1 - \epsilon)z^0 + \tau e_u) = Z(G, \beta, (1 - \epsilon)z^0) + A((1 - \epsilon)z^0)\tau = \mu_\epsilon + A(z^0)\tau + \nu_\epsilon \tau
\]

Here \(\mu_\epsilon = f(1 - \epsilon) = \pm O(\epsilon^2)\), and \(\nu_\epsilon = A((1 - \epsilon)z^0) - A(z^0) = \pm O(\epsilon)\) by the analyticity of the function \(A\). Recall that \(A(z^0) \neq 0\) by Lemma 3. Then expression (3) disappears at \(\tau = -\frac{\mu_\epsilon}{A(z^0) + \nu_\epsilon}\), and also \(|\tau| < \epsilon\) if \(\epsilon\) is sufficiently small.

1 **Acknowledgements**

The authors thank the Simons Institute (the Quantum Hamiltonian Complexity program). The first author was supported by the Berkeley Fellowship for Graduate Study and NSF grant CCF-1016896 and the second by NSF Grant No. CCF-0832787, "Understanding, Coping with, and Benefiting from, Intractability" and by CISE/MPS 1246641.
References

