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Abstract
Many organizations stand to benefit from pooling their

data together in order to draw mutually beneficial insights—
e.g., for fraud detection across banks, better medical studies
across hospitals, etc. However, such organizations are often
prevented from sharing their data with each other by privacy
concerns, regulatory hurdles, or business competition.

We present Senate, a system that allows multiple parties
to collaboratively run analytical SQL queries without reveal-
ing their individual data to each other. Unlike prior works
on secure multi-party computation (MPC) that assume that
all parties are semi-honest, Senate protects the data even in
the presence of malicious adversaries. At the heart of Senate
lies a new MPC decomposition protocol that decomposes the
cryptographic MPC computation into smaller units, some of
which can be executed by subsets of parties and in parallel,
while preserving its security guarantees. Senate then provides
a new query planning algorithm that decomposes and plans
the cryptographic computation effectively, achieving a perfor-
mance of up to 145× faster than the state-of-the-art.

1 Introduction
A large number of services today collect valuable sensitive
user data. These services could benefit from pooling their data
together and jointly performing query analytics on the aggre-
gate data. For instance, such collaboration can enable better
medical studies [4, 47]; identification of criminal activities
(e.g., fraud) [73]; more robust financial services [1,10,67,73];
and more relevant online advertising [44]. However, many of
these institutions cannot share their data with each other due
to privacy concerns, regulations, or business competition.

Secure multi-party computation [9,39,81] (MPC) promises
to enable such scenarios by allowing m parties, each hav-
ing secret data di, to compute a function f on their aggregate
data, and to share the result f (d1, . . . ,dm) amongst themselves,
without learning each other’s data beyond what the function’s
result reveals. At a high level, MPC protocols work by having
each party encrypt its data, and then perform joint computa-
tions on encrypted data leading to the desired result.

Despite the pervasiveness of data analytics workloads, there
are very few works that consider secure collaborative analyt-
ics. While closely related works such as SMCQL [4] and
Conclave [77] make useful first steps in the direction of se-
cure collaborative analytics, their main limitation is their weak
security guarantee: semi-honest security. Namely, these works
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Fig. 1: Overview of Senate’s workflow.

assume that each party, even if compromised, follows the pro-
tocol faithfully. If any party deviates from the protocol, it can,
in principle, extract information about the sensitive data of
other parties. This is an unrealistic assumption in many scenar-
ios for two reasons. First, each party running the protocol at
their site has full control over what they are actually running.
For example, it requires a bank to place the confidentiality of
its sensitive business data in the hands of its competitors. If
the competitors secretly deviate from the protocol, they could
learn information about the bank’s data without its knowledge.
Second, in many real-world attacks [68], attackers are able to
install software on the server or obtain control of a server [26],
thus allowing them to alter the server’s behavior.

1.1 Senate overview
We present Senate, a platform for secure collaborative analyt-
ics with the strong guarantee of malicious security. In Senate,
even if m−1 out of m parties fully misbehave and collude, an
honest party is guaranteed that nothing leaks about their data
other than the result of the agreed upon query. Our techniques
come from a synergy of new cryptographic design and in-
sights in query rewriting and planning. A high level overview
of Senate’s workflow (as shown in Figure 1) is as follows:

Agreement stage. The m parties agree on a shared schema
for their data, and on a query for which they are willing to
share the computation result. This happens before invoking
Senate and may involve humans.

Compilation and planning stage. Senate’s compiler takes
the query and certain size information (described in §2) as in-
put and outputs a cryptographic execution plan. It runs at each
party, deterministically producing the same plan. In particu-
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Fig. 2: Query execution in the baseline (monolithic MPC) vs. Senate
(decomposed MPC). σ represent a filtering operation, and on is a
join. Green boxes with locks denote MPC operations; white boxes
denote plaintext computation.X represents additional verification
operations added by Senate.

lar, the compiler employs our consistent and verifiable query
splitting technique in order to minimize the amount of joint
computation performed by the parties. Then, the compiler
plans the execution of the joint computation using our circuit
decomposition technique, which can produce a significantly
more efficient execution plan.

Execution stage. An execution engine at each party runs the
cryptographic execution plan by coordinating with the other
parties and routing encrypted intermediate outputs based on
the plan. This is done using our efficient MPC decomposition
protocol, which outputs the query result to all the parties.

1.2 Senate’s techniques
Designing a maliciously-secure collaborative analytics sys-
tem is challenging due to the significant overheads of such
strong security. Consider simply using a state-of-the-art m-
party maliciously-secure MPC tool such as AGMPC [30]
which implements the protocol of Wang et al. [80]; we refer
to this as the baseline. When executing a SQL query with
this baseline, the query gets transformed into a single, large
Boolean circuit (i.e., a circuit of AND, OR, XOR gates) tak-
ing as input the data of the m parties. The challenge then is
that the m parties need to execute a monolithic cryptographic
computation together to evaluate this circuit.

Minimizing joint computation. Prior work [4, 77] in the
semi-honest setting shows that one can significantly improve
performance by splitting a query into local computation (the
part of the query that touches only one party’s data) and the
rest of the computation. The former can be executed locally
at the party on plaintext, and the latter in MPC; e.g., if a query
filters by “disease = flu”, the parties need to input only
the records matching the filter into MPC as opposed to the en-
tire dataset. In the semi-honest setting, the parties are trusted
to perform such local computation faithfully. Unfortunately,
this technique no longer works with malicious parties because
a malicious party M can perform the local computation:
• incorrectly. For example, M can input records with

“disease = HIV” into MPC. This can reveal information

about another party’s “HIV” records, e.g., via a later join
operation, when this party might have expected the join to
occur only over rows with the value “flu”.

• inconsistently. For example, if one part of a query selects pa-
tients with “age = 25” and another with “age ∈ [20,30]”,
the first filter’s outputs should be included within the
second’s. However, M might provide inconsistent sets of
records as the outputs of the two filters.
Senate’s verifiable and consistent query splitting technique

allows Senate to take advantage of local computation via a
different criteria than in the semi-honest case. Given a query,
Senate’s compiler splits the query into a special type of local
computation—one that does not introduce inconsistencies—
and a joint computation, which it annotates with verification
of the local computation, in such a way that the verification
is faster to execute than the actual computation. For example,
Figure 2 shows a 4-party query in which party P1’s inputs
are first filtered (denoted σ). Unlike the baseline execution,
Senate enables P1 to evaluate the filter locally on plaintext, and
the secure computation proceeds from there on the smaller
filtered results; these results are then jointly verified.

Decomposing MPC. In order to decompose the joint com-
putation (instead of evaluating a single, large circuit using
MPC) one needs to open up the cryptographic black box. Con-
sider a 4-way join operation (on) among tables of 4 parties, as
shown in Figure 2. With the baseline, all 4 parties have to exe-
cute the whole circuit. However, if privacy were not a concern,
P1 and P2 could join their tables without involving the other
parties, P3 and P4 do the same in parallel, and then everyone
performs the final join on the smaller intermediate results.
This is not possible with existing state-of-the-art protocols for
MPC, which execute the computation in a monolithic fashion.

To enable such decomposition, we design a new crypto-
graphic protocol we call secure MPC decomposition (§4),
which may be of broader interest beyond Senate. In the exam-
ple above, our protocol enables parties P1 and P2 to evaluate
their join obtaining an encrypted intermediate output, and then
to securely reshare this output with parties P3 and P4 as they
all complete the final join. The decomposed circuits include
verifications of prior steps needed for malicious security. We
also develop more efficient Boolean circuits for expressing
common SQL operators such as joins, aggregates and sorting
(§6), using a small set of Boolean circuit primitives which we
call m-SI, m-SU and m-Sort (§5).

Efficiently planning query execution. Finally, we develop
a new query planner, which leverages Senate’s MPC decom-
position protocol (§7.1). Unsurprisingly, the circuit representa-
tion of a complex query can be decomposed in many different
ways. However, the rules governing the cost of each execution
plan differ significantly from regular computation. Hence, we
develop a cost model for our protocol which estimates the cost
given a circuit configuration (§7.2). Senate’s query planner
selects the most efficient plan based on the cost model.



1.3 Evaluation summary
We implemented Senate and evaluate it in §8. Our decom-
position and planning mechanisms result in a performance
improvement of up to 10× compared to the monolithic circuit
baseline, with up to 11× less resource consumption (memory
/ network communication), on a set of representative queries.
Senate’s query splitting technique for local computation can
further increase performance by as much as 10×, bringing the
net improvement to up to 100×. Furthermore, to stress test
Senate on more complex query structures, we also evaluate
its performance on the TPC-H analytics benchmark [76]; we
find that Senate’s improvements range from 3× to 145×.

Though MPC protocols have improved steadily, they still
have notable overhead. Given that such collaborative analytics
do not have to run in real time, we believe that Senate can
already be used for simpler workloads and / or relatively small
databases, but is not yet ready for big data analytics. However,
we expect faster MPC protocols to continue to appear. The
systems techniques in Senate will apply independently of
the protocol, and the cryptographic decomposition will likely
have a similar counterpart.

2 Senate’s API and example queries
Senate exposes a SQL interface to the parties. To reason about
which party supplies which table in a collaborative setting, we
augment the query language with the simple notation R|P to
indicate that table R comes from party P. Hence, R|P1 ∪ R|P2
indicates that each party holds a horizontal partition of table R.
One can obtain a vertical partitioning, for example, by joining
two tables from different parties R1|P1 and R2|P2. Here, we
use the ∪ operator to denote a simple concatenation of the
tables, instead of a set union (which removes duplicates).

In principle, Senate can support arbitrary queries because it
builds on a generic MPC tool. The performance improvement
of our techniques, though, is more relevant to joins, aggregates,
and filters. We now give three use cases and queries, each
from a different domain, which we use as running examples.
Query 1. Medical study [4]. Clostridium difficile (cdiff) is
an infection that is often antibiotic-resistant. As part of a
clinical research study, medical institutions P1 . . .Pm wish to
collectively compute the most common diseases contracted by
patients with cdiff. However, they cannot share their databases
with each other to run this query due to privacy regulations.
SELECT diag, COUNT(*) AS cnt
FROM diagnoses|P1 ∪ . . .∪ diagnoses|Pm

WHERE has_cdiff = ‘True’
GROUP BY diag ORDER BY cnt LIMIT 10;

Query 2. Prevent password reuse [78]. Many users unfor-
tunately reuse passwords across different sites. If one of these
sites is hacked, the attacker could compromise the account
of these users at other sites. As studied in [78], sites wish to
identify which users reuse passwords across the sites, and can
arrange for the salted hashes of the passwords to match if the
underlying passwords are the same (and thus be compared to

identify reuse using the query below). However, these sites
do not wish to share what other users they have or the hashed
passwords of these other users (because they can be reversed).
SELECT user_id
FROM passwords|P1 ∪ . . .∪ passwords|Pm

GROUP BY CONCAT(user_id, password)
HAVING COUNT(*) > 1;

Query 3. Credit scoring agencies do not want to share their
databases with each other [77] due to business competition,
yet they want to identify records where they have a significant
discrepancy in a particular financial year. For example, an
individual could have a low score with one agency, but a
higher score with another; the individual could take advantage
of the higher score to obtain a loan they are not entitled to.
SELECT c1.ssn
FROM credit_scores|P1 AS c1
. . .
JOIN credit_scores|Pm AS cm ON c1.ssn = cm.ssn
WHERE GREATEST(c1.credit, . . ., cm.credit) -
LEAST(c1.credit, . . ., cm.credit) > threshold
AND c1.year = 2019 . . . AND cm.year = 2019;

2.1 Sizing information
Given a query, Senate’s compiler first splits the query into
local and joint computation. Each party then specifies to the
compiler an upper bound on the number of records it will
provide as input to the joint computation, following which the
compiler maps the joint computation to circuits. These upper
bounds are useful because we do not want to leak the size of
the parties’ inputs, but also want to improve performance by
not defaulting to the worst case, e.g., the maximum number
of rows in each table. For example, for Query 1, Senate trans-
forms the query so that the parties group their records locally
by the column diag and compute local counts per group. In
this case, Senate asks for the upper bound on the number
of diagnoses per party. In many cases, deducing such upper
bounds is not necessarily hard: e.g., it is simple for Query 1 be-
cause there is a fixed number of known diseases [17]. Further,
meaningful upper bounds significantly improve performance.

3 Threat model and security guarantees
Senate adopts a strong threat model in which a malicious
adversary can corrupt m−1 out of m parties. The corrupted
parties may arbitrarily deviate from the protocol and collude
with each other. As long as one party is honest, the only
information the compromised parties learn about the honest
party is the final global query result (in addition to the upper
bounds on data size provided to the compiler by the parties,
and the query itself).

More formally, we define an ideal functionality FMPC·tree

(Functionality 2, §4.3) for securely executing functions repre-
sented as a tree of circuits, while placing some restrictions on
the structure of the tree. We then develop a protocol that real-
izes this functionality and prove the security of our protocol



(per Theorem 2, §4.3) according to the definition of security
for (standalone) maliciously secure MPC [38], as captured
formally by the following definition:

Definition 1. Let F be an m-party functionality, and let Π

be an m-party protocol that computes F . Protocol Π is said
to securely compute F in the presence of static malicious
adversaries if for every non-uniform PPT adversary A for the
real model, there exists a non-uniform PPT adversary S for
the ideal model, such that for every I ⊂ [m]

{IDEALF ,I,S(z)(x̄)}x̄,z
c≡ {REALΠ,I,A(z)(x̄)}x̄,z

where x̄ = (x1, . . . ,xm) and xi ∈ {0,1}∗.

Here, IDEALF ,I,S(z)(x̄) denotes the joint output of the hon-
est parties and S from the ideal world execution of F ; and
REALΠ,I,A(z)(x̄) denotes the joint output of the honest parties
and A from the real world execution of Π [38].

As with malicious MPC, we cannot control what data a
party chooses to input. The parties can, if they wish, augment
the query to run tests on the input data (e.g., interval checks).
Senate also does not intend to maintain consistency of the
datasets input by a party across different queries as the dataset
could have changed in the meantime. If this is desired, Senate
could in principle support this by writing multiple queries as
part of a single bigger query, at the expense of performance.

Note that the query result might leak information about the
underlying datasets, and the parties should choose carefully
what query results they are willing to share with each other.
Alternatively, it may be possible to integrate techniques such
as differential privacy [28, 45] with Senate’s MPC computa-
tion, to avoid leaking information about any underlying data
sample; we discuss this aspect in more detail in §9.

4 Senate’s MPC decomposition protocol
In this section we present Senate’s secure MPC decomposition
protocol, the key enabler of our compiler’s planning algorithm.
Our protocol may be of independent interest, and we present
the cryptography in a self-contained way.

Suppose that m parties, P1, . . . ,Pm, wish to securely com-
pute a function f , represented by a circuit C, on their private
inputs xi. This can be done easily given a state-of-the-art
MPC protocol by having all the parties collectively evaluate
the entire circuit using the protocol. However, the key idea in
Senate is that if f can be “nicely” decomposed into multiple
sub-circuits, we can achieve a protocol with a significantly bet-
ter concrete efficiency, by having only a subset of the parties
participate in the secure evaluation of each sub-circuit.
For example, consider a function f (x1, . . . ,xm) that can be
evaluated by separately computing y1 = h1(x1, . . . ,xi) on the
inputs of parties P1 . . .Pi, and y2 = h2(xi+1, . . . ,xm) on the
inputs of parties Pi+1 . . .Pm, followed by f̃ (y1,y2). That is,

f (x1, . . . ,xm) = f̃
(
h1(x1, . . . ,xi),h2(xi+1, . . . ,xm)

)
.

Such a decomposition of f allows parties P1, . . . ,Pi to se-
curely evaluate h1 on their inputs (using an MPC protocol)

and obtain output y1. In parallel, parties Pi+1, . . . ,Pm securely
evaluate h2 to get y2. Finally, all parties securely evaluate f̃
on y1,y2 and obtain the final output y. We observe that such
a decomposition may lead to a more efficient protocol for
computing f , since the overall communication and computa-
tion complexity of state-of-the-art concretely efficient MPC
protocols (e.g., [49, 80]) is at least quadratic in the number of
involved parties. Furthermore, sub-circuits involving disjoint
sets of parties can be evaluated in parallel.

Although appealing, this idea has some caveats:
1. In a usual (“monolithic”) secure evaluation of f , the inter-

mediate values y1,y2 remain secret, whereas the decom-
position above reveals them to the parties as a result of an
intermediate MPC protocol.

2. Suppose that h1 is a non-easily-invertible function (e.g.,
pre-image resistant hash function). If all of P1, . . . ,Pi col-
lude, they can pick an arbitrary “output” y1, even without
evaluating h1, and input it to f̃ . Since h1 is non-invertible,
it is infeasible to find a pre-image of y1; thus, such behav-
ior is not equivalent to the adversary’s ability to provide an
input of its choice (as allowed in the malicious setting). In
addition, such functions introduce problems in the proof’s
simulation as a PPT simulator cannot extract the corrupted
parties’ inputs with high probability. This attack, however,
would not have been possible if f had been computed
entirely by all of P1, . . . ,Pm in a monolithic MPC.

3. If one party is involved in multiple sub-circuits and is
required to provide the same input to all of them, then we
have to make sure that its inputs are consistent.

In this section we show how to deal with the above problems,
by building upon the MPC protocol of Wang et al. [80].

First, we show how to securely transfer the output of one
garbled circuit as input to a subsequent garbled circuit, an
action called soldering (§4.2). Our soldering is inspired by
previous soldering techniques proposed in the MPC litera-
ture [2, 13, 33–36, 42, 50, 53, 56, 65, 70]. Here, we make the
following contributions. To the best of our knowledge, Senate
is the first work to design a soldering technique for the state-
of-the-art protocol of Wang et al. [80]. More importantly,
whereas previous uses of soldering were limited to cases in
which the same set of parties participate in both circuits, we
show how to solder circuits when the first set of parties is a
subset of the set of parties involved in the second circuit. This
property is crucial for the performance of the individual sub-
circuits in our overall protocol, as most of them can now be
evaluated by non-overlapping subsets of parties, in parallel.

Second, as observed above, the decomposition of a func-
tion for MPC cannot be arbitrary. We therefore formalize the
class of decompositions that are admissible for MPC (§4.3).
Informally, we require that every sub-computation evaluated
by less than m parties must be efficiently invertible. This fits
the ability of a malicious party to choose its input before
providing it to the computation.

Furthermore, we define the admissible circuit structures



to be trees rather than directed acyclic graphs. That is, the
function’s decomposition may only take the form of a tree of
sub-computations, and not an arbitrary graph. This is because
if a node provides input to more than one parent node and
all the parties at the node are corrupted, they may collude to
provide inconsistent inputs to the different parents. We there-
fore circumvent this input consistency problem by restricting
valid decompositions to trees alone. Even so, as we show in
later sections, this model fits SQL queries particularly well,
since many SQL queries can be naturally expressed as a tree
of operations.

4.1 Background
We start by briefly introducing the cryptographic tools that
our MPC protocol builds upon. In particular, we build upon
the maliciously-secure garbled circuit protocol of Wang et
al. [80] (hereafter referred to as the WRK protocol).

Information-theoretic MACs (IT-MACs). IT-MACs [64]
enable a party Pj to authenticate a bit held by another party
Pi. Suppose Pi holds a bit x ∈ {0,1}, and Pj holds a key
∆ j ∈ {0,1}κ (where κ is the security parameter). ∆ j is called
a global key and Pj can use it to authenticate multiple bits
across parties. Now, for Pj to be able to authenticate x, Pj is
given a random local key K j[x] ∈ {0,1}κ and Pi is given the
corresponding MAC tag M j[x] such that:

M j[x] = K j[x]⊕ x∆ j.

Pj does not know the bit x or the MAC, and Pi does not know
the keys; thus, Pi can later reveal x and its MAC to Pj to
prove it did not tamper with x. In this manner, Pi’s bit x can be
authenticated to more than one party—each party j holds a
global key ∆ j and local key for x, K j[x]. Pi holds all the corre-
sponding MAC tags {M j[x]} j 6=i. We write [x]i to denote such
a bit where x is known to Pi, and is authenticated to all other
parties. Concretely, [x]i means that Pi holds (x,{M j[x]} j 6=i),
and every other party Pj 6= Pi holds K j[x] and ∆ j.

Note that [x]i is XOR-homomorphic: given two authenti-
cated bits [x]i and [y]i, it is possible to compute the authen-
ticated bit [z]i where z = x⊕ y by simply having each party
compute the XOR of the MAC / keys locally.

Authenticated secret shares. In the above construction, x
is known to a single party and authenticated to the rest. Now
suppose that x is shared amongst all parties such that no
subset of parties knows x. In this case, each Pi holds xi such
that x =⊕ixi. To authenticate x, we can use IT-MACs on each
share xi and distribute the authenticated shares [xi]i. We write
〈x〉∆ to denote the collection of authenticated shares {[xi]i}i
under the global keys ∆= {∆i}i. We omit the subscript in 〈x〉∆
if the global keys are clear from context. One can show that
〈x〉 is XOR-homomorphic, i.e., given 〈x〉 and 〈y〉 the parties
can locally compute 〈z〉 where z = x⊕ y.

Garbled circuits and the WRK protocol. Garbled cir-
cuits [6, 7, 82] are a commonly used cryptographic primitive
in MPC constructions. Formally, an m-party garbling scheme

is a pair of algorithms (Garble,Eval) that allows a secure eval-
uation of a (typically Boolean) circuit C. To do so, the parties
first invoke Garble with C, and obtain a garbled circuit G(C)
and some extra information (each party may obtain its own
secret extra information). Then, given the input xi to party Pi,
the parties invoke Eval with {xi}i and obtain the evaluation
output y. (This is a simplification of a garbling scheme in
many ways, but this abstraction suffices to understand the
WRK protocol below.) Typically, constructions utilizing a
garbling scheme are in the offline-online model, in which they
may invoke Garble offline when they agree on the circuit C,
and only later they learn their inputs {xi}i to the computation.

The WRK protocol [80] is the state-of-the-art garbled cir-
cuit protocol that is maliciously-secure even when m−1 out
of m parties are corrupted. WRK follows the same abstrac-
tion described above, with its own format for a garbled cir-
cuit; thus, we denote its garbling scheme by (WRK ·Garble,
WRK ·Eval). Our construction does not modify the inner
workings of the protocol; therefore, we describe only its input
and output layers, but elide internal details for simplicity.
WRK ·Garble: Given a Boolean circuit C, the protocol out-

puts a garbled circuit G(C). The garbling scheme au-
thenticates the circuit by maintaining IT-MACs on all
input/output wires,1 as follows. Each party Pi obtains a
global key ∆i for the circuit. In addition, each wire w in
the circuit is associated with a random “masking” bit λw
which is output to the parties as 〈λw〉∆.

WRK ·Eval: The protocol is given a garbled circuit G(C).
Then, for a party Pi who wishes to input bw to input wire
w, we have the parties input b̂w = bw⊕λw instead; in ad-
dition, instead of receiving the real output bit bv the par-
ties receive a masked bit b̂v = bv⊕λv. Note that λw and
λv should be kept secret from the parties (except from
the party who inputs bw or receives bv, respectively). The
procedures by which parties privately translate masked
values to real values and vice versa are simple and not
part of the core functionality, as we describe below.

Using the above abstractions, the overall WRK protocol is
simple and can be described as follows:
1. Offline. The parties invoke WRK ·Garble on C and obtain

G(C) and 〈λw〉 for every input/output wire w.
2. Online.

(a) Input. If an input wire w is associated with party Pi,
who has the input bit bw, then the parties reconstruct
λw to Pi. Then, Pi broadcasts the bit b̂w = bw⊕λw.

(b) Evaluation. The parties invoke WRK ·Eval on G(C)
and the bit b̂w for every input wire w. They obtain a
bit b̂v = bv⊕λv for every output wire v.

(c) Output. To reveal bit bv of an output wire v, the parties
publicly reconstruct λv and compute bv = b̂v⊕λv.

1In fact, it does so for all the wires in the circuit; we omit this detail as
we focus on the input / output interface.



4.2 Soldering wires of WRK garbled circuits
The primary technique in Senate is to securely transfer the
actual value that passes through an output wire of one cir-
cuit, without revealing that value, to the input wire of another
circuit. This action is called soldering [65]. We observe that
the WRK protocol enjoys the right properties that enable sol-
dering of its wires almost for free. In addition, we show how
to extend the soldering notion even to cases where the set of
parties who are engaged in the ‘next’ circuit is a superset of
the set of parties engaged in the current one. This was not
known until now. We believe this extension is of independent
interest and may have more applications beyond Senate.

Specifically, we wish to securely transfer the (hidden) out-
put bv = b̂v⊕λv on output wire v of G(C1) to the input wire
u of G(C2). ‘Securely’ means that bv = bu should hold while
keeping both bu and bv secret from the parties. To achieve this,
the parties need to securely compute the masked value of the
input to the next circuit, as expected by the WRK protocol:

b̂u = λu⊕bu = λu⊕bv = λu⊕λv⊕ b̂v

and input it to WRK ·Eval for the next circuit.
Note that the parties already hold the three terms on the

right hand side of the above equation—WRK ·Eval outputs b̂v
to the parties as a masked output when evaluating G(C1), and
the parties hold 〈λv〉 and 〈λu〉 as output from WRK ·Garble on
C1 and C2 respectively. Thus, one attempt to obtain b̂u might
be to have the parties compute the shares of 〈λu⊕λv⊕ b̂v〉
using XOR-homomorphism, and then publicly reconstruct
it. However, this operation is not defined unless the global
key that each party uses in the constituent terms is the same.
Since we do not modify the construction of WRK ·Garble and
WRK ·Eval, the global keys in the two circuits (and hence in
〈λv〉 and 〈λu〉) are different with high probability.

We overcome this limitation using the functionality FSolder:

FUNCTIONALITY 1. FSolder(v,u) – Soldering

Inputs. Parties in set P1 agree on b̂v and have 〈λv〉∆ authen-
ticated under global keys {∆i}i∈P1 . Parties in set P2 (where
P1 ⊆P2) have 〈λu〉∆̃ authenticated under global keys {∆̃i}i∈P2 .
Outputs. Compute b̂u = λu⊕λv⊕ b̂v. Then,
• Output δi = ∆i⊕ ∆̃i for all Pi ∈ P1 to parties in P1.
• Output λi

v⊕λi
u for all Pi ∈ P1 to parties in P1.

• Output λi
u for all Pi ∈ P2 \P1 to everyone.

• If 〈λv〉∆ and 〈λu〉∆̃ are valid then output b̂u to parties in P2.
• Otherwise, output b̂u to the adversary and ⊥ to the honest

parties.

Before proceeding, note that FSolder satisfies our needs: P1
and P2 are engaged in evaluating garbled circuits G(C1) and
G(C2) respectively. v is an output wire of G(C1), and u is an
input wire of G(C2). The parties in P2 want to transfer the
actual value that passes through v, namely bv, to G(C2). That
is, they want the actual value that would pass through u to be
bv as well. However, they do not know bv, but only the masked

value b̂v. Thus, by using FSolder, they can obtain exactly what
they need in order to begin evaluating G(C2) with bu = bv.

Along with the soldered result b̂u, functionality FSolder also
reveals additional information to the parties—specifically, the
values of δi (for all Pi ∈ P1); λi

v⊕λi
u (for all Pi ∈ P1); and

λi
u (for all Pi ∈ P2 \P1). We model this extra leakage in the

functionality as this information is revealed by our protocol
that instantiates FSolder. However, we will show that this does
not affect the security of our overall MPC protocol.

Instantiating FSolder. We start by defining a procedure for
XOR-ing authenticated shares under different global keys,
which we denote �. That is, 〈x〉∆� 〈y〉∆̃ outputs 〈x⊕ y〉

∆̃
.

We observe that it is possible to implement � in a very
simple manner: every party Pi only needs to broadcast the
difference of the two global keys: δi = ∆i⊕ ∆̃i. Using this, the
parties can switch the underlying global keys of 〈x〉 from ∆i
to ∆̃i by having each party Pi compute new authentications of
xi, denoted M′j[x

i], as follows. For every j 6= i, Pi computes

M′j[x
i] = M j[xi]⊕ xi

δ j

= K j[xi]⊕ xi
∆ j⊕ xi

δ j = K j[xi]⊕ xi
∆̃ j

So now, x is shared and authenticated under the new global
keys {∆̃i}i. Given this procedure, we can realize FSolder as
follows: the parties first compute 〈bv〉∆ = 〈λv〉∆⊕ b̂v; 2 the
parties then compute 〈b̂u〉∆̃ = 〈bv〉∆� 〈λu〉∆̃, and reconstruct
b̂u by combining their shares.

Note that the description above (implicitly) assumes that
P1 = P2; however, if P1 ⊂ P2 then the � protocol does not
make sense because parties in P2 that are not in P1 do not
have a global key ∆i corresponding to 〈x〉∆. Forcing them to
participate in the � protocol with ∆i = 0 would result in a
complete breach of security as it would reveal δi = ∆i⊕ ∆̃i =
∆̃i, which must remain secret! We resolve this problem in
the protocol ΠSolder (Protocol 1) which extends � to the case
where P1 ⊂P2.

Theorem 1. Protocol ΠSolder securely computes functionality
FSolder (per Definition 1) in the presence of a static adversary
that corrupts an arbitrary number of parties.

We defer the proof to an extended version of our paper.

4.3 Secure computation of circuit trees
Given a SQL query, Senate decomposes the query into a tree
of circuits, where each non-root node (circuit) in the tree in-
volves only a subset of the parties. We now describe how the
soldering technique can be used to evaluate trees of circuits,
while preserving the security of the overall computation. To
this end, we first formalize the class of circuit trees that repre-
sent valid decompositions with respect to our protocol; then,
we concretely describe our protocol for executing such trees.

We start with some preliminary definitions and notation.
A circuit tree T is a tree whose internal nodes are circuits,

2XOR homomorphism works also when one literal is a constant, rather
than an authenticated sharing.



PROTOCOL 1. ΠSolder – Soldering

Denote by 〈λP1
u 〉∆̃ the authenticated secret shares of λu held by parties in P1 only. That is λ

P1
u =

⊕
i:Pi∈P1

λi
u.

1. The parties in P1 reconstruct 〈b̂P1
u 〉∆̃ = (b̂v⊕〈λv〉∆)� 〈λP1

u 〉∆̃.

Specifically, each party Pi ∈ P1 broadcasts: (a) the bit b̂i
u = λi

v⊕λi
u, and (b) the difference δi = ∆i⊕ ∆̃i . After receiving b̂ j

u and δ j
from every Pj ∈ P1, it computes

b̂P1
u = b̂v⊕

⊕
i:Pi∈P1

b̂i
u,

M j[b̂i
u] = M j[λ

i
v⊕λ

i
u] = M j[λ

i
v]⊕M j[λ

i
u]⊕λ

i
v ·δ j = (K j[λ

i
v]⊕λ

i
v ·∆ j)⊕ (K j[λ

i
u]⊕λ

i
u · ∆̃ j)⊕ (λi

v ·δ j)

= K j[λ
i
v]⊕K j[λ

i
u]⊕λ

i
v · (∆ j⊕δ j)⊕λ

i
u · ∆̃ j = K j[λ

i
v]⊕K j[λ

i
u]⊕ (λi

v⊕λ
i
u) · ∆̃ j and

Ki[b̂
j
u] = Ki[λ

j
v]⊕Ki[λ

j
u]

for every j ∈ P1 and broadcasts M j[b̂i
u].

2. Parties Pi ∈ P2 \P1 broadcast λi
u and M j[λ

i
u] for all j ∈ P2.

3. Parties Pi ∈ P1 verify that Ki[b̂
j
u]⊕ b̂ j

u · ∆̃i = Mi[b̂
j
u] for all j ∈ P1.

4. Parties Pi ∈ P2 verify that Ki[λ
j
u]⊕λ

j
u · ∆̃i = Mi[λ

j
u] for all j ∈ P2 \P1.

5. If verification fails, output ⊥ and abort. Otherwise, output

b̂u =

( ⊕
Pi∈P2

λ
i
u

)
⊕bu =

( ⊕
Pi∈P1

λ
i
u

)
⊕

 ⊕
Pi∈P2\P1

λ
i
u

⊕bu = b̂P1
u ⊕

 ⊕
Pi∈P2\P1

λ
i
u


and the leaves are the tree’s input wires (which are also input
wires to some circuit in the tree). Each node that provides
input to an internal node C in the tree is a child of C. Since
T is a tree, this implies that all of a child’s output wires may
only be fed as input to a single parent node in the tree.

We denote a circuit C’s and a tree T ’s input wires by
I(C) and I(T ) respectively. Each wire w ∈ I(T ) is asso-
ciated with one party Pi, in which case we write parties(w) =
Pi. Let G1, . . . ,Gk be C’s children, we define parties(C) =
∪k

i=1parties(Gi). Note that we assume, without loss of gener-
ality, that the root circuit C ∈ T has parties(C) = {P1, . . . ,Pm}
(i.e., it involves inputs from all parties). Our goal is to achieve
secure computation for circuit trees; however, as discussed
earlier, our construction does not support arbitrary trees. We
now describe formally what can be achieved.

Definition 2. A circuit C :D→R (where D ⊆ {0,1}k is C’s
domain andR⊆ {0,1}` is the range) is invertible if there is
a polynomial time algorithm A (in the size of the circuit |C|)
such that given y ∈ {0,1}`:

A(y) =

{
x such that x ∈ D and C(x) = y if y ∈R
⊥ if y 6∈ R

Note that in the definition above, the circuit C need not
be “full range”, i.e., its range may be a subset of {0,1}`. In
such cases, we require that it is “easy” to verify that a given
value y ∈ {0,1}` is also in R. By easy we mean that it can
be verified by a polynomial-size circuit. We also denote by
verC(y) the circuit that checks whether a value y ∈ {0,1}` is
in R and returns 0 or 1 accordingly. Note that given a tree
of circuits, the range of an intermediate circuit depends not

only on the circuit’s computation, but also on the ranges of its
children because they limit the circuit’s domain. Thus, these
ranges need to be deduced topologically for the tree, using
which the verC circuit is manually crafted.

Definition 3. For t < m, the class of t-admissible circuit
trees, denoted T (t), contains all circuit trees T , such that
C is invertible for all C ∈ T where |parties(C)| ≤ t. In ad-
dition, each circuit C that is parent to circuits G1, . . . ,Gk
has verG1 , . . . ,verGk embedded within it as sub-circuits, and
parties(C) = ∪k

i=1parties(Gi).

The above suggests that there may indeed be non-invertible
circuits (e.g., a preimage resistant hash) in the tree; the only
restriction is that such a circuit should be evaluated by more
than t parties. The definition of MPC for circuit trees follows
the general definition of MPC [38], as presented below.

FUNCTIONALITY 2. FMPC·tree – MPC for circuit trees

Parameters. A circuit tree T and parties P1, . . . ,Pm.
Inputs. For each w ∈ I(T ) where Pi = parties(w), wait for an
input bit bw from Pi.
Outputs. The bit bw for every w in T ’s output wires, given by
evaluating T in a topological order from leaves to root.

We realize FMPC·tree using the protocol ΠMPC·tree (Proto-
col 2), which is our overall protocol for securely executing cir-
cuit trees. The protocol works as follows. In the offline phase
the parties simply garble all circuits using WRK ·Garble; each
circuit is garbled independently from the others. Then, be-
ginning from the tree’s leaf nodes, the parties evaluate the



PROTOCOL 2. ΠMPC·tree - MPC for circuit trees

Parameters. The circuit tree T . Parties P1, . . . ,Pm.
Inputs. For w ∈ I(T ), Pi = parties(w) has bw ∈ {0,1}.
Protocol.
1. Offline. For every circuit C ∈ T , parties(C) run

WRK ·Garble(C) to obtain G(C) along with 〈λw〉 for
all input and output wires w.

2. Online. For each circuit C in T (topologically) do:
(a) Input. For every u ∈ I(C): If u ∈ I(T ) and Pi =

parties(u) then parties(C) reconstruct λu to Pi. Else,
if u is connected to an output wire v of a child circuit C′

then run FSolder(v,u), by which parties(C) obtain b̂u.
(b) Evaluate. Run WRK ·Eval on G(C) and b̂u for every

u ∈ I(C), by which parties(C) obtain b̂v for every C’s
output wire v. If G1, . . . ,Gc are C’s children then abort
if an intermediate value ver(Gi) = 0 for some i ∈ [c].

(c) Output. If C is the root of T , reconstruct 〈λw〉 for every
w ∈O(C), by which all parties obtain bw = ŵ⊕λw.

circuits using WRK ·Eval, such that each circuit C is evalu-
ated only by parties(C) (not all the parties). When a value on
an output wire of some circuit C′ should travel privately to
the input wire of the next circuit C then parties(C) run the
soldering protocol. As discussed above, parties(C′) may be a
subset of parties(C). Once all the nodes have been evaluated,
the parties operate exactly as in the WRK protocol in order to
reveal the actual value on the output wire.

We prove the security of protocol ΠMPC·tree per the follow-
ing theorem in an extended version of our paper. We remark
that our protocol inherits the random oracle assumption from
its use of the WRK protocol.

Theorem 2. Let t < m be the number of parties corrupted
by a static adversary. Then, protocol ΠMPC·tree securely com-
putes FMPC·tree (per Definition 1) for any T ∈ T (t), in the
random oracle model and the FSolder-hybrid model.

We stress that intermediate values (output wires of inter-
nal nodes) are authenticated secret shares, each using fresh
randomness, and thus kept secret from the adversary. In par-
ticular, the adversary’s input is independent of these values.

Note that by our construction, if there is a sub-tree rooted
at a circuit C such that parties(C) are all corrupted, then the
adversary may skip the ‘secure computation’ of that sub-
tree and simply provide inputs directly to C’s parent. This,
however, does not form a security issue because a malicious
adversary may change its input anyway, and the sub-tree is
invertible—hence, whatever input is given to C’s parent, it
can be used to extract some possible adversary’s input to the
tree’s input wires (and hence to the functionality) that leads
to the target output from the functionality.

In the following sections, we describe how Senate executes
SQL queries by transforming them into circuit trees that can
be securely executed using our protocol.

5 Senate’s circuit primitives
Senate executes a query by first representing it as a tree of
Boolean circuits, and then processing the circuit tree using its
efficient MPC protocol. To construct the circuits, Senate uses
a small set of circuit primitives which we describe in turn.
In later sections, we describe how Senate composes these
primitives to represent SQL operations and queries.

5.1 Filtering
Our first building block is a simple circuit (Filter) that takes a
list of elements as input, and passes each element through a
sub-circuit that compares it with a specified constant. If the
check passes, it outputs the element, else it outputs a zero.

5.2 Multi-way set intersection
Next, we describe a circuit for computing a multi-way set
intersection. Prior work has mainly focused on designing
Boolean circuits for two-way set intersections [12, 43]; here
we design optimized circuits for intersecting multiple sets.
Our circuit extends the two-way SCS circuit of Huang et
al. [43]. We start by providing a brief overview of the SCS
circuit, and then describe how we extend it to multiple sets.

The two-way set intersection circuit (2-SI). The sort-
compare-shuffle circuit of Huang et al. [43] takes as input two
sorted lists of size n each with unique elements, and outputs
a list of size n containing the intersection of the lists inter-
leaved with zeros (for elements that are not in the intersection).
(1) The circuit first merges the sorted lists. (2) Next, it filters
intersecting elements by comparing adjacent elements in the
list, producing a list of size n that contains all filtered elements
interleaved with zeros. (3) Finally, it shuffles the filtered ele-
ments to hide positional information about the matches.

In Senate’s use cases, set intersection results are often not
the final output of an MPC computation, and are instead inter-
mediate results upon which further computation is performed.
In such cases, the shuffle operation is not performed.

A multi-way set intersection circuit (m-SI). Suppose we
wish to compute the intersection over three sets A,B and C. A
straightforward approach is to compose two 2-SI circuits to-
gether into a larger circuit (e.g., as 2-SI(2-SI(A,B),C)). How-
ever, such an approach doesn’t work out-of-the-box because
the intermediate output O = 2-SI(A,B) needs to be sorted
before it can be intersected with C, as expected by the next
2-SI circuit. While one can accomplish this by sorting the
output, it comes at the cost of an extra O(n log2 n) gates.

Instead of performing a full-fledged sort, we exploit the
observation that, essentially, the output O of 2-SI is the sorted
result of A∩B interleaved with zeros. So, we transform O
into a sorted multiset via an intermediate monotonizer circuit
Mono that replaces each zero in O with the nearest preceding
non-zero value. Concretely, given O = (a1 . . .an) as input,
Mono outputs M = (b1 . . .bn), such that bi = ai if ai 6= 0, else
bi = bi−1. For example, if O = (1,0,2,3,0,4), then Mono
converts it to M = (1,1,2,3,3,4).



Since M now also contains duplicates, for correctness of
the overall computation, the next 2-SI that intersects M with
C needs to be able to discard these duplicates. We therefore
modify the next 2-SI circuit: (i) the circuit tags a bit to each
element in the input lists that identifies which list the element
belongs to, i.e., it appends 0 to every element in the first list,
and 1 to every element in the second; (ii) the comparison
phase of the circuit additionally verifies that elements with
equal values have different tags. These modifications ensure
that duplicates in the same intermediate list aren’t added to
the output. We refer to this modified 2-SI circuit as 2-SI∗.

The described approach generalizes to multiple input sets
in an identical manner. Note that in general, there can be many
ways of constructing the binary tree of 2-SI circuits (e.g., a
left-deep vs. balanced tree). In §7 we describe how Senate’s
compiler picks the optimal design when executing queries.

5.3 Multi-way sort
Given m sorted input lists of size n each, a multi-way sort
circuit m-Sort merges the lists into a single sorted list of
size m× n, using a binary tree of bitonic merge operations
(implemented as the Merge circuit).

5.4 Multi-way set union
Our next building block is a circuit for multi-way set unions.
In designing the circuit, we extend the two-way set union
circuit of Blanton and Aguiar [12].

The two-way set union circuit (2-SU). Given two sorted in-
put lists of size n each with unique elements, the 2-SU circuit
produces a list of size 2n containing the set union of the inputs.
Blanton and Aguiar [12] proposed a 2-SU circuit similar to
2-SI: (1) It first merges the input lists into a single sorted list.
(2) Next, it removes duplicate elements from the list: for every
two consecutive elements ei and ei+1, if ei 6= ei+1 it outputs
ei, else it outputs 0. (3) Finally, the circuit randomly shuffles
the filtered elements to hide positional information.

A multi-way set union circuit (m-SU). It might be tempt-
ing to construct a multi-way set union circuit by composing
multiple 2-SU circuits together, similar to m-SI. However,
such an approach is sub-optimal: unlike the intersection case
where intermediate lists remain size n, in unions the inter-
mediate result size grows as more input lists are added. This
leads to an unnecessary duplication of work in subsequent cir-
cuits. Instead, we construct a multi-way analogue of the 2-SU
circuit, as follows: (1) We first merge all m input lists together
into a single sorted list using an m-Sort circuit. (2) We then
remove duplicate elements from the sorted list, in a manner
identical to 2-SU. We refer to the de-duplication sub-circuit
in m-SU as Dedup. The m-SU circuit may thus alternately be
expressed as a composition of circuits: Dedup◦m-Sort.

5.5 Input verification
Our description of the circuits thus far (m-SI, m-SU, and
m-Sort) assumes that their inputs are sorted. While this as-
sumption is safe in the case of semi-honest adversaries, it fails

in the presence of malicious adversaries who may arbitrarily
deviate from the MPC protocol. For malicious security, we
need to additionally verify within the circuits that the inputs
to the circuit are indeed sorted sets. To this end, we augment
the circuits with input verifiers Ver, that scan each input set
comparing adjacent elements ei and ei+1 in pairs to check if
ei+1 > ei for all i; if so, it outputs a 1, else 0. When a given cir-
cuit is augmented with input verifiers, it additionally outputs
a logical AND over the outputs of all constituent Ver circuits.
This enables all parties involved in the computation to verify
that the other parties did not cheat during the MPC protocol.

6 Decomposable circuits for SQL operators
Given a SQL query, Senate decomposes it into a tree of SQL
operations and maps individual operations to Boolean circuits.
For some operations—namely, joins, group-by, and order-by
operations—the Boolean circuits can be further decomposed
into a tree of sub-circuits, which results in greater efficiency.
In this section, we show how Senate expresses individual
SQL operations as circuits using the primitives described in
§5, decomposing the circuits further when possible. Later in
§7, we describe the overall algorithm for transforming queries
into circuit trees and executing them using our MPC protocol.

Notation. We express Senate’s transformation rules using
traditional relational algebra [20], augmented with the notion
of parties to capture the collaborative setting. Let {P1, . . . ,Pm}
be the set of parties in the collaboration. Recall that we write
R|Pi to denote a relation R (i.e., a set of rows) held by Pi.
We also repurpose ∪ to denote a simple concatenation of the
inputs, as opposed to the set union operation. The notation for
the remaining relational operators are as follows: σ filters the
input; τ performs a sort; on is an equijoin; and γ is group-by.

6.1 Joins
Consider a collaboration of m parties, where each party Pi
holds a relation Ri and wishes to compute an m-way join:

on(R1|P1, . . . ,Rm|Pm)

Senate converts equijoin operations—joins conditioned on an
equality relation between two columns—to set intersection
circuits. Specifically, Senate maps an m-way equijoin opera-
tion to an m-SI circuit. For all other types of join operations,
such as joins based on column comparisons or compound
logical expressions, Senate expresses the join using a simple
Boolean circuit that performs a series of operations per pair-
wise combination of the inputs. However, a recent study [45]
notes that the vast majority of joins in real-world queries
(76%) are equijoins. Thus, a majority of join queries can
benefit from our optimized design of set intersection circuits.

Decomposing joins across parties. If parties don’t care
about privacy, the simplest way to execute the join would
be to perform a series of 2-way joins in the form of a tree.
For example, one way to evaluate a 4-way join is to order
the constituent joins as ((R1onR2)on(R3onR4)). To mimic this
decomposition, Senate starts by designing an m-SI Boolean



circuit to compute the operation (with m = 4). Senate then
evaluates the m-SI circuit by decomposing it into its con-
stituent sub-circuits as follows:
1. First, each party locally sorts its input sets (as required by

the m-SI circuit).
2. Next, parties P1 and P2 jointly compute a 2-SI operation

over R1 and R2, followed by the monotonizer Mono. In
parallel, parties P3 and P4 compute a similar circuit over
R3 and R4. The 2-SI circuits are augmented with Ver sub-
circuits that verify that the input sets are sorted.

3. Finally, all four parties evaluate a 2-SI∗ circuit over the
outputs of the previous step; as before, the circuit includes
a Ver sub-circuit to check that the inputs are sorted. Note
that though the evaluated circuit takes two sets as input,
the circuit computation involves all four parties.

In general, multiple tree structures are possible for decompos-
ing an m-way join. Senate’s compiler (which we describe in
§7) derives the best plan for the query using a cost model.

Joins over multisets. Senate’s m-SI circuit can be extended
to support joins over multisets in a straightforward manner.
We defer the details to an extended version of our paper.

6.2 Order-by limit
In the collaborative setting, the m parties may wish to perform
an order-by operation (by some column c) on the union of
their results, optionally including a limit l:

τc,l(∪iRi|Pi)

Senate maps order-by operations directly to the m-Sort circuit.
If the operation includes a limit l, then the circuit only outputs
the wires corresponding to the first l results.

Recall from §5.3 that m-Sort is a composition of Merge
sub-circuits (that perform bitonic merge operations). If the
operation includes a limit l, then we make an optimization that
reduces the size of the overall circuit. We note that since the
circuit’s output only contains wires corresponding to the first
l elements of the sorted result, any gates that do not impact
the first l elements can be discarded from the circuit. Hence,
if an element is outside the top l choices for any intermediate
Merge, then we discard the corresponding gates.

Decomposing order-by across parties. Since the m-Sort
circuit is composed of a tree of Merge sub-circuits, it can be
straightforwardly decomposed across parties by distributing
the constituent Merge sub-circuits. For example, one way
to construct a 4-party sort circuit is: Merge(Merge(R1,R2),
Merge(R3,R4)). To decompose this:
1. Each party first sorts their input locally (as expected by

the m-Sort circuit).
2. Parties P1 and P2 compute a Merge sub-circuit; P3 and P4

do the same in parallel.
3. All 4 parties finally Merge the previous outputs.
Once again, multiple tree structures are possible for distribut-
ing the Merge circuits, and the Senate compiler’s planning
algorithm picks the best structure based on a cost model.

6.3 Group-by with aggregates
Suppose the parties wish to compute a group-by operation
over the union of their relations (on some column c), followed
by an aggregate Σ per group:

γc,Σ(∪iRi|Pi)

Senate starts by mapping the operator to a Σ◦m-SU circuit
that computes the aggregate function Σ = SUM. To do so,
we extend the m-SU circuit with support for aggregates. Re-
call from §5.4 that the m-SU circuit is a composition of sub-
circuits Dedup◦m-Sort.

Let the input to the group-by operation be a list of tuples
of the form ti = (ai,bi), such that the ai values represent the
columns over which groups are made, and the bi values are
then aggregated per group.
1. In the m-Sort phase, Senate evaluates the m-Sort sub-

circuit over the ai values per tuple, while ignoring bi.
2. In the Dedup phase, for every two consecutive tuples

(ai,bi) and (ai+1,bi+1), the circuit outputs (ai,bi) if ai 6=
ai+1, else it outputs (0,bi)

3. In addition, we augment the Dedup phase to compute ag-
gregates over the bi values. The circuit makes another pass
over the tuples (a′i,bi) output by Dedup while maintaining
a running aggregate agg: if a′i = 0 then it updates agg with
bi and outputs (0,0); otherwise, it outputs (a′i,agg).

Decomposing group-by across parties. Senate decom-
poses group-by operations in two ways. First, group-by op-
erations with aggregates can typically be split into two parts:
local aggregates per party, followed by a joint group-by aggre-
gate over the union of the results. This is a standard technique
in database theory. For example, suppose Σ = COUNT. In this
case, the parties can first compute local counts per group,
and then evaluate a joint sum per group over the local results.
Rewriting the operation in this manner helps Senate reduce
the amount of joint computation performed using a circuit,
and is thus beneficial for performance.

Second, we note that the joint group-by computation can
be further decomposed across parties. Specifically, the m-Sort
phase of the overall m-SU circuit (as described above) can
also be distributed across the parties in a manner identical to
order-by (as described in §6.2).

6.4 Filters and Projections
Filtering is a common operation in queries (i.e., the WHERE
clause in SQL), and parties in a collaboration may wish to
compute a filter on the union of their input relations:

σ f (∪iRi|Pi)

where f is the condition for filtering. Senate maps the oper-
ation to a Filter circuit. Filtering operations at the start of a
query can be straightforwardly distributed by evaluating the
filter locally at each party, before performing the union.

As regards projections, typically, these operations simply
exclude some columns from the relation. Given a relation,
Senate performs a projection by simply discarding the wires



corresponding to the non-projected columns.

7 Query execution
We now describe how Senate executes a query by decompos-
ing it into a tree of circuits. In doing so, Senate’s compiler
ensures that the resulting tree satisfies the requirements of our
MPC protocol (per Definition 3)—namely, that each circuit
in the tree is invertible.

7.1 Query decomposition and planning
We start by describing the Senate compiler’s query decompo-
sition algorithm. Given a query, the compiler transforms the
query into a circuit tree in four steps, as illustrated in Figure 3.
We use the medical query from §1.1 as a running example.

Step 1 : Construction of tree of operators. Senate first
represents the query as a tree of relational operations. The
leaves of the tree are the input relations of individual parties,
and the root outputs the final query result. Each non-leaf node
represents an operation that will be jointly evaluated only by
the parties whose data the node takes as input. Thus, the set of
parties evaluating a node is always a superset of its children.

While a query can naturally be represented as a directed
acyclic graph (DAG) of relational operators, Senate recasts the
DAG into a tree to satisfy the input consistency requirements
of our MPC protocol. Specifically, Senate ensures that the out-
puts of no intermediate node (or the input tables at the leaves)
are fed to more than one parent node. This is because in such
cases, if any two parents are evaluated by disjoint sets of par-
ties, then this leads to a potential input inconsistency—that is,
if all the parties at the current node collude, then there is no
guarantee that they provide the same input to both parents. A
tree representation resolves this problem.

Figure 3 illustrates the query tree for the medical query
and comprises the following sequence of operator nodes—the
input tables of the parties (in the leaves) are first concatenated
into a single relation which is then processed jointly using a
filter, a group-by aggregate, and an order-by limit operator.

Step 2 : Query splitting. Next, Senate logically rewrites
the query tree, splitting it such that the parties perform as
much computation as possible locally over their plaintext data,
(i.e., filters and aggregates), thereby reducing the amount of
computation that need to be performed jointly using MPC. To
do so, it applies traditional relational equivalence rules that
(i) push down selections past joins and unions, and (ii) de-
composes group-by aggregates into local aggregates followed
by a joint aggregate.

For example, as shown in Figure 3, Senate rewrites the
medical query in both these ways. Instead of performing the
filtering jointly (after concatenating the parties’ inputs), Sen-
ate pushes down the filter past the union and parties apply it
locally. In addition, it further splits the group-by aggregate—
parties first compute local counts per group, and the local
counts are jointly summed up to get the overall counts.

Though such an approach has also been explored in prior

work [4, 77], an important difference in Senate is that while
prior approaches assume a semi-honest threat model, Senate
targets security against malicious adversaries who may arbi-
trarily deviate from the specified protocol. To protect against
malicious behavior, Senate’s split is different than the semi-
honest split; Senate performs two actions: (i) additionally
verifies that all local computations are valid; and (ii) ensures
that the splitting does not introduce input consistency prob-
lems. We describe how Senate tackles these issues next.

Step 3 : Verifying intermediate operations. We need to
take a couple of additional steps before we can execute the
tree of operations securely using our MPC protocol. As §4.3
points out, to be maliciously secure, the tree of circuits needs
to be “admissible” (per Definition 3), i.e., each intermediate
operation in the tree must be invertible, and each intermediate
node must also be able to verify that the output produced by
its children is possible given the query.

Thus, in transforming a query to a circuit tree, Senate’s
compiler deduces the set of outputs each intermediate opera-
tion can produce, while ensuring the operation is invertible.
For example, a filter of the type “WHERE 5 < age < 10” re-
quires that in all output records, each value in column age
must be between 5 and 10. Note that the values of intermedi-
ate outputs also vary based on the set of preceding operations.
For more complex queries, the constraints imposed by indi-
vidual operators accumulate as the query tree is executed.

Senate’s compiler traverses the query tree upwards from
the leaves to the root, and identifies the constraints at every
level of the tree. For simplicity, we limit ourselves to the
following types of constraints induced by relational operators:
(i) each column in a relation can have range constraints of
the type n1 ≤ a≤ n2, where n1 and n2 are constants; (ii) the
records are ordered by a single column; or (iii) the values
in a column are distinct. If the cumulative constraints at an
intermediate node in the tree are limited to the above, then
Senate’s compiler marks the node as verifiable. If a node
produces outputs with different constraints, then the compiler
marks it as unverifiable—for such nodes, Senate merges the
node with its parent into a single node and proceeds as before.

If a node / leaf feeds input to more than one parent (perhaps
as a result of the query rewriting in the previous step), then the
compiler once again merges the node and all its parents into
a single node, in order to avoid input consistency problems.

At the end of the traversal, the root node is the only poten-
tially unverifiable node in the tree, but this does not impact
security. Since all parties compute the root node jointly, the
correctness of its output is guaranteed.

As an example, in Figure 3, the local nodes at every party
locally evaluate the filter σhas_cdiff=True, which constrains
the column has_cdiff to the value ‘True’, and satisfies
condition (i) above. The subsequent group-by aggregate op-
eration γdiag,count does not impose any constraint on either
diag or count (since parties are free to provide inputs of
their choice, assuming there are no constraints on the input
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Fig. 3: Query execution in Senate. Colored keys and locks indicate which parties are involved in which MPC circuits.

columns). The local nodes are thus marked verifiable. All re-
maining operations are performed jointly by all parties at the
root node, and thus do not need to be checked for verifiability.

In our extended paper, we work out in detail how Senate’s
compiler deduces the range constraints imposed by various
relational operations (i.e., what needs to be verified). Then,
we show the invertibility of relational operations given these
constraints. This ensures that the resulting tree is admissible,
and satisfies the requirements of Senate’s MPC protocol.

Step 4 : Mapping operators to circuits. The final step
is to map each jointly evaluated node in the query tree to
a circuit (per §6): σ maps to the Filter circuit, on maps to
m-SI, group-by aggregate maps to Σ ◦m-SU, and order-by-
limit maps to m-Sort. In doing so, Senate’s compiler uses a
planning algorithm that further decomposes each circuit into
a tree of circuits based on a cost model (described shortly).

For example, for the medical query in Figure 3, Senate maps
the group-by aggregate operation γdiag,sum to a Σ◦m-SU cir-
cuit. Note that m-SU requires its inputs to be sorted; therefore,
the compiler augments the children nodes with sort operations
τdiag. It then further decomposes the m-Sort phase of m-SU
into a tree of Merge sub-circuits, per §6.3

This tree of circuits is finally evaluated securely using our
MPC protocol. Note that at each node, only the parties that
provide the node input are involved in the MPC computation.

7.2 Cost model for circuit decomposition
The planning algorithm models the latency cost of evaluat-
ing a circuit tree in terms of the constituent cryptographic
operations. It then enumerates possible decomposition plans,
assigns a cost to each plan, and picks the optimal plan for
decomposing the circuit.

Recall from §4 that the cost of executing a circuit via MPC
can be divided into an offline phase (for generating the cir-
cuits), and an online phase (for evaluating the circuits). Given
a circuit tree T , let the root circuit be C with children C0 and

C1. Let T0 and T1 refer to the subtrees rooted at nodes C0
and C1 respectively. Then, Senate’s compiler models the total
latency cost C of evaluating T as:
C(T ) = max(C(T0),C(T1))+ max(Csolder(T0),Csolder(T1))

+ Coffline(C)+Conline(C)

Essentially, since subtrees can be computed in parallel, the
cost model counts the maximum of these two costs, followed
by the cost of soldering the subtrees with the root node. It
adds this to the cost of the offline and online phases for T ’s
root circuit C, Coffline and Conline respectively.

We break down each cost component in terms of two unit
costs by examining the MPC protocol: the unit computation
cost Ls of performing a single symmetric key operation, and
the unit communication cost Li, j (pairwise) between parties
Pi and Pj. Senate profiles these unit costs during system setup.
In addition, the costs also depend on the size of the circuit
being computed |C| (i.e., the number of gates in the circuit),
the size of each party’s input set |I|, and the number of parties
m computing the circuit. For simplicity, the analysis below
assumes that each party has identical input set size; however,
the model can be extended in a straightforward manner to
accommodate varying input set sizes as well.

The soldering cost Csolder can be expressed as (m−1)|I| ·
maxi, j(Li, j) (since it involves a single round of communica-
tion between all parties). Next, we analyze the WRK protocol
to obtain the following equations:
Coffline(C) = (m−1)|C| ·max(Li, j)+4|C| ·Ls+ |C| ·max(L1,i)

In more detail, in the offline phase, each party (in parallel
with the others) communicates with the m−1 other parties to
create a garbled version of each gate in the circuit; each gate
requires 4 symmetric key operations (one per row in the truth
table representing the gate); they then send their individual
garbled gates (in parallel) to the evaluator. Our analysis here
is a simplification in that we ignore the cost of some function-
independent preprocessing steps from the offline phase. This



(a) m-SI of 1K inputs/party. (b) m-SI with 16 parties.

Fig. 4: Performance of m-SI in LAN.

(a) m-Sort of 600 inputs/party. (b) m-Sort with 16 parties.

Fig. 5: Performance of m-Sort in LAN.

is because these steps are independent of the input query, and
thus do not lie in the critical path of query execution.

Similarly, the cost of the online phase can be expressed as
Conline(C) = (m−1)|I| ·max(Li, j)

+(m−1)|I| ·max(L1,i)+(m−1)|C| ·Ls

In this phase, the garblers communicate with all other parties
to compute and send their encrypted inputs to the evaluator;
in addition, the evaluator communicates with each garbler to
obtain encrypted versions of its own inputs. The evaluator
then evaluates the gates per party. The size of the circuit |C|
depends on the function that the circuit evaluates (per §5), the
number of inputs, and the bit length of each input.

8 Evaluation
In this section, we demonstrate Senate’s improvements over
running queries as monolithic cryptographic computations.
We use vanilla AGMPC (with monolithic circuit execution)
as the baseline. The highlights are as follows. On the set
of representative queries from §2, we observe runtime im-
provements of up to 10× of Senate’s building blocks, with
a reduction in resource consumption of up to 11×. These
results translate into runtime improvements of up to 10× for
the joint computation in the benchmarked queries. Senate’s
query splitting technique provides a further improvement of
up to 10×, bringing the net improvement to over 100×. Fur-
thermore, on the TPC-H analytics benchmark [76], Senate’s
improvements range from 3× to 145×.

Implementation. We implemented Senate on top of the
AGMPC framework [30], a state-of-the-art implementation
of the WRK protocol [80] for m-party garbled circuits with
malicious security. Our compiler works with arbitrary bit
lengths for inputs; in our evaluation, we set the data field size
to be integers of 32 bits, unless otherwise specified.

(a) m-SU of 600 inputs/party. (b) m-SU with 16 parties.

Fig. 6: Performance of m-SU in LAN.

(a) Peak memory usage (b) Network usage

Fig. 7: Resource consumption of building blocks (16 parties).

Experimental Setup. We perform our experiments using
r5.12xlarge Amazon EC2 instances in the Northern California
region. Each instance offers 48 vCPUs and 384 GB of RAM,
and was additionally provisioned with 20 GB of swap space,
to account for transient spikes in memory requirements. We
allocated similar instances in the Ohio, Northern Virginia and
Oregon regions for wide-area network experiments.

8.1 Senate’s building blocks
We evaluate Senate’s building blocks described in §5—m-SI,
m-Sort, and m-SU. For each building block, we compare the
runtimes of each phase of the computation of Senate’s effi-
cient primitives to a similar implementation of the operator
as a single circuit in both LAN and WAN settings (Figures 4
to 6, and Figure 8). We observe substantial improvements for
our operators owing to reduced number of parties evaluating
each sub-circuit and the evaluation of various such circuits
in parallel (per §6). We also measure the improvement in
resource consumption due to Senate in Figure 7.
Multi-way set intersection circuit (m-SI). We compare the
evaluation time of an m-SI circuit across 16 parties with
varying input sizes in Figure 4b and observe runtime im-
provements ranging from 5.2×–6.2×. This is because our
decomposition enables the input size to stay constant for each
sub-computation, allowing us to reduce the input set size to
the final 16-party computation. Note that, while Senate can
compute a set intersection of 10K integers, AGMPC is un-
able to compute it for 2K integers, and runs out of memory
during the offline phase. Figures 4a and 8 plot the runtime of
a circuit with varying number of parties in LAN and WAN
settings respectively, and observe an improvement of up to
10×. This can be similarly attributed to our decomposable cir-
cuits, which reduce the data transferred across all the parties,
leading to significant improvements in the WAN setting.

Figures 7a and 7b plot the trend of the peak memory and



Fig. 8: Building blocks in WAN. Fig. 9: Query 1 with 16 parties. Fig. 10: Query 2 with 16 parties. Fig. 11: Query 3 with 16 parties.

(a) Query 1 with 100 inputs/party. (b) Query 3 with 600 inputs/party.

Fig. 12: Effect of query splitting on runtime.

Fig. 13: Network usage. Fig. 14: Queries in WAN.

total network consumption of Senate compared to AGMPC
with 1K integers across varying number of parties.

Multi-way Sort circuit (m-Sort). Figures 5a and 5b illus-
trate the runtimes of a sorting circuit with varying number
of parties and varying input sizes respectively. We observe
that Senate’s implementation is up to 4.3× faster for 16 par-
ties, and can scale to twice as many inputs as AGMPC. This
is also corroborated by the 3.3× reduction in peak memory
requirement for 600 integers and ∼780 GB reduction in the
amount of data transferred, as shown in Figures 7a and 7b.

Multi-way set union circuit (m-SU). Figure 6b plots the
runtime of a set union circuit with varying input sizes and 16
parties. As discussed in §5, an m-SU circuit can be expressed
as Dedup ◦m-Sort. Hence, we expect to trends similar to
the m-Sort circuit. However, we observed a stark increase in
runtime for the single circuit evaluation of 600 integers across
16 parties due to the exhaustion of the available memory in
the system and subsequent use of swap space (see Figure 7a).
We observe a similar trend in Figures 6a and 8.

8.2 End-to-end performance
8.2.1 Representative queries
We now evaluate the performance of Senate on the three rep-
resentative queries discussed in §2 with a varying number of
parties (Figures 9 to 11). In addition, we quantify the benefit
of Senate’s query splitting for different filter factors, i.e., the
fraction of inputs filtered as a result of any local computation

(Figure 12). We also measure the total network usage of the
queries in Figure 13; and Figure 14 plots the performance of
the queries in a WAN setting.

Query 1 (Medical study). Figure 9 plots the runtime of Sen-
ate and AGMPC on the medical example query with varying
input sizes. Note that, the input to the circuit for a query con-
sists of all the values in the row required to compute the final
result. We observe a performance improvement of 1.3× for
an input size of 100 rows, and are also able to scale to higher
input sizes. Figure 12a illustrates the benefit of Senate’s con-
sistent and verified query splitting for different filter factors.
We compare the single circuit implementation of the query
for 100 inputs per party, and are able to achieve a runtime im-
provement of 22× for a filter factor of 0.1. The improvement
in network consumption follows a similar trend, reducing
usage by ∼23× with a filter factor of 0.1 (Figure 13).

Query 2 (Prevent password reuse). Figure 10 plots the
runtime of Senate and AGMPC with varying input sizes. Each
row in this query consists of a 32 bit user identifier, and a 256
bit password hash. Since the query involves a group-by with
aggregates, which is mapped to an extended m-SU (per §5),
we observe a trend similar to Figure 6b. We remark that this
query does not benefit from Senate’s query splitting.

Query 3 (Credit scoring). We evaluate the third query with
16 parties and varying input sizes in Figure 11, and observe
that Senate is 10× faster than AGMPC for 600 input rows,
and is able to scale to almost 10 times the input size. The
introduction of a local filter into the query, with a filter factor
of 0.1 reduces the runtime by 100×. We attribute this to our
efficient m-SI implementation which optimally splits the set
intersection and parallelizes its execution across parties. The
reduction in network usage (Figure 13) is also similar.

In the WAN setting, the improvement in query performance
with Senate largely mimics the LAN setting; Figure 14 plots
the results in the absence of query splitting (i.e., filter factor of
1). Overall, we find that Senate MPC decomposition protocol
alone improves performance by up to an order of magnitude
over the baseline. In addition, Senate’s query splitting tech-
nique can further improve performance by another order of
magnitude, depending on the filter factor.
8.2.2 TPC-H benchmark
To stress test Senate on more complex query structures, we
repeat the performance experiment by evaluating Senate on
the TPC-H benchmark [76], an industry-standard analytics



Fig. 15: Senate’s performance on TPC-H queries.

Fig. 16: Accuracy of cost model. Fig. 17: Semi-honest baselines

benchmark. The benchmark comprises a rich set of 22 queries
on data split across 8 tables. The query structures are com-
plex: for example, query 5 involves 5 joins across 6 tables,
several filters, cross-column multiplications, aggregates over
groups, and a sort. Existing benchmarks for analytical queries
(including TPC-H) have no notion of collaborations of parties,
so we created a multi-party version of TPC-H by assuming
that each table is held by a different party.

We measure Senate’s performance on 13 out of these 22
queries; the other queries are either single-table queries, or
perform operations that Senate currently does not support
(namely, substring matching, regular expressions, and UDFs).
For parity, we assume 1K inputs per party across all queries,
and a filter factor of 0.1 for local computation that results
from Senate’s query splitting. Figure 15 plots the results.
Overall, Senate improves performance by 3× to 145× over
the AGMPC baseline across 12 of the 13 queries; query 8
runs out of memory in the baseline.

8.3 Accuracy of Senate’s cost model
We evaluate our cost model (from §7.2) using Senate’s circuit
primitives. We compute the costs predicted by the cost model
for the primitives, and compare them with the measured cost
of an actual execution. As detailed in §7.2, the cost model
does not consider the function independent computation in
the offline phase of the MPC protocol as it does not lie in
the critical path of query evaluation; we therefore ignore the
function independent components from the measured cost.
Figure 16 shows that our theoretical cost model approximates
the actual costs well, with an average error of ∼20%.

8.4 Senate versus other protocols
Custom PSI protocols. There is a rich literature on custom
protocols for PSI operations. While custom protocols are
faster than general-purpose systems like Senate, their func-
tionality naturally remains limited. We quantify the tradeoff
between generality and performance by comparing Senate’s
PSI cost to that of custom PSI protocols. We compare Sen-

ate with the protocol of Zhang et al. [83], a state-of-the-art
protocol for multiparty PSI with malicious security.3 The pro-
tocol implementation is not available, so we compare it with
Senate based on the performance numbers reported by the au-
thors, and replicate Senate’s experiments on similar capacity
servers. Overall, we find that a 4-party PSI of 212 elements
per party takes ∼3 s using the custom protocol in the online
phase, versus ∼30 s in Senate, representing a 10× overhead.

Arithmetic MPC. Senate builds upon a Boolean MPC
framework instead of arithmetic MPC. We validate our de-
sign choice by comparing the performance of Senate with that
of SCALE-MAMBA [74], a state-of-the-art arithmetic MPC
framework. We find that though arithmetic MPC is 3× faster
than Senate for aggregation operations alone (as expected),
this benefit doesn’t generalize. In Senate’s target workloads,
aggregations are typically performed on top of operations
such as joins and group by, as exemplified by our represen-
tative queries and the TPC-H query mix. For these queries
(which also represent the general case), Senate is over two
orders of magnitude faster. More specifically, we measure the
latency of (i) a join with sum operation, and (ii) a group by
with sum operation, across 4 parties with 256 inputs per party;
we find that Senate is faster by 550× and 350× for the two
operations, respectively. The reason for this disparity is that
joins and group by operations rely almost entirely on logical
operations such as comparisons, for which Boolean MPC is
much more suitable than arithmetic MPC.

Semi-honest systems. We quantify the overhead of mali-
cious security by comparing the performance of Senate with
semi-honest baselines. To the best of our knowledge, we do
not know of any modern m-party semi-honest garbled circuit
frameworks faster than AGMPC (even though it’s maliciously
secure). Therefore, we implement and evaluate a semi-honest
version of AGMPC ourselves, and compare Senate against
it in Figure 17. AGMPC-SH refers to the semi-honest base-
line with monolithic circuit execution. We additionally note
that Senate’s techniques for decomposing circuits translate
naturally to the semi-honest setting, without the need for veri-
fying intermediate outputs. Hence, we also implement a semi-
honest version of Senate atop AGMPC-SH that decomposes
queries across parties. We do not compare Senate to prior
semi-honest multi-party systems SMCQL and Conclave, as
their current implementations only support 2 to 3 parties.

Figure 17 plots the runtime of m-SI, m-SU and m-Sort
across 16 parties, with 1K, 600 and 600 inputs per party re-
spectively. We observe that Senate-SH yields performance
benefits ranging from 2.7–8.7× when compared to AGMPC-

3We note that the protocol of Zhang et al. provides malicious security
only against adversaries that do not simultaneously corrupt two parties, while
Senate is secure against arbitrary corruptions. However, the only custom
protocols we’re aware of that tolerate arbitrary corruptions (for more than
two parties) either rely on expensive public-key cryptography (and are slower
than general-purpose MPC, which have improved tremendously since these
proposals) [18, 24], or do not provide an implementation [41].



SH. Senate’s malicious security, however, comes with an over-
head of 4.4× compared to Senate-SH. We also measure the
end-to-end performance of the three sample queries, and find
that Senate-SH yields performance benefits similar to Fig-
ures 9 to 11 when compared to AGMPC-SH. At the same
time, we observe a maximum overhead of 3.6× when running
the queries in a maliciously-secure setting.

9 Limitations and Discussion
Applicability of Senate’s techniques. Senate works best
for operations that can be naturally decomposed into a tree.
While many SQL queries fit this structure, not all of them do.
A general case is one where the same relation is fed as input
to two different operations (or nodes in the query tree). For
example, consider a collaboration of 3 parties, where each
party Pi holds a relation Ri, who wish to compute the join
(R1∪R2)onR3. In the unencrypted setting, we can decompose
the operation by computing pairwise joins R1onR3 and R2onR3,
and then take the union of the results. Unfortunately, this de-
composition doesn’t work in Senate because it produces a
DAG (a node with two parents) and not a tree. Hence, a mali-
cious P3 may use different values for R3 across the pairwise
joins, leading to an input consistency issue. In such cases,
Senate falls back to monolithic MPC for the operation.

Overall, Senate’s techniques do not universally benefit all
classes of computations, yet they encompass important and
common analytics queries, as our sample queries exemplify.
Verifiability of SQL operators. As described in §7, for
simplicity, Senate’s compiler requires that each node in the
query tree outputs values that adhere to a well-defined set
of constraints. If a node constrains its outputs in any other
way, the compiler marks it as unverifiable. The reason is that
additional constraints restrict the space of possible inputs for
future nodes in the tree (and thereby, their outputs), making it
harder to deduce what needs to be verified.

For example, consider a group by operation over column a,
with a sum over column b per group. If the values in b also
have a range constraint, then deducing the possible values for
the sums per group is non-trivial (though technically possible).
Generalizing Senate’s compiler to accept a richer (or possibly,
arbitrary) set of constraints is interesting future work.
Additional SQL functionality. Senate does not support
SQL operations such as UDFs, substring matching, or regular
expressions, as we discuss in our analysis of the TPC-H bench-
mark §8.2.2. Adding support for missing operations requires
augmenting Senate’s compiler to (i) translate the operation
into a Boolean circuit; and (ii) verify the invertibility of the
operation as required by the MPC decomposition protocol.
While this is potentially straightforward for operations such
as substring matching and (some limited types of) regular
expressions, verifying the invertibility of arbitrary UDFs is
computationally a hard problem. Overall, extending Senate
to support wider SQL functionality (including a well-defined
class of UDFs) is an interesting direction for future work.

Differential privacy. Senate reveals the query results to all
the parties, which may leak information about the underlying
data samples. This leakage can potentially be mitigated by
extending Senate to support techniques such as differential
privacy (DP) [28] (which prevents leakage by adding noise to
the query results), similar to prior work [5, 62].

In principle, one can use a general-purpose MPC protocol
to implement a given DP mechanism for computing noised
queries in the standard model [27,29]—each party contributes
a share of the randomness, which is combined within MPC
to generate noise and perturb the query results, depending on
the mechanism. However, an open question is how the MPC
decomposition protocol of Senate interacts with a given DP
mechanism. The mechanism governs where and how the noise
is added to the computation, e.g., Chorus [46] rewrites SQL
queries to transform them into intrinsically private versions.
On the other hand, Senate decomposes the computation across
parties, which suggests that existing mechanisms may not be
directly transferable to Senate in the presence of malicious
adversaries while maintaining DP guarantees. As a result,
designing DP mechanisms that are compatible with Senate is
a potentially interesting direction for future work.

10 Related work
Secure multi-party computation (MPC) [9, 39, 81]. A va-
riety of MPC protocols have been proposed for malicious
adversaries and dishonest majority, with SPDZ [25, 48, 49]
and WRK [80] being the state-of-the-art for arithmetic and
Boolean (and for multi/constant rounds) settings, respectively.
WRK is more suited to our setting than SPDZ because rela-
tional queries map to Boolean circuits more efficiently. These
protocols execute a given computation as a monolithic cir-
cuit. In contrast, Senate decomposes a circuit into a tree, and
executes each sub-circuit only with a subset of parties.

MPC frameworks. There are several frameworks for com-
piling and executing programs using MPC, in malicious [30,
61, 74] as well as semi-honest [8, 14, 55, 57, 63, 72, 84] set-
tings. Senate builds upon the AGMPC framework [30] that
implements the maliciously secure WRK protocol.

Private set operations. A rich body of work exists on cus-
tom protocols for set operations (e.g., [22,23,32,51,52,54,69]).
Senate’s circuit primitives build upon protocols that express
the set operation as a Boolean circuit [12,43] in order to allow
further MPC computation over the results, rather than using
other primitives like oblivious transfer, oblivious PRFs, etc.

Secure collaborative systems. Similar to Senate, recent sys-
tems such as SMCQL [4] and Conclave [77] also target pri-
vacy for collaborative query execution using MPC. Other
proposals [3, 19] support such computation by outsourcing
it to two non-colluding servers. However, all these systems
assume the adversaries are semi-honest and optimize for this
use case, while Senate provides security against malicious
adversaries. Prio [21], Melis et al. [59], and Prochlo [11]



collect aggregate statistics across many users, as opposed to
general-purpose SQL. Further, the first two target semi-honest
security, while Prochlo uses hardware enclaves [58].

Similar objectives have been explored for machine learning
(e.g., [15,37,40,60,66,75,86]). Most of these proposals target
semi-honest adversaries. Others are limited to specific tasks
such as linear regression, and are not applicable to Senate.
Trusted hardware. An alternate to cryptography is to use
systems based on trusted hardware enclaves (e.g., [31,71,85]).
Such approaches can be generalized to multi-party scenarios
as well. However, enclaves require additional trust assump-
tions, and suffer from many side-channel attacks [16, 79].
Systems with differential privacy. DJoin [62] and DStress
[67] use black-box MPC protocols to compute operations
over multi-party databases, and use differential privacy [28]
to mask the results. Shrinkwrap [5] improves the efficiency of
SMCQL by using differential privacy to hide the sizes of inter-
mediate results (instead of padding them to an upper bound,
as in Senate). Flex [45] enforces differential privacy on the
results of SQL queries, though not in the collaborative case.
In general, differential privacy solutions are complementary
to Senate and can possibly be added atop Senate’s processing
by encoding them into Senate’s circuits (as discussed in §9).

11 Conclusion
We presented Senate, a system for securely computing an-
alytical SQL queries in a collaborative setup. Unlike prior
work, Senate targets a powerful adversary who may arbitrarily
deviate from the specified protocol. Compared to traditional
cryptographic solutions, Senate improves performance by se-
curely decomposing a big cryptographic computation into
smaller and parallel computations, planning an efficient de-
composition, and verifiably delegating a part of the query to
local computation. Our techniques can improve query runtime
by up to 145× when compared to the state-of-the-art.
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