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Abstract

Theft of confidential data is prevalent. In most applications, confidential data is stored at servers.
Thus, existing systems naturally try to prevent adversaries from compromising these servers. How-
ever, experience has shown that adversaries still find a way to break in and steal the data.

This dissertation shows how to protect data confidentiality even when attackers get access to all
the data stored on servers. We achieve this protection through a new approach to building secure
systems: building practical systems that compute on encrypted data, without access to the decryption
key. In this setting, we designed and built a database system (CryptDB), a web application platform
(Mylar), and two mobile systems, as well as developed new cryptographic schemes for them. We
showed that these systems support a wide range of applications with low overhead. The work in this
thesis has already had impact: Google uses CryptDB’s design for their new Encrypted BigQuery
service, and a medical application of Boston’s Newton-Wellesley hospital is secured with Mylar.
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CHAPTER 1

Introduction

This dissertation shows how to protect data confidentiality by taking a new approach to building
secure systems: building practical systems that compute on encrypted data.

2 1.1 Motivation

Leakage of confidential data plagues many computing systems today. For example, last year marks
a peak in data breaches: about 740 million records [All14] were exposed, the largest number so far.
Most applications store sensitive data at servers, so preventing data leakage from servers is a crucial
task towards protecting data confidentiality.

One potential approach [Bla93, Fer06] to protecting confidentiality is to encrypt the data stored
at the server and never send the decryption key to the server. This approach is promising because
an attacker at the server can access only encrypted data and thus does not see the data content.
However, this approach cannot be applied for most systems, such as databases, web applications,
mobile applications, machine learning tools, and others. The reason is that these systems need to
compute on the data and simply encrypting the data no longer allows such computation. Hence,
existing systems have a different strategy.

In fact, almost all systems deployed today follow the same strategy: try to prevent attackers
from breaking into servers. The reasoning behind this strategy is that, if attackers cannot break into
servers, they cannot access the data at these servers. This strategy has been implemented using a
multitude of approaches: checks at the operating system level, language-based enforcement of a
security policy, static or dynamic analysis of application code, checks at the network level, trusted
hardware, and others.

Nevertheless, data still leaks with these approaches. It turns out that attackers eventually break
in. To understand why it is hard to prevent attackers from getting access to server data, we now pro-
vide examples of common attackers and the reason they manage to subvert existing systems. First,
hackers notoriously break into systems by exploiting software bugs and gain access to sensitive data.
They succeed because software is complex and hard to make bug free. In some cases, the hackers
even manage to get administrative access to the servers [Sla11], thus gaining access to all the data
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stored there. The second threat appears in the context of cloud computing. More and more compa-
nies are outsourcing their data to external clouds, so their sensitive data becomes readily available
to curious cloud administrators [Tat10]. Most existing protection mechanisms do not prevent such
attackers because some cloud employees have full access to the servers and can simply bypass these
mechanisms. Finally, according to recent news, the government has been accessing a lot of private
data even without subpoena. In some cases, the government leverages physical access to the servers,
making it hard to protect the data stored on these.

Hence, despite existing protection systems, attackers eventually break in or bypass the protec-
tion, thus getting access to the data stored on servers.

2 1.2 Our contributions

The work in this thesis protects data confidentiality even against attackers who get access to all
server data.

We take a different approach from previous systems. We assume that all server data will leak and
aim to protect confidentiality even then. The strategy is to have the server store encrypted data and
process and compute on it efficiently, without receiving the decryption key. This approach protects
data confidentiality because the server receives only encrypted sensitive data: even if an attacker
breaks into the server and reads all the data stored there, the data is encrypted and the server never
receives the decryption key. In particular, the data remains encrypted during computation.

The cryptographic community has already proposed computing on encrypted data [RAD78,
Gen09]. However, the proposed schemes, such as fully homomorphic encryption (FHE), are pro-
hibitively slow for most systems: they are currently orders of magnitude slower than unencrypted
computation. A significant challenge lies in building practical systems.

We have designed and implemented practical systems that provide a rich functionality over
encrypted data: a database system (CryptDB [PRZB11]), a web application framework (Mylar
[PSV+14]), mobile systems (PrivStats [PBBL11] and VPriv [PBB09]), and a cloud storage sys-
tem (CloudProof [PLM+11]). As part of these projects, we contributed new system designs as well
as constructed new encryption schemes: mOPE [PLZ13] and ADJ-JOIN [PZ12] for order and join
operations in CryptDB, and multi-key search [PZ13] for searching in Mylar. We also constructed
functional encryption schemes [GKP+13a], [GKP+13b] that enable computing any function over
encrypted data.

Our systems have already had impact, as detailed in Chapter 7. Most notably, Google uses
CryptDB’s design for their new Encrypted BigQuery service, and a medical application of Boston’s
Newton-Wellesley hospital is secured with Mylar.

2 1.3 How to build practical systems

Building practical systems that compute on encrypted data is a challenging task. One reason is that
systems run complex software that manipulates sensitive data. Using cryptographic schemes that
compute complex functions over encrypted data results in a prohibitively slow system. Another
reason is that many systems take advantage of fast search data structures (such as database indexes),
and a practical system must preserve this performance over encrypted data. Yet another reason is that

16



Meta-strategy for building practical systems that compute on encrypted data.

Step 1. Understand the system and its common use cases. In particular, one should identify basic
operations (called primitives) that enable a wide class of applications.

◁ It turns out that, for many systems, only a small set of primitives is needed to support sig-
nificant functionality. For example, to support a large class of SQL database applications
in CryptDB (called OLTP [Cou] applications), one needs to support only six primitives:
get/put, sum, =, ≥, join by equality, and keyword search.

Step 2. Identify an efficient encryption scheme that enables each primitive.

◁ Since each encryption scheme is targeted at one specific operation, it can be efficient! For
example, in CryptDB, we used the Paillier cryptosystem [Pai99] for addition.

◁ This step must be completed with care. One should understand the various tools for com-
puting on encrypted data, and especially the tradeoff they provide between functionality,
security and performance. To aid in this endeavor, in Chapter 2, we present the various
ways one can compute on encrypted data with a focus on their practical use and on the
tradeoff they provide. Unfortunately, not all desired encryption schemes have already been
constructed, so one has to design new ones: for example, we designed mOPE [PLZ13] and
ADJ-JOIN [PZ12] for order and join operations in CryptDB, and multi-key search [PZ13]
for searching in Mylar.

Step 3. Design and build a system that uses these encryption schemes as building blocks.

◁ There are a few challenges here. One challenge is that different encryption schemes cannot
be combined arbitrarily; for example, even though a function may use only a combination
of + and ≥, this function may not be supported. The second challenge is to provide both
a meaningful level of security for the overall system and good overall performance, despite
the existing tension between security and performance. The question here is usually how to
find a meaningful tradeoff between security and performance.

Figure 1-1: Strategy to building practical systems that compute on encrypted data. The paragraphs
preceded by ◁ provide a discussion of the corresponding step.
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redesigning these systems in drastically different ways than the unencrypted design and requiring
significant changes to applications precludes adoption.

Given these challenges, how do we build practical systems that compute on encrypted data?
The solution comes from a synergy of systems and cryptography research. As discussed, if one

directly applies existing cryptography to a system, one uses a generic encryption scheme such as
fully homomorphic encryption to capture all the computations performed by the system. Unfor-
tunately, this approach results in a prohibitively slow system. The insight is to leverage the fact
that there are fast specialized encryption schemes. Namely, there are encryption schemes that target
one specific operation, typically a simple operation, and are fast at performing this operation over
encrypted data.

Since a system supports many operations, one might need to use a set of such specialized en-
cryption schemes and compose them to support more complex operations. Unfortunately, this goal
is challenging because different encryption schemes cannot be composed arbitrarily. Nevertheless,
an understanding of the target system and how it is used by applications enables finding techniques
for composing these encryption schemes.

We have developed a strategy for designing practical systems that compute on encrypted data
that incorporates this insight, shown in Fig. 1-1. While the second step of this strategy may re-
quire new cryptography, the third step requires inventing new systems techniques. For example,
in CryptDB, we designed a new query rewriting algorithm to support queries with nested or more
complex operations and a way to adjust the encryption of the data on the fly, while in Mylar, we
designed a method for verifying the key distribution performed by an untrusted server.

To sum up, enabling systems to run efficiently over encrypted data requires not only an under-
standing of the system, but also tailoring and creating cryptography for the system.

2 1.4 Systems we built

Within the vision underlined above, we designed and built a set of systems that differ in the overall
functionality they provide: CryptDB for securing databases, Mylar for securing web applications,
and VPriv and PrivStats for securing location privacy services. Fig. 1-2 shows how the threat models
of these systems relate to each other. In particular, in all systems, an attacker has access to all the
data at the servers. These servers store encrypted data and compute on it. The servers are different
based on the functionality of the system. The client owns the data and is able to decrypt it. Our work
on functional encryption could be viewed as a generalization of the computation in these systems.
We note that our systems focus on protecting data confidentiality and do not guarantee integrity,
freshness or availability of the data. Such properties are an interesting future work.

We now describe briefly each system, explaining how it follows the meta-strategy above, and
two new encryption schemes we designed.

◇ 1.4.1 CryptDB: Database confidentiality

We designed and built CryptDB [PRZB11, PRZB12], a practical database management system
(DBMS) that protects the confidentiality of data in databases: the database (DB) is encrypted and
the DB server computes SQL queries over the encrypted database without decrypting it. The data
and query results are decrypted only at the client application, inside a CryptDB proxy. The threat
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Figure 1-2: Overview of the different systems built within the vision of this thesis and how their threat
models relate to each other.

model [PRZB11, CJP+11] is that the DB server is under attack, but the application and the CryptDB
proxy are in a trusted location.

Running a DBMS over encrypted data is a challenging task because SQL consists of more than
a hundred different operations and because applications expect high performance from DBMSs.
To meet such expectations, CryptDB follows the strategy we presented above: it uses an efficient
encryption scheme for each of a set of basic operations (get/put, equality, order comparison, sum,
join, and keyword search) and combines the resulting six encryption schemes to support most SQL
queries. We designed two of these encryption schemes, mOPE [PLZ13] for order comparison and
ADJ-JOIN [PZ12] for join, because there did not exist suitable encryption schemes. These six
encryption schemes provide a range of tradeoffs between security and functionality: from strong
security with little ability for computation to weaker (but well-defined) security with richer func-
tionality.

CryptDB maximizes security for a set of queries issued by the application using a new tech-
nique called onions of encryptions [PRZB11]; at a high level, CryptDB stacks different encryp-
tion schemes on top of each other while respecting certain functionality and security properties.
CryptDB enables data owners to control the level of security on onions and thus protect sensitive
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fields with strong encryption schemes. When CryptDB cannot support a function (either because it
must maintain a certain security level or because the function is too complex), we propose splitting
the execution [SSPZ12] into smaller executions that can be handled by the server and doing some
re-encryption and computation at the proxy.

CryptDB is a practical system: it supports all queries from TPC-C, an industry standard bench-
mark, and decreases throughput by only 26% as compared to vanilla MySQL (a popular SQL
DBMS). Crucially, CryptDB requires no changes to existing DBMSs, and almost no change to
applications, making it easy to adopt.

◇ 1.4.2 mOPE: Order queries on an encrypted database

We designed and implemented mOPE [PLZ13] (mutable OPE), a protocol for computing order
operations, such as sorting and range queries, on an encrypted database; CryptDB needed such
a protocol. To perform order operations efficiently on an encrypted database, the literature has
already proposed order-preserving encryption (OPE): an encryption scheme where, if 𝑥 ≤ 𝑦, then
Enc(𝑥) ≤ Enc(𝑦). Naturally, the ideal security of such as scheme, as defined in the literature,
is that the server should learn nothing about the data other than order (which is the functionality
desired). Achieving ideal security turned out to be a difficult task: more than a dozen OPE schemes
were proposed, but all leaked more than order; even the state-of-the-art scheme leaks half of the
plaintext bits. Our scheme, mOPE, is the first to achieve ideal security and is also practical. The
insight behind the scheme is actually not from cryptography, but from systems: we observed that,
in a database setting, it is acceptable to have a ciphertext depend on a few other ciphertexts in the
database and to correct a small number of ciphertexts occasionally, whereas standard encryption
schemes do not consider this model. Updating ciphertexts is what we call mutation, and we proved
it is required to overcome inherent difficulties with standard OPE schemes.

◇ 1.4.3 Mylar: Securing web applications

CryptDB assumes the application server is trusted, but in some settings, one wants to protect against
attacks to the application server as well, such as when hosting a web application server on a cloud.
Therefore, we designed and built Mylar, a platform for writing web applications that protects data
confidentiality against attackers who compromise all servers: both the application and database
servers. Mylar stores encrypted data on the server, and encrypts/decrypts it only in users’ browsers
using each user’s key.

In comparison to CryptDB’s setting, two conceptual challenges arise. First, the data that the
server must process is no longer encrypted with only one entity’s key. Second, we aim to protect
against active adversaries; for example, attackers can modify data or insert Javascript in a webpage
to extract plaintext data from user browsers.

Importantly, Mylar enables common web application functionality. Mylar embraces the recent
shift towards client-side applications that permits processing one specific user’s data in his own
browser. However, some computation cannot be run in a user’s browser. To enable such computa-
tion, we apply our meta strategy: we identified two core operations which enable a broad class of
web applications. These are keyword search and data sharing. The first operation is implemented
using our new multi-key searchable encryption scheme [PZ13].

For data sharing, Mylar enables users to share data securely and dynamically even in the presence
of active adversaries at the server, through a new mechanism for distributing and certifying keys.
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It also ensures that an adversary did not modify the client-side application code via a new code
certification scheme.

Mylar is practical: porting 6 web applications to Mylar required changing just 35 lines of code
on average, and the performance overheads were modest and largely did not affect user experience.

◇ 1.4.4 Multi-key search: search over data encrypted with different keys

We designed the multi-key searchable encryption [PZ13] for Mylar, but it can also be used stan-
dalone. The motivation for the scheme is that the search computation in Mylar’s setting must be
run on the server because it can access a large amount of data, which would be costly to download
in a client’s browser. Consider that a user has access to 𝑛 documents, all of which are shared with
different users and hence encrypted with different keys. Hence, one needs a searchable encryption
scheme that can search over data encrypted with different keys. No such practical encryption scheme
existed for our setting, so we designed the multi-key search encryption scheme. The scheme allows
a server to search an encrypted word over all the documents a user has access to, without the server
learning the word searched for or the contents of the documents. An alternative to multi-key search
is to invoke a regular searchable encryption scheme (single-key) 𝑛 times, once for each key, but we
demonstrated this approach to be less efficient.

◇ 1.4.5 PrivStats and VPriv: Securing mobile systems

We built two systems, PrivStats [PBBL11] and VPriv [PBB09], that protect location privacy of users
in a mobile system from an untrusted server. The mobile setting consists of sensors or smartphones
uploading car movement information or information relevant to a social network to the server. The
server can compute useful aggregate statistics in PrivStats (e.g. traffic congestion, popularity of a
social location, events) or functions of each client’s path in VPriv (e.g., tolling cost in a month) by
only handling encrypted data.

2 1.5 Impact

CryptDB has already had impact. We provide a summary here, and delegate a complete discussion
to Chapter 7. Google recently deployed a system (Encrypted BigQuery) for performing SQL-like
queries over an encrypted database following (and giving credit to) CryptDB’s design. Their service
uses most of the encryption building blocks from CryptDB, as well as rewrites queries and anno-
tates the schema similarly to CryptDB. The software giant SAP AG implemented a system called
SEEED, which is CryptDB on top of their HANA database server. Researchers at MIT’s Lincoln
Labs use CryptDB’s design for their D4M Accumulo NoSQL engine employing four of CryptDB’s
building blocks. Moreover, volunteering users of sql.mit.edu, a SQL server at MIT, are running their
Wordpress instances on top of our CryptDB source code. Finally, on the academic front, CryptDB
spurred a rich line of work.

Also, Mylar was used to secure a medical application of Newton-Wellesley Hospital from Boston.
This is a web application collecting private information from patients suffering from the disease en-
dometriosis. The Mylar-enhanced application was tested on real patients of endometriosis and is
now in alpha deployment.

21



2 1.6 Theoretical work on functional encryption

One natural question with our meta-strategy above is how long and for how many other systems will
we manage to use it successfully? We managed to apply it to four systems so far, but new systems
may perform quite different operations. Our theoretical work on functional encryption in this thesis
seeks to answer an important subquestion: can we design encryption schemes for computing any
new operation over encrypted data?

In [GKP+13a] and [GKP+13b], we show that the answer is yes: one can design a functional
encryption scheme for any function. Briefly, in functional encryption, anyone can encrypt a value 𝑥
with a master public key mpk and obtain Enc(𝑥). The holder of the master secret key can provide
keys for functions, for example sk𝑓 for function 𝑓 . Anyone with access to a key sk𝑓 and Enc(𝑥) can
compute 𝑓 on Enc(𝑥) and obtain the result of the computation in plaintext form: 𝑓(𝑥); they learn
nothing else about 𝑥 than 𝑓(𝑥). Chapter 2 explains why we chose to study functional encryption
as opposed to homomorphic computation: it turns out that functional encryption provides a more
practical model of computation because it avoids certain unacceptable worst-case costs.

We devised two functional encryption schemes for general functions, where the model of com-
putation differs. The first scheme is for functions represented as circuits [GKP+13a]. The second
scheme is for functions represented as Turing machines [GKP+13b], which comes closer to real
programs because Turing machines are more realistic than circuits. For example, one can use loops
without having to unroll each loop into the maximum number of steps it can run for. In both these
schemes, we required that the number of functions to be computed be fixed a priori, a restriction
removed by subsequent work.

We also showed that our first FE scheme is a powerful primitive: using it, we solved a 30-year
old question in cryptography, how to reuse garbled circuits. Garbled circuits have been used in
numerous places in cryptography. In a garbling scheme, the holder of a secret key can garble a
function 𝑓 into a circuit 𝐺𝑓 , called the garbled circuit, and can also encode an input 𝑥 into Enc(𝑥).
𝐺𝑓 hides the function 𝑓 and Enc(𝑥) hides 𝑥, but using 𝐺𝑓 and Enc(𝑥), an untrusted server can
compute 𝑓(𝑥), while learning nothing else about 𝑓 or 𝑥. Since Yao’s first garbling scheme in 1986,
all garbling schemes designed required that the garbled circuit be ran only once (on one input) or
else security gets compromised. This was a waste: the effort to garble 𝑓 into 𝐺𝑓 was useful for only
one input. Using our scheme, a garbled circuit can be used an arbitrary number of times.

Our FE results are proofs of concept and are not efficient. Typically, one needs to design the
encryption scheme from scratch to achieve practicality. However, in cryptography, knowing that a
desired scheme is possible is already a crucial step towards designing it – the reason is that there is
a sensitive border between possibility and impossibility. There are numerous examples in cryptog-
raphy when researchers did not work on an important problem for many years out of belief that it is
not solvable; once there was a sense of possibility, lots of results came about. For example, the FHE
result in 2009 [Gen09] came after a decade of almost no work on the topic and spurred hundreds of
new results. The recent results in IO obfuscation share a similar story.

2 1.7 Thesis roadmap

The rest of the thesis is organized as follows. In Chapter 2, we present the ways in which one can
compute on encrypted data in a practical system. This knowledge not only forms the basis of our
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later discussions, but it also hopefully helps someone else design practical systems that compute on
encrypted data using our meta-strategy.

We then describe CryptDB in Chapter 3 and Mylar in Chapter 4. To illustrate a new encryption
scheme we designed for these systems, we then present our searchable encryption scheme that Mylar
builds on in Chapter 5. Then, we present our work on functional encryption in Chapter 6.

In Chapter 8, we present related work: we discuss both work related to our global approach in
this thesis and work related to a specific contribution.

Finally, in Chapter 9, we conclude and discuss future directions.
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CHAPTER 2

Approaches for computing on encrypted data
in a practical system

Many non-cryptography researchers think that the only tool for computing on encrypted data is fully
homomorphic encryption (FHE) [Gen09]. Many of them have also heard that FHE is overwhelm-
ingly impractical, thus ruining their hopes for practical computation on encrypted data. However,
in fact, there is a whole set of other tools for computing on encrypted data, some of them offering
promising performance in some settings.

In this chapter, we present the ways in which one can compute on encrypted data in a practical
system. These tools or methods provide an interesting spectrum over three coordinates: functional-
ity, security, and performance. Unfortunately, none of these tools alone suffices to enable running
the systems we have today over encrypted data. They typically fail to achieve a desired goal with
respect to at least one of these three coordinates.

Nevertheless, this thesis shows that understanding the tradeoffs these tools provide in function-
ality, security, and performance, coupled with an understanding of the targeted system, enables
building systems that achieve all three coordinates. Hence, below we describe each tool or method
from a functionality, security and performance standpoint, describing the tradeoff it strikes in this
space, and the settings in which it might be practical. Since our focus is this tradeoff, we keep the
cryptographic presentation of each tool informal, and instead reference outside formal presentations.

We divide these tools and methods in two categories: tools that leak (virtually) nothing about the
data and tools that reveal a well-defined function of the data. Many times, the information revealed
in the second category helps improve performance drastically.

2 2.1 Tools with no leakage

◇ 2.1.1 Fully homomorphic encryption

Functionality. FHE [Gen09] is a public-key encryption scheme [Gol04]. Using a key generation
algorithm, anyone can create a pair of keys: a secret key sk and a public key pk. Anyone can encrypt
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a value 𝑥 using the public key pk and obtain a ciphertext ̂︀𝑥 ← Enc(pk, 𝑥), where the ̂︀ notation
indicates encryption with FHE.

An evaluation algorithm Eval can evaluate functions over encrypted data. A function 𝑓 to be
evaluated is typically represented as a boolean circuit of polynomial size in the input size; often, the
gates in such a circuit compute either addition or multiplication in a finite field. Using the public key,
anyone can evaluate 𝑓 by computing Eval(pk, ̂︀𝑥1, . . . ,̂︁𝑥𝑛, 𝑓) and obtain ̂𝑓(𝑥1, . . . , 𝑥𝑛), the encrypted
computation result. This computation result, as well as any other FHE ciphertext, can be decrypted
with the secret key sk.

The current FHE schemes enable running virtually any function over encrypted data.

Security. FHE provides strong security guarantees, called semantic security [Gol04]. Intuitively,
semantic security requires that any adversary holding only the public key and a ciphertext cannot
learn any information about the underlying plaintext, other than its length.

Performance and use cases. Following Gentry’s scheme [Gen09], there have been a lot of FHE
schemes proposed [Gen09, DGHV10, SS10b, BV11b, BV11a, Vai11, BGV12, GHS12a, GHS12b,
LTV12, Bra12, GSW13], many of which improved the performance of the original scheme drasti-
cally. There is also an open-source implementation of FHE available, HElib [Hal13, HS14].

Nevertheless, as of now, FHE remains too slow for running arbitrary functions or for enabling
the complex systems we have today. For example, an evaluation (performed in 2012) of the AES
circuit reported a performance of 40 minutes per AES block on a machine with very large memory,
being more than six orders of magnitude slower than unencrypted AES evaluation.

There are at least three factors that make FHE slow: the cryptographic overhead, the model of
computation, and the strong security definition.

The cryptographic overhead consists of the time to perform operations for each gate of the cir-
cuit as well as other maintenance operations. Unfortunately, it is hard to characterize simply the
cryptographic overhead of FHE because there are a lot of parameters that affect its performance,
such as the multiplicative depth of the circuit to evaluate (the largest number of multiplication gates
in the circuit on any path from input to output), the security parameter (which indicates the security
level desired), the plaintext size, the exact FHE scheme used, the performance of various operations
in the finite fields used, etc. Lepoint and Naehrig [LN14] and Halevi [Hal13, GHS12b] provide per-
formance measurements for various settings of these parameters. From our experience with HElib,
whenever the multiplicative depth became more than about 3 or whenever we were encrypting non-
bit values, performance was becoming too slow (on the order of seconds as opposed to milliseconds)
on a commodity machine for the applications we had in mind.

Regarding the model of computation, in order to evaluate a program with FHE, the program must
be compiled into a boolean circuit. This could result in a large circuit with a nontrivial multiplication
depth.

Hence, if one uses FHE, they should choose a computation that can be easily expressed in addi-
tions and multiplications over a finite field, whose multiplicative depth is small, and whose values
encrypted are bits or otherwise live in a small plaintext domain.

The final factor, the security guarantees, brings about inherent impracticality. There are settings
in which FHE is prohibitively too slow even if its cryptographic overhead were zero. The reason is
that the security guarantee is so strong that it prevents certain needed optimizations.
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Consider the example of a database table containing data about employees in a company. One
column represents their salaries and the other column contains further personal information. Now
consider a query that requests all the rows where the salary column equals 100. A regular database
would execute this query using an index: a fast search tree that enables the database server to quickly
locate the items equal to 100 (in a logarithmic number of steps in the number of entries in the
database) and return each row in the database having this salary. However, using FHE, the database
server has to scan the whole database! The reason is that FHE prohibits the server from learning
anything about the data, even learning whether some data is worth returning or not. If the server
does not include a salary item in its computation, the server learns that the item did not match the
query, which is prohibited by FHE’s security. Such linear scans are prohibitively slow in many real
databases today. Moreover, with FHE, the database server cannot learn the number of rows that
should be in the result. Hence, the server has to return the worst-case number of rows possible. If
some rare queries need to return the whole database, the server has to return the whole database
every time, which can be prohibitively slow.

In Sec. 2.2.1, we will see how functional encryption addresses exactly this problem: it weakens
the security guarantee slightly, but just enough for the server to know what rows to return and how
to find them efficiently (without the server learning the contents of the rows) and avoid these linear
costs.

◇ 2.1.2 Partially homomorphic encryption (PHE)

Functionality. PHE has a similar definition with FHE with the difference that the function 𝑓 is a
specific function. Here are some examples.

∙ the Goldwasser-Micali [GM82] cryptosystem computes XOR of encrypted bits,

∙ Paillier [Pai99] computes addition,

∙ El Gamal [ElG84] computes multiplication,

∙ the BGN cryptosystem [BGN05] performs any number of additions, one multiplication, fol-
lowed by any number of additions.

Security. These offer the same strong security as FHE, namely semantic security.

Performance. These schemes are more efficient and closer to practice than FHE, due to their
specialized nature. For example, on a commodity machine, Paillier takes 0.005 ms to evaluate
addition on two encrypted values, and 9.7 ms to encrypt a value.

2 2.2 Tools with controlled leakage

The tools in this section do not provide semantic security: they enable the server to learn a function
of the data, but nothing else. One can choose the function of the data that the server learns: ideally,
this information is small and does not affect privacy, yet it can be exploited to increase performance
drastically. We’ve seen many cases in which this approach increased performance by orders of
magnitude as compared to a homomorphic solution, and brought a significantly slow solution into
the practical realm.

27



◇ 2.2.1 Functional encryption

Functionality. In functional encryption (FE) [SW05, GPSW06, KSW08, LOS+10, OT10, O’N10,
BSW11], anyone can encrypt an input 𝑥 with a master public key mpk and obtain Enc(mpk, 𝑥). The
holder of the master secret key can provide keys for functions, for example sk𝑓 for function 𝑓 . (Note
how each key is tied to a function!) Anyone with access to a key sk𝑓 and the ciphertext Enc(mpk, 𝑥)
can obtain the result of the computation in plaintext form, 𝑓(𝑥), by running Dec(sk𝑓 ,Enc(mpk, 𝑥)).

As with homomorphic encryption, there are both specialized FE schemes (that support one fixed
function) and generic schemes (that support any function).

Regarding specialized FE schemes, the works of Boneh and Waters [BW07], Katz, Sahai and
Waters [KSW08], Agrawal, Freeman and Vaikuntanathan [AFV11], and Shen, Shi and Waters
[SSW09] show functional encryption schemes for the inner product function.

Regarding general FE schemes, our work in this thesis (Chapter 6) constructs an FE scheme for
any general function (where the size of the ciphertext is short as described in Sec. 6.1). Followup
work [GGH+13] also constructs general FE in a stronger security model.

Security. Intuitively, the security of FE requires that the adversary learns nothing about 𝑥, other
than the computation result 𝑓(𝑥). Some schemes hide the function 𝑓 as well (but make some changes
to the interface of the scheme or to the precise security definition of the scheme).

Note the difference from homomorphic encryption, in which the server obtains an encrypted
computation result Enc(𝑓(𝑥)) and does not know 𝑓(𝑥). Hence, this is a weaker security than se-
mantic security; nevertheless, by choosing 𝑓 in a careful way, one can ensure that little information
leaks about 𝑥.

Performance and use cases. As with FHE, the practicality of a scheme depends on its crypto-
graphic overhead, model and security. In terms of cryptographic overhead, the general FE schemes
are currently prohibitively slow. In fact, so far, we are not even aware of the existence of an imple-
mentation of such schemes. On the other hand, the specialized functional encryption schemes could
be practical in some settings.

In terms of model and security, FE is closer to practice than FHE. If the cryptographic overhead
were engineered to be very small, unlike FHE, the model and security of FE no longer preclude
the practical applications discussed in Sec. 2.1.1 as follows. Recall the database example from
Sec. 2.1.1. With functional encryption, the client (owner of the database and master secret key),
gives the server keys for computing certain functions. For example, the client can provide the server
with a key for the function 𝑓100(𝑥) = (𝑥

?
= 100) that compares each salary 𝑥 to 100. Hence, for each

row of the database, the server learns one bit of information: whether the row matches the predicate
or not. Nevertheless, the server does not learn the content of those rows or the value 100. This
small amount of information drastically improves performance: the server no longer has to return
the whole database. (To enable the server to locate the value 100 efficiently, the client can also give
keys to the server for functions that help the server navigate the database index.)

◇ 2.2.2 Garbled circuits

Functionality. With a garbling scheme, someone can compute an “obfuscation” of a function
represented as a circuit 𝐶, called the garbled circuit, and an encoding of an input 𝑥, such that
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anyone can compute 𝐶(𝑥) using only the garbled circuit and the encoded input, without learning
anything else about 𝑥 or 𝐶. More concretely, a garbling scheme [Yao82, LP09, BHR12] consists
of three algorithms (Gb.Garble,Gb.Enc,Gb.Eval) as follows. Gb.Garble takes as input a circuit 𝐶,
and outputs the garbled circuit Γ and a secret key sk. In many constructions, the circuit 𝐶 consists
of binary gates such as XOR and AND. Gb.Enc(sk, 𝑥) takes an input 𝑥 and outputs an encoding 𝑐.
Finally, Gb.Eval(Γ, 𝑐) takes as input a garbled circuit Γ and an encoding 𝑐, and outputs a value 𝑦 that
must be equal to 𝐶(𝑥).

Many garbling schemes have the property that the secret key is of the form sk = {𝐿0
𝑖 , 𝐿

1
𝑖 }𝑛𝑖=1, a

set of pairs of labels, one for each bit of the input 𝑥, where 𝑛 is the number of bits of the input. The
encoding of an input 𝑥 is of the form 𝑐 = (𝐿𝑥1

1 , . . . , 𝐿
𝑥𝑛
𝑛 ) where 𝑥𝑖 is the 𝑖-th bit of 𝑥. Namely, it is

a selection of a label from each pair in sk based on the value of each bit in 𝑥.

Security. Some garbling schemes can provide both input privacy (the input to the garbled circuit
does not leak to the adversary) and circuit privacy (the circuit does not leak to the adversary).

Most garbling schemes are secure only for a one-time evaluation of the garbled circuit: namely,
the adversary can receive at most one encoding of an input to use with a garbled circuit; obtaining
more than one encoding breaks the security guarantee. This means that, to execute a circuit 𝐶 on
a list of encrypted inputs, one has to garble the circuit 𝐶 every time, for every input. The work to
garble 𝐶 is, in most cases, at least as large as evaluating 𝐶.

Our work in Chapter 6 provides garbling schemes that are reusable. However, our construction
is prohibitively impractical, and thus it represents only a proof of concept.

Performance and use cases. There are a lot of implementations of garbled circuits. The state-of-
the-art implementation is JustGarble [BHKR13].

There are at least two factors that affect the efficiency of a garbling scheme: the cost of converting
from the desired program to a garbled circuit representation, and the cryptographic cost of garbling
and evaluating the garbled circuit.

Recent work [BHKR13] managed to bring the cryptographic overhead of the garbled circuits
notably low. For example, JustGarble evaluates moderate-sized garbled-circuits at an amortized
cost of 23.2 cycles per gate, which corresponds to 7.25 nsec on a commodity hardware.

The conversion from a desired program to a circuit of AND and XOR gates is perhaps the most
expensive because it tends to create large circuits. There are generic tools that convert a C program
to a circuit [BDNP08], as well more efficient methods due to recent work [ZE13]. The most practical
solution, though, is to design the circuit for a certain program from scratch, by taking into account
some special structure of the program to compute, if that is possible. For example, Kolesnikov et
al. [KSS09] shows how to create a simple circuit for comparing two large integers.

Garbling schemes are often used along with oblivious transfer schemes; in such a scheme, party
A having an input 𝑥, can obtain the labels corresponding to 𝑥 from party B without 𝐵 knowing what
𝑥 is. An efficient state-of-the-art oblivious transfer scheme is due to Asharov et al. [ALSZ13].

◇ 2.2.3 Secure multi-party computation (MPC)

Functionality. With MPC [Yao82, GMW87], 𝑛 parties each having a private input (𝑥𝑖 being the
private input of party 𝑖) can compute jointly a function 𝑓 such that each party learns the result of the
computation 𝑓(𝑥1, . . . , 𝑥𝑛), but no one else learns more about the inputs to the other parties.
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There exist secure multi-party computation protocols for generic functions [Yao82, GMW87,
LP07, IPS08, LP09], as well as implementations for generic functions [HKS+10], [MNPS04],
[BDNP08], [BHKR13]. MPC protocols are often constructed using garbled circuits at their basis.

Besides these generic constructions, there are tens of specialized MPC algorithms, supporting
all kinds of functions.

Security. Intuitively, each party learns 𝑓(𝑥1, . . . , 𝑥𝑛) and nothing else about any other party’s
input. There are a number of variations on the security definition. For example, the security can
be defined with respect to honest-but-curious adversaries (adversaries that follow the protocol but
try to learn private data), or malicious adversaries (adversaries that can cheat in a variety of ways).

Performance and uses cases. The state-of-the-art tools for generic computation [HKS+10], [MNPS04],
[BDNP08], [BHKR13] are too inefficient to run general-purpose programs. Hence, they can be prac-
tical when they run simple programs.

To run slightly more complex computation, the hope is again specialization. The trick here is
to observe some structural properties specific to the computation of interest; then, hopefully, one
can exploit these properties to design an efficient MPC protocol. For example, the VPriv [PBB09]
protocol we designed uses MPC to compute certain aggregation functions on a driver’s path, such
as a toll cost. The common operations to these aggregation functions were summation and set
intersection. We designed a specialized protocol which was three orders of magnitude faster than
the then state-of-the-art generic tool. Besides VPriv, the literature contains tens of other specialized
and efficient MPC protocols [KSS13] for all kinds of computations. For guidelines on designing
efficient MPC protocols, Kolesnikov et al. [KSS13] provide a systematic guide.

One caveat to remember is that these protocols are interactive: they require communication
between the various parties involved and many times require that all parties be online at the same
time.

◇ 2.2.4 Specialized tools

There are a lot of schemes that can compute all kinds of specialized functions or fit in various
setups, while revealing only a well-defined amount of information to the server. Many of these are
very efficient because of their specialized nature. When designing a practical system, these provide
a gold mine of resources because of the efficiency they provide. For example, in CryptDB, 4 out of
the 5 encryptions that can compute fall in this category.

Here are two notable examples:

∙ Searchable encryption. There are all kinds of searchable encryption schemes such as [SWP00,
Goh, BCOP04, CM05, BBO07, CGKO06, BW07, BDDY08, ZNS11, YLW11, Raj12, KPR12,
CJJ+13, CGKO06, YLW11, ZNS11, Raj12] and the one presented in Chapter 5; Bosch et
al. [BHJP14] provide a recent survey. The common functionality of these schemes is to enable
a server to find whether some (encrypted) keyword appears in an encrypted document. Some
of the variations come from whether the server can search for conjunctions or disjunctions of
keywords, whether the server can use a search data structure to improve search time, whether
the server can search by some limited regular expressions, variations in security (whether the
server learns the number of the repetitions of a word in a document), and others.
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∙ Order-preserving encryption (OPE) [AKSX04, PLZ13] maintains the order of the plaintexts
in the cirphertexts. Namely, if 𝑥 ≤ 𝑦, then Enc(𝑥) ≤ Enc(𝑦). OPE has the advantage of
allowing existing servers (such as database servers) to compute range, order, or sort queries
on encrypted data in the same way as on unencrypted data. Further benefits are that exist-
ing software does not need to change to compute on the encrypted data and fast search data
structures still work.

∙ Deterministic encryption [BFO08] enables equality checks because the same value will yield
the same ciphertext, considering a fixed encryption key.

Despite all the tools we presented above, many times in practice, we need an encryption scheme
that does not exist. (as was the case with the order-preserving scheme for CryptDB and the multi-
key search for Mylar). Then, one needs to design a new tool and that tool most likely falls in this
category.

2 2.3 Final lessons

Here are a few simple lessons to take from the above discussion:

∙ There are a number of ways to compute on encrypted data and they provide different tradeoffs
in the space of functionality, security, and efficiency.

∙ The key to good performance is specialization: use or design a specialized encryption scheme,
or find a specialized model of the system setting of interest to plug into an existing generic
scheme.

∙ When homomorphic schemes cannot provide a practical solution, take advantage of controlled-
leakage tools. Choose the information revealed to the server in a way that enables crucial
system optimizations, while keeping a meaningful privacy guarantee.
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CHAPTER 3

Securing databases with CryptDB

2 3.1 Introduction

This chapter presents CryptDB, a database system that protects the confidentiality of the data in
the database by running SQL queries over the encrypted database. CryptDB is useful for database-
backed applications whose layout consists of an application server separate from the database server.
CryptDB addresses the threat of a curious database administrator (DBA) or database hacker who
tries to learn private data (e.g., health records, financial statements, personal information) by snoop-
ing on the DBMS server. CryptDB prevents the DBA from learning private data because the server
sees the database only in encrypted form and never receives the decryption key. Figure 3-1 shows
CryptDB’s architecture.

The challenge with executing SQL queries on an encrypted database lies in the tension between
minimizing the amount of confidential information revealed to the DBMS server and the ability to
efficiently execute a variety of queries. As we discussed in the introduction to this thesis, Chapter 1,
current approaches for computing over encrypted data are either too slow or do not provide adequate
confidentiality. On the other hand, encrypting data with a strong and efficient cryptosystem, such as
AES, would prevent the DBMS server from executing many SQL queries, such as queries that ask
for the number of employees in the “sales” department or for the names of employees whose salary
is greater than $60,000. In this case, the only practical solution would be to give the DBMS server
access to the decryption key, but that would allow an adversary to also gain access to all data.

The key insight that enables executing queries over encrypted data is that SQL uses a well-
defined set of operators, each of which we are able to support efficiently over encrypted data.
CryptDB uses two key ideas:

∙ The first is to execute SQL queries over encrypted data. CryptDB implements this idea using
a SQL-aware encryption strategy, which leverages the fact that all SQL queries are made up of
a well-defined set of primitive operators, such as equality checks, order comparisons, aggre-
gates (sums), and joins. By adapting known encryption schemes (for equality, additions, and
order checks) and using a new privacy-preserving cryptographic method for joins, CryptDB
encrypts each data item in a way that allows the DBMS to execute on the transformed data.
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(encrypted)

CryptDB UDFs
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CryptDB proxy server
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Figure 3-1: CryptDB’s architecture consisting of two parts: a database proxy and an unmodified
DBMS. CryptDB uses user-defined functions (UDFs) to perform cryptographic operations in the
DBMS. Rectangular and rounded boxes represent processes and data, respectively. Shading indi-
cates components added by CryptDB. Dashed lines indicate separation between users’ computers,
the application server, a server running CryptDB’s database proxy (which is usually the same as
the application server), and the DBMS server. CryptDB addresses the threat of a curious database
administrator with complete access to the DBMS server snooping on private data.

CryptDB is efficient because it mostly uses symmetric-key encryption, avoids fully homomor-
phic encryption, and runs on unmodified DBMS software (by using user-defined functions).

∙ The second technique is adjustable query-based encryption. Some encryption schemes leak
more information than others about the data to the DBMS server, but are required to pro-
cess certain queries. To avoid revealing all possible encryptions of data to the DBMS a priori,
CryptDB carefully adjusts the SQL-aware encryption scheme for any given data item, depend-
ing on the queries observed at run-time. To implement these adjustments efficiently, CryptDB
uses onions of encryption. Onions are a novel way to compactly store multiple ciphertexts
within each other in the database and avoid expensive re-encryptions.

We have implemented CryptDB on both MySQL and Postgres; our design and most of our im-
plementation should be applicable to most standard SQL DBMSes. An analysis of a 10-day trace of
126 million SQL queries from many applications at MIT suggests that CryptDB can support opera-
tions over encrypted data for 99.5% of the 128,840 columns seen in the trace. Our evaluation shows
that CryptDB has low overhead, reducing throughput by 26% for queries from TPC-C, compared
to unmodified MySQL. We evaluated the security of CryptDB on six real applications (including
phpBB, the HotCRP conference management software [Koh08], and the OpenEMR medical records
application); the results show that CryptDB protects most sensitive fields with highly secure encryp-
tion schemes.

The rest of this chapter is structured as follows. In S4.2, we discuss the threats that CryptDB
defends against in more detail. Then, we describe CryptDB’s design for encrypted query processing
in S3.3.In S3.4, we discuss limitations of our design, and ways in which it can be extended. Next,
we describe our prototype implementation in S4.6, and evaluate the performance and security of
CryptDB in S3.6 and conclude in S3.8. We compare CryptDB to related work in Chapter 8.

2 3.2 Security Overview

Figure 4-1 shows CryptDB’s architecture and threat model. CryptDB works by intercepting all SQL
queries in a database proxy, which rewrites queries to execute on encrypted data (CryptDB assumes
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that all queries go through the proxy). The proxy encrypts and decrypts all data, and changes some
query operators, while preserving the semantics of the query. The DBMS server never receives
decryption keys to the plaintext so it never sees sensitive data, ensuring that a curious DBA cannot
gain access to private information.

Although CryptDB protects data confidentiality, it does not ensure the integrity, freshness, or
completeness of results returned to the application. An adversary that compromises the application,
proxy, or DBMS server, or a malicious DBA, can delete any or all of the data stored in the database.
Similarly, attacks on user machines, such as cross-site scripting, are outside of the scope of CryptDB.

CryptDB guards against a curious DBA or other external attacker with full access to the data
stored in the DBMS server. Our goal is confidentiality (data secrecy), not integrity or availability.
The attacker is assumed to be passive: she wants to learn confidential data, but does not change
queries issued by the application, query results, or the data in the DBMS. This threat includes DBMS
software compromises, root access to DBMS machines, and even access to the RAM of physical
machines. With the rise in database consolidation inside enterprise data centers, outsourcing of
databases to public cloud computing infrastructures, and the use of third-party DBAs, this threat is
increasingly important.

Approach. CryptDB aims to protect data confidentiality against this threat by executing SQL
queries over encrypted data on the DBMS server. The proxy uses secret keys to encrypt all data
inserted or included in queries issued to the DBMS. Our approach is to allow the DBMS server to
perform query processing on encrypted data as it would on an unencrypted database, by enabling
it to compute certain functions over the data items based on encrypted data. For example, if the
DBMS needs to perform a GROUP BY on column 𝑐, the DBMS server should be able to determine
which items in that column are equal to each other, but not the actual content of each item. There-
fore, the proxy needs to enable the DBMS server to determine relationships among data necessary to
process a query. By using SQL-aware encryption that adjusts dynamically to the queries presented,
CryptDB is careful about what relations it reveals between tuples to the server. For instance, if the
DBMS needs to perform only a GROUP BY on a column 𝑐, the DBMS server should not know the
order of the items in column 𝑐, nor should it know any other information about other columns. If the
DBMS is required to perform an ORDER BY, or to find the MAX or MIN, CryptDB reveals the order of
items in that column, but not otherwise.

Guarantees. CryptDB provides confidentiality for data content and for names of columns and
tables; CryptDB does not hide the overall table structure, the number of rows, the types of columns,
or the approximate size of data in bytes.

In Sec. 3.7, we describe formally the guarantees CryptDB provides. Here, we explain them at an
intuitive level.

There are two types of security guarantees in CryptDB. CryptDB enables a data owner to an-
notate certain data columns with the “sensitive” annotation. For these columns, CryptDB provides
strong security guarantees (semantic security [Gol04] or a similar guarantee) that essentially leak
nothing about the data in those columns other than its length. One can imagine this security guar-
antee as having random values stored in a column with no correlation to the values encrypted other
than having the same length.

The other type of security is “best-effort”: for each column, CryptDB chooses the most secure
encryption scheme that can enable the desired set of queries. In this case, the security of CryptDB

35



is not perfect: CryptDB reveals to the DBMS server relationships among data items that correspond
to the classes of computation that queries perform on the database, such as comparing items for
equality, sorting, or performing word search. The granularity at which CryptDB allows the DBMS
to perform a class of computations is an entire column (or a group of joined columns, for joins),
which means that even if a query requires equality checks for a few rows, executing that query on
the server would require revealing that class of computation for an entire column. S3.3.1 describes
how these classes of computation map to CryptDB’s encryption schemes, and the information they
reveal.

More intuitively, CryptDB provides the following properties:

∙ Sensitive data is never available in plaintext at the DBMS server.

∙ The information revealed to the DBMS server depends on the classes of computation required
by the application’s queries, subject to constraints specified by the application developer in
the schema (S3.3.5):

1. If the application requests no relational predicate filtering on a column, nothing about
the data content leaks (other than its size in bytes).

2. If the application requests equality checks on a column, CryptDB’s proxy reveals which
items repeat in that column (the histogram), but not the actual values.

3. If the application requests order checks on a column, the proxy reveals the order of the
elements in the column.

∙ The DBMS server cannot compute the (encrypted) results for queries that involve computation
classes not requested by the application.

How close is CryptDB to “optimal” security? Fundamentally, optimal security is achieved by
recent work in theoretical cryptography enabling any computation over encrypted data [GGP10];
however, such proposals are prohibitively impractical. In contrast, CryptDB is practical, and in
S3.6.2, we demonstrate that it also provides significant security in practice. Specifically, we show
that all or almost all of the most sensitive fields in the tested applications remain encrypted with
highly secure encryption schemes. For such fields, CryptDB provides optimal security, assuming
their value is independent of the pattern in which they are accessed (which is the case for medical in-
formation, social security numbers, etc). CryptDB is not optimal for fields requiring more revealing
encryption schemes, but we find that most such fields are semi-sensitive (such as timestamps).

Finally, we believe that a passive attack model is realistic because malicious DBAs are more
likely to read the data, which may be hard to detect, than to change the data or query results, which
is more likely to be discovered. In S8.2.1, we cite related work on data integrity that could be used
in complement with our work. An active adversary that can insert or update data may be able to
indirectly compromise confidentiality. For example, an adversary that modifies an email field in the
database may be able to trick the application into sending a user’s data to the wrong email address,
when the user asks the application to email her a copy of her own data. Such active attacks on the
DBMS fall under the second threat model, which we now discuss.
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2 3.3 Queries over Encrypted Data

This section describes how CryptDB executes SQL queries over encrypted data. The DBMS ma-
chines and administrators are not trusted, but the application and the proxy are trusted.

CryptDB enables the DBMS server to execute SQL queries on encrypted data almost as if it were
executing the same queries on plaintext data. Existing applications do not need to be changed. The
DBMS’s query plan for an encrypted query is typically the same as for the original query, except that
the operators comprising the query, such as selections, projections, joins, aggregates, and orderings,
are performed on ciphertexts, and use modified operators in some cases.

CryptDB’s proxy stores a secret master key MK , the database schema, and the current encryption
layers of all columns. The DBMS server sees an anonymized schema (in which table and column
names are replaced by opaque identifiers), encrypted user data, and some auxiliary tables used by
CryptDB. CryptDB also equips the server with CryptDB-specific user-defined functions (UDFs)
that enable the server to compute on ciphertexts for certain operations.

Processing a query in CryptDB involves four steps:

1. The application issues a query, which the proxy intercepts and rewrites: it anonymizes each
table and column name, and, using the master key MK , encrypts each constant in the query
with an encryption scheme best suited for the desired operation (S3.3.1).

2. The proxy checks if the DBMS server should be given keys to adjust encryption layers before
executing the query, and if so, issues an UPDATE query at the DBMS server that invokes a UDF
to adjust the encryption layer of the appropriate columns (S3.3.2).

3. The proxy forwards the encrypted query to the DBMS server, which executes it using standard
SQL (occasionally invoking UDFs for aggregation or keyword search).

4. The DBMS server returns the (encrypted) query result, which the proxy decrypts and returns
to the application.

◇ 3.3.1 SQL-aware Encryption

We now describe the encryption types that CryptDB uses, including a number of existing cryptosys-
tems, an optimization of a recent scheme, and a new cryptographic primitive for joins. For each
encryption type, we explain the security property that CryptDB requires from it, its functionality,
and how it is implemented.

Random (RND). RND provides the maximum security in CryptDB: indistinguishability under an
adaptive chosen-plaintext attack (IND-CPA); the scheme is probabilistic, meaning that two equal
values are mapped to different ciphertexts with overwhelming probability. On the other hand, RND
does not allow any computation to be performed efficiently on the ciphertext. An efficient construc-
tion of RND is to use a block cipher like AES or Blowfish in CBC mode together with a random
initialization vector (IV). (We mostly use AES, except for integer values, where we use Blowfish
for its 64-bit block size because the 128-bit block size of AES would cause the ciphertext to be
significantly longer).

Since, in this threat model, CryptDB assumes the server does not change results, CryptDB does
not require a stronger IND-CCA2 construction (which would be secure under a chosen-ciphertext
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attack). However, it would be straightforward to use an IND-CCA2-secure implementation of RND
instead, such as a block cipher in UFE mode [Des00], if needed.

Deterministic (DET). DET has a slightly weaker guarantee, yet it still provides strong security:
it leaks only which encrypted values correspond to the same data value, by deterministically gener-
ating the same ciphertext for the same plaintext. This encryption layer allows the server to perform
equality checks, which means it can perform selects with equality predicates, equality joins, GROUP
BY, COUNT, DISTINCT, etc.

In cryptographic terms, DET should be a pseudo-random permutation (PRP) [Gol01]. For 64-bit
and 128-bit values, we use a block cipher with a matching block size (Blowfish and AES respec-
tively); we make the usual assumption that the AES and Blowfish block ciphers are PRPs. We pad
smaller values out to 64 bits, but for data that is longer than a single 128-bit AES block, the standard
CBC mode of operation leaks prefix equality (e.g., if two data items have an identical prefix that is
at least 128 bits long). To avoid this problem, we use AES with a variant of the CMC mode [HR03],
which can be approximately thought of as one round of CBC, followed by another round of CBC
with the blocks in the reverse order. Since the goal of DET is to reveal equality, we use a zero IV
(or “tweak” [HR03]) for our AES-CMC implementation of DET.

Order-preserving encryption (OPE). OPE allows order relations between data items to be estab-
lished based on their encrypted values, without revealing the data itself. If 𝑥 < 𝑦, then OPE𝐾(𝑥) <
OPE𝐾(𝑦), for any secret key 𝐾. Therefore, if a column is encrypted with OPE, the server can per-
form range queries when given encrypted constants OPE𝐾(𝑐1) and OPE𝐾(𝑐2) corresponding to the
range [𝑐1, 𝑐2]. The server can also perform ORDER BY, MIN, MAX, SORT, etc.

OPE is a weaker encryption scheme than DET because it reveals order. Thus, the CryptDB
proxy will only reveal OPE-encrypted columns to the server if users request order queries on those
columns. OPE has provable security guarantees [BCLO09]: the encryption is equivalent to a random
mapping that preserves order.

The scheme we use [BCLO09] is the first provably secure such scheme. Until CryptDB, there
was no implementation nor any measure of the practicality of the scheme. The direct implementation
of the scheme took 25 ms per encryption of a 32-bit integer on an Intel 2.8 GHz Q9550 processor.
We improved the algorithm by using AVL binary search trees for batch encryption (e.g., database
loads), reducing the cost of OPE encryption to 7 ms per encryption without affecting its security.
We also implemented a hypergeometric sampler that lies at the core of OPE, porting a Fortran
implementation from 1988 [KS88].

We remark that, after publishing CryptDB, we designed a new order-preserving encryption
scheme, called mOPE [PLZ13]. The ideal security property from an OPE scheme is that it reveals no
information to the server about the plaintext data other than its order. The scheme above [BCLO09]
reveals some information beyond order; in constrast, mOPE is the first scheme to reveal only order.
Our implementation and evaluation results in this chapter are based on [BCLO09]. Nevertheless, in
our mOPE paper [PLZ13], we compare mOPE with the scheme of [BCLO09] and show that mOPE
is significantly faster in many cases.

Homomorphic encryption (HOM). HOM is a secure probabilistic encryption scheme (IND-CPA
secure), allowing the server to perform computations on encrypted data with the final result de-
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crypted at the proxy. While fully homomorphic encryption is prohibitively slow [Coo09], homo-
morphic encryption for specific operations is efficient. To support summation, we implemented the
Paillier cryptosystem [Pai99]. With Paillier, multiplying the encryptions of two values results in
an encryption of the sum of the values, i.e., HOM𝐾(𝑥) · HOM𝐾(𝑦) = HOM𝐾(𝑥 + 𝑦), where the
multiplication is performed modulo some public-key value. To compute SUM aggregates, the proxy
replaces SUM with calls to a UDF that performs Paillier multiplication on a column encrypted with
HOM. HOM can also be used for computing averages by having the DBMS server return the sum
and the count separately, and for incrementing values (e.g., SET id=id+1), on which we elaborate
shortly.

With HOM, the ciphertext is 2048 bits. In theory, it should be possible to pack multiple values
from a single row into one HOM ciphertext for that row, using the scheme of Ge and Zdonik [GZ07],
which would result in an amortized space overhead of 2× (e.g., a 32-bit value occupies 64 bits) for
a table with many HOM-encrypted columns. However, we have not implemented this optimization
in our prototype. This optimization would also complicate partial-row UPDATE operations that reset
some—but not all—of the values packed into a HOM ciphertext.

Join (JOIN and OPE-JOIN). A separate encryption scheme is necessary to allow equality joins
between two columns, because we use different keys for DET to prevent cross-column correlations.
JOIN also supports all operations allowed by DET, and also enables the server to determine repeat-
ing values between two columns. OPE-JOIN enables joins by order relations. We provide a new
cryptographic scheme for JOIN and we discuss it in S3.3.4.

Word search (SEARCH). SEARCH is used to perform searches on encrypted text to support
operations such as MySQL’s LIKE operator. We implemented the cryptographic protocol of Song et
al. [SWP00], which was not previously implemented by the authors; we also use their protocol in a
different way, which results in better security guarantees. For each column needing SEARCH, we
split the text into keywords using standard delimiters (or using a special keyword extraction function
specified by the schema developer). We then remove repetitions in these words, randomly permute
the positions of the words, and then encrypt each of the words using Song et al.’s scheme, padding
each word to the same size. SEARCH is nearly as secure as RND: the encryption does not reveal
to the DBMS server whether a certain word repeats in multiple rows, but it leaks the number of
keywords encrypted with SEARCH; an adversary may be able to estimate the number of distinct
or duplicate words (e.g., by comparing the size of the SEARCH and RND ciphertexts for the same
data).

When the user performs a query such as SELECT * FROM messages WHERE msg LIKE "%
alice %", the proxy gives the DBMS server a token, which is an encryption of alice. The server
cannot decrypt the token to figure out the underlying word. Using a user-defined function, the DBMS
server checks if any of the word encryptions in any message match the token. In our approach, all
the server learns from searching is whether a token matched a message or not, and this happens only
for the tokens requested by the user. The server would learn the same information when returning
the result set to the users, so the overall search scheme reveals the minimum amount of additional
information needed to return the result.

Note that SEARCH allows CryptDB to only perform full-word keyword searches; it cannot
support arbitrary regular expressions. For applications that require searching for multiple adjacent
words, CryptDB allows the application developer to disable duplicate removal and re-ordering by
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Figure 3-2: Onion encryption layers and the classes of computation they allow. Onion names stand
for the operations they allow at some of their layers (Equality, Order, Search, and Addition). In
practice, some onions or onion layers may be omitted, depending on column types or schema anno-
tations provided by application developers (S3.3.5). DET and JOIN are often merged into a single
onion layer, since JOIN is a concatenation of DET and JOIN-ADJ (S3.3.4). A random IV for RND
(S3.3.1), shared by the RND layers in Eq and Ord, is also stored for each data item.

annotating the schema, even though this is not the default. Based on our trace evaluation, we find
that most uses of LIKE can be supported by SEARCH with such schema annotations. Of course, one
can still combine multiple LIKE operators with AND and OR to check whether multiple independent
words are in the text.

◇ 3.3.2 Adjustable Query-based Encryption

A key part of CryptDB’s design is adjustable query-based encryption, which dynamically adjusts
the layer of encryption on the DBMS server. Our goal is to use the most secure encryption schemes
that enable running the requested queries. For example, if the application issues no queries that
compare data items in a column, or that sort a column, the column should be encrypted with RND.
For columns that require equality checks but not inequality checks, DET suffices. However, the
query set is not always known in advance. Thus, we need an adaptive scheme that dynamically
adjusts encryption strategies.

Our idea is to encrypt each data item in one or more onions: that is, each value is dressed in
layers of increasingly stronger encryption, as illustrated in Figures 3-2 and 3-3. Each layer of each
onion enables certain kinds of functionality as explained in the previous subsection. For example,
outermost layers such as RND and HOM provide maximum security, whereas inner layers such as
OPE provide more functionality.

Multiple onions are needed in practice, both because the computations supported by different
encryption schemes are not always strictly ordered, and because of performance considerations (size
of ciphertext and encryption time for nested onion layers). Depending on the type of the data (and
any annotations provided by the application developer on the database schema, as discussed in
S3.3.5), CryptDB may not maintain all onions for each column. For instance, the Search onion
does not make sense for integers, and the Add onion does not make sense for strings.

For each layer of each onion, the proxy uses the same key for encrypting values in the same
column, and different keys across tables, columns, onions, and onion layers. Using the same key
for all values in a column allows the proxy to perform operations on a column without having to
compute separate keys for each row that will be manipulated. Using different keys across columns
prevents the server from learning any additional relations. All of these keys are derived from the
master key MK . For example, for table 𝑡, column 𝑐, onion 𝑜, and encryption layer 𝑙, the proxy uses
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Employees

ID Name
23 Alice

Table1

C1-IV C1-Eq C1-Ord C1-Add C2-IV C2-Eq C2-Ord C2-Search
x27c3 x2b82 xcb94 xc2e4 x8a13 xd1e3 x7eb1 x29b0

Figure 3-3: Data layout at the server. When the application creates the table shown on the left,
the table created at the DBMS server is the one shown on the right. Ciphertexts shown are not
full-length.

the key
𝐾𝑡,𝑐,𝑜,𝑙 = PRPMK (table 𝑡, column 𝑐, onion 𝑜, layer 𝑙), (3.1)

where PRP is a pseudorandom permutation (e.g., AES).
Each onion starts out encrypted with the most secure encryption scheme (RND for onions Eq and

Ord, HOM for onion Add, and SEARCH for onion Search). As the proxy receives SQL queries from
the application, it determines whether layers of encryption need to be removed. Given a predicate
𝑃 on column 𝑐 needed to execute a query on the server, the proxy first establishes what onion layer
is needed to compute 𝑃 on 𝑐. If the encryption of 𝑐 is not already at an onion layer that allows 𝑃 ,
the proxy strips off the onion layers to allow 𝑃 on 𝑐, by sending the corresponding onion key to the
server. The proxy never decrypts the data past the least-secure encryption onion layer (or past some
other threshold layer, if specified by the application developer in the schema, S3.3.5).

CryptDB implements onion layer decryption using UDFs that run on the DBMS server. For
example, in Figure 3-3, to decrypt onion Ord of column 2 in table 1 to layer OPE, the proxy issues
the following query to the server using the DECRYPT RND UDF:

UPDATE Table1 SET

C2-Ord = DECRYPT RND(K, C2-Ord, C2-IV)

where 𝐾 is the appropriate key computed from Equation (3.1). At the same time, the proxy updates
its own internal state to remember that column C2-Ord in Table1 is now at layer OPE in the DBMS.
Each column decryption should be included in a transaction to avoid consistency problems with
clients accessing columns being adjusted.

Note that onion decryption is performed entirely by the DBMS server. In the steady state, no
server-side decryptions are needed, because onion decryption happens only when a new class of
computation is requested on a column. For example, after an equality check is requested on a
column and the server brings the column to layer DET, the column remains in that state, and future
queries with equality checks require no decryption. This property is the insight into why CryptDB’s
overhead is modest in the steady state (see S3.6): the server mostly performs typical SQL processing.

◇ 3.3.3 Executing over Encrypted Data

Once the onion layers in the DBMS are at the layer necessary to execute a query, the proxy trans-
forms the query to operate on these onions. In particular, the proxy replaces column names in a
query with corresponding onion names, based on the class of computation performed on that col-
umn. For example, for the schema shown in Figure 3-3, a reference to the Name column for an
equality comparison will be replaced with a reference to the C2-Eq column.

The proxy also replaces each constant in the query with a corresponding onion encryption of that
constant, based on the computation in which it is used. For instance, if a query contains WHERE Name
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= ‘Alice’, the proxy encrypts ‘Alice’ by successively applying all encryption layers corresponding
to onion Eq that have not yet been removed from C2-Eq.

Finally, the server replaces certain operators with UDF-based counterparts. For instance, the
SUM aggregate operator and the + column-addition operator must be replaced with an invocation of
a UDF that performs HOM addition of ciphertexts. Equality and order operators (such as = and <)
do not need such replacement and can be applied directly to the DET and OPE ciphertexts.

Once the proxy has transformed the query, it sends the query to the DBMS server, receives query
results (consisting of encrypted data), decrypts the results using the corresponding onion keys, and
sends the decrypted result to the application.

Read query execution. To understand query execution over ciphertexts, consider the example
schema shown in Figure 3-3. Initially, each column in the table is dressed in all onions of encryption,
with RND, HOM, and SEARCH as outermost layers, as shown in Figure 3-2. At this point, the
server can learn nothing about the data other than the number of columns, rows, and data size.

To illustrate when onion layers are removed, consider the query:

SELECT ID FROM Employees WHERE Name = ‘Alice’,

which requires lowering the encryption of Name to layer DET. To execute this query, the proxy first
issues the query

UPDATE Table1 SET C2-Eq = DECRYPT RND(𝐾T1 ,C2 ,Eq,RND, C2-Eq, C2-IV),

where column C2 corresponds to Name. The proxy then issues

SELECT C1-Eq, C1-IV FROM Table1 WHERE C2-Eq = x7..d,

where column C1 corresponds to ID, and where x7..d is the Eq onion encryption of “Alice” with keys
𝐾T1 ,C2 ,Eq,JOIN and 𝐾T1 ,C2 ,Eq,DET (see Figure 3-2). Note that the proxy must request the random IV
from column C1-IV in order to decrypt the RND ciphertext from C1-Eq. Finally, the proxy decrypts
the results from the server using keys 𝐾T1 ,C1 ,Eq,RND, 𝐾T1 ,C1 ,Eq,DET, and 𝐾T1 ,C1 ,Eq,JOIN, obtains
the result 23, and returns it to the application.

If the next query is SELECT COUNT(*) FROM Employees WHERE Name = ‘Bob’, no server-
side decryptions are necessary, and the proxy directly issues the query SELECT COUNT(*) FROM
Table1 WHERE C2-Eq = xbb..4a, where xbb..4a is the Eq onion encryption of “Bob” using
𝐾T1 ,C2 ,Eq,JOIN and 𝐾T1 ,C2 ,Eq,DET.

Write query execution. To support INSERT, DELETE, and UPDATE queries, the proxy applies the
same processing to the predicates (i.e., the WHERE clause) as for read queries. DELETE queries
require no additional processing. For all INSERT and UPDATE queries that set the value of a column
to a constant, the proxy encrypts each inserted column’s value with each onion layer that has not yet
been stripped off in that column.

The remaining case is an UPDATE that sets a column value based on an existing column value,
such as salary=salary+1. Such an update would have to be performed using HOM, to handle
additions. However, in doing so, the values in the OPE and DET onions would become stale. In
fact, any hypothetical encryption scheme that simultaneously allows addition and direct comparison
on the ciphertext is insecure: if a malicious server can compute the order of the items, and can
increment the value by one, the server can repeatedly add one to each field homomorphically until
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it becomes equal to some other value in the same column. This would allow the server to compute
the difference between any two values in the database, which is almost equivalent to knowing their
values.

There are two approaches to allow updates based on existing column values. If a column is
incremented and then only projected (no comparisons are performed on it), the solution is simple:
when a query requests the value of this field, the proxy should request the HOM ciphertext from
the Add onion, instead of ciphertexts from other onions, because the HOM value is up-to-date. For
instance, this approach applies to increment queries in TPC-C. If a column is used in comparisons
after it is incremented, the solution is to replace the update query with two queries: a SELECT of
the old values to be updated, which the proxy increments and encrypts accordingly, followed by an
UPDATE setting the new values. This strategy would work well for updates that affect a small number
of rows.

Other DBMS features. Most other DBMS mechanisms, such as transactions and indexing, work
the same way with CryptDB over encrypted data as they do over plaintext, with no modifications.
For transactions, the proxy passes along any BEGIN, COMMIT, and ABORT queries to the DBMS.
Since many SQL operators behave differently on NULLs than on non-NULL values, CryptDB ex-
poses NULL values to the DBMS without encryption. CryptDB does not currently support stored
procedures, although certain stored procedures could be supported by rewriting their code in the
same way that CryptDB’s proxy rewrites SQL statements.

The DBMS builds indexes for encrypted data in the same way as for plaintext. Currently, if the
application requests an index on a column, the proxy asks the DBMS server to build indexes on
that column’s DET, JOIN, OPE, or OPE-JOIN onion layers (if they are exposed), but not for RND,
HOM, or SEARCH. More efficient index selection algorithms could be investigated.

◇ 3.3.4 Computing Joins

There are two kinds of joins supported by CryptDB: equi-joins, in which the join predicate is based
on equality, and range joins, which involve order checks. To perform an equi-join of two encrypted
columns, the columns should be encrypted with the same key so that the server can see matching
values between the two columns. At the same time, to provide better privacy, the DBMS server
should not be able to join columns for which the application did not request a join, so columns that
are never joined should not be encrypted with the same keys.

If the queries that can be issued, or the pairs of columns that can be joined, are known a priori,
equi-join is easy to support: CryptDB can use the DET encryption scheme with the same key for
each group of columns that are joined together. S3.3.5 describes how the proxy learns the columns
to be joined in this case. However, the challenging case is when the proxy does not know the set of
columns to be joined a priori, and hence does not know which columns should be encrypted with
matching keys.

To solve this problem, we introduce a new cryptographic primitive, JOIN-ADJ (adjustable join),
which allows the DBMS server to adjust the key of each column at runtime. Intuitively, JOIN-ADJ
can be thought of as a keyed cryptographic hash with the additional property that hashes can be
adjusted to change their key without access to the plaintext. JOIN-ADJ is a deterministic function
of its input, which means that if two plaintexts are equal, the corresponding JOIN-ADJ values are
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also equal. JOIN-ADJ is collision-resistant, and has a sufficiently long output length (192 bits) to
allow us to assume that collisions never happen in practice.

JOIN-ADJ is non-invertible, so we define the JOIN encryption scheme as

JOIN(𝑣) = JOIN-ADJ(𝑣) ‖DET(𝑣),

where ‖ denotes concatenation. This construction allows the proxy to decrypt a JOIN(𝑣) column to
obtain 𝑣 by decrypting the DET component, and allows the DBMS server to check two JOIN values
for equality by comparing the JOIN-ADJ components.

Each column is initially encrypted at the JOIN layer using a different key, thus preventing any
joins between columns. When a query requests a join, the proxy gives the DBMS server an onion
key to adjust the JOIN-ADJ values in one of the two columns, so that it matches the JOIN-ADJ key
of the other column (denoted the join-base column). After the adjustment, the columns share the
same JOIN-ADJ key, allowing the DBMS server to join them for equality. The DET components of
JOIN remain encrypted with different keys.

Note that our adjustable join is transitive: if the user joins columns 𝐴 and 𝐵 and then joins
columns𝐵 and 𝐶, the server can join𝐴 and 𝐶. However, the server cannot join columns in different
“transitivity groups”. For instance, if columns 𝐷 and 𝐸 were joined together, the DBMS server
would not be able to join columns 𝐴 and 𝐷 on its own.

After an initial join query, the JOIN-ADJ values remain transformed with the same key, so no re-
adjustments are needed for subsequent join queries between the same two columns. One exception
is if the application issues another query, joining one of the adjusted columns with a third column,
which causes the proxy to re-adjust the column to another join-base. To avoid oscillations and to
converge to a state where all columns in a transitivity group share the same join-base, CryptDB
chooses the first column in lexicographic order on table and column name as the join-base. For 𝑛
columns, the overall maximum number of join transitions is 𝑛(𝑛− 1)/2.

For range joins, a similar dynamic re-adjustment scheme is difficult to construct due to lack of
structure in OPE schemes. Instead, CryptDB requires that pairs of columns that will be involved
in such joins be declared by the application ahead of time, so that matching keys are used for
layer OPE-JOIN of those columns; otherwise, the same key will be used for all columns at layer
OPE-JOIN. Fortunately, range joins are rare; they are not used in any of our example applications,
and are used in only 50 out of 128,840 columns in a large SQL query trace we describe in S3.6,
corresponding to just three distinct applications.

JOIN-ADJ construction. We now present an overview of our JOIN-ADJ construction. For a
formal cryptographic exposition and proof of security, see [PZ12]. Our algorithm uses elliptic-curve
cryptography (ECC). JOIN-ADJ𝐾(𝑣) is computed as

JOIN-ADJ𝐾(𝑣) := 𝑃𝐾·PRFK0
(𝑣), (3.2)

where 𝐾 is the initial key for that table, column, onion, and layer, 𝑃 is a point on an elliptic curve
(being a public parameter), and PRF𝐾0 is a pseudo-random function [Gol01] mapping values to
a pseudorandom number, such as AES𝐾0(SHA(𝑣)), with 𝐾0 being a key that is the same for all
columns and derived from MK . The “exponentiation” is in fact repeated geometric addition of
elliptic curve points; it is considerably faster than RSA exponentiation.

44



When a query joins columns 𝑐 and 𝑐′, each having keys𝐾 and𝐾 ′ at the join layer, the proxy com-
putes ∆𝐾 = 𝐾/𝐾 ′ (in an appropriate group) and sends it to the server. Then, given JOIN-ADJ𝐾′(𝑣)
(the JOIN-ADJ values from column 𝑐′) and ∆𝐾, the DBMS server uses a UDF to adjust the key in
𝑐′ by computing:

(JOIN-ADJ𝐾′(𝑣))Δ𝐾 = 𝑃𝐾′·PRFK0
(𝑣)·(𝐾/𝐾′)

= 𝑃𝐾·PRFK0
(𝑣) = JOIN-ADJ𝐾(𝑣).

Now columns 𝑐 and 𝑐′ share the same JOIN-ADJ key, and the DBMS server can perform an equi-join
on 𝑐 and 𝑐′ by taking the JOIN-ADJ component of the JOIN onion ciphertext.

At a high level, the security of this scheme is that the server cannot infer join relations among
groups of columns that were not requested by legitimate join queries, and that the scheme does not
reveal the plaintext. We proved the security of this scheme based on the standard Elliptic-Curve
Decisional Diffie-Hellman hardness assumption (see [PZ12]), and implemented it using a NIST-
approved elliptic curve.

◇ 3.3.5 Improving Security and Performance

Although CryptDB can operate with an unmodified and unannotated schema, as described above,
its security and performance can be improved through several optional optimizations, as described
below.

◁ Security Improvements:

The “sensitive” annotation. Data owners can specify that some data columns are sensitive. In
this case, CryptDB’s proxy will ensure that the data in those columns is encrypted only with strong
encryption schemes, providing semantic security [Gol04] or a similarly strong security guarantee.
This strategy means that virtually no information leaks about the data items in those columns, other
than their lengths. The encryption schemes that can be used with such columns are RND, HOM and,
if the fields in that column are unique, DET as well. This means that a number of operations can still
run on top of these columns, although the set of these operations is more limited than CryptDB’s
full set. The operations supported are select/insert/update/delete data items, addition, and, if the data
items in the column are unique, equality.

Minimum onion layers. Application developers can specify the lowest onion encryption layer that
may be revealed to the server for a specific column. In this way, the developer can ensure that the
proxy will not execute queries exposing sensitive relations to the server. For example, the developer
could specify that credit card numbers should always remain at RND or DET.

In-proxy processing. Although CryptDB can evaluate a number of predicates on the server, eval-
uating them in the proxy can improve security by not revealing additional information to the server.
One common use case is a SELECT query that sorts on one of the selected columns, without a LIMIT
on the number of returned columns. Since the proxy receives the entire result set from the server,
sorting these results in the proxy does not require a significant amount of computation, and does not

45



increase the bandwidth requirements. Doing so avoids revealing the OPE encryption of that column
to the server.

Training mode. CryptDB provides a training mode, which allows a developer to provide a trace
of queries and get the resulting onion encryption layers for each field, along with a warning in case
some query is not supported. The developer can then examine the resulting encryption levels to
understand what each encryption scheme leaks, as described in S4.2. If some onion level is too
low for a sensitive field, she should arrange to have the query processed in the proxy (as described
above), or to process the data in some other fashion, such as by using a local instance of SQLite.

Onion re-encryption. In cases when an application performs infrequent queries requiring a low
onion layer (e.g., OPE), CryptDB could be extended to re-encrypt onions back to a higher layer after
the infrequent query finishes executing. This approach reduces leakage to attacks happening in the
time window when the data is at the higher onion layer.

◁ Performance Optimizations:

Developer annotations. By default, CryptDB encrypts all fields and creates all applicable onions
for each data item based on its type. If many columns are not sensitive, the developer can instead
provide explicit annotations indicating the sensitive fields, and leave the remaining fields in plaintext.

Known query set. If the developer knows some of the queries ahead of time, as is the case for
many web applications, the developer can use the training mode described above to adjust onions
to the correct layer a priori, avoiding the overhead of runtime onion adjustments. If the developer
provides the exact query set, or annotations that certain functionality is not needed on some columns,
CryptDB can also discard onions that are not needed (e.g., discard the Ord onion for columns that
are not used in range queries, or discard the Search onion for columns where keyword search is not
performed), discard onion layers that are not needed (e.g., the adjustable JOIN layer, if joins are
known a priori), or discard the random IV needed for RND for some columns.

Ciphertext pre-computing and caching. The proxy spends a significant amount of time encrypt-
ing values used in queries with OPE and HOM. To reduce this cost, the proxy pre-computes (for
HOM) and caches (for OPE) encryptions of frequently used constants under different keys. Since
HOM is probabilistic, ciphertexts cannot be reused. Therefore, in addition, the proxy pre-computes
HOM’s Paillier 𝑟𝑛 randomness values for future encryptions of any data. This optimization reduces
the amount of CPU time spent by the proxy on OPE encryption, and assuming the proxy is occa-
sionally idle to perform HOM pre-computation, it removes HOM encryption from the critical path.

2 3.4 Discussion

CryptDB’s design supports most relational queries and aggregates on standard data types, such as
integers and text/varchar types. Additional operations can be added to CryptDB by extending its ex-
isting onions, or adding new onions for specific data types (e.g., spatial and multi-dimensional range
queries [SBC+07]). Alternatively, in some cases, it may be possible to map complex unsupported
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Databases Tables Columns
Complete schema 8,548 177,154 1,244,216
Used in query 1,193 18,162 128,840

Figure 3-4: Number of databases, tables, and columns on the sql.mit.edu MySQL server, used
for trace analysis, indicating the total size of the schema, and the part of the schema seen in queries
during the trace period.

operation to simpler ones (e.g., extracting the month out of an encrypted date is easier if the date’s
day, month, and year fields are encrypted separately).

There are certain computations CryptDB cannot support on encrypted data. For example, it
does not support both computation and comparison on the same column, such as WHERE salary >
age*2+10. CryptDB can process a part of this query, but it would also require some processing on
the proxy. In CryptDB, such a query should be (1) rewritten into a sub-query that selects a whole col-
umn, SELECT age*2+10 FROM . . ., which CryptDB computes using HOM, and (2) re-encrypted
in the proxy, creating a new column (call it aux) on the DBMS server consisting of the newly en-
crypted values. Finally, the original query with the predicate WHERE salary > aux should be run.
We have not been affected by this limitation in our test applications (TPC-C, phpBB, HotCRP, and
grad-apply).

2 3.5 Implementation

The CryptDB proxy consists of a C++ library and a Lua module. The C++ library consists of a
query parser; a query encryptor/rewriter, which encrypts fields or includes UDFs in the query; and
a result decryption module. To allow applications to transparently use CryptDB, we used MySQL
proxy [Tay] and implemented a Lua module that passes queries and results to and from our C++
module. We implemented our new cryptographic protocols using NTL [Sho09]. Our CryptDB
implementation consists of ∼18,000 lines of C++ code and ∼150 lines of Lua code, with another
∼10,000 lines of test code.

CryptDB is portable and we have implemented versions for both Postgres 9.0 and MySQL 5.1.
Porting CryptDB from Postgres to MySQL required changing only 86 lines of code, mostly in the
code for connecting to the MySQL server and declaring UDFs. As mentioned earlier, CryptDB does
not change the DBMS; we implement all server-side functionality with UDFs and server-side tables.
CryptDB’s design, and to a large extent our implementation, should work on top of any SQL DBMS
that supports UDFs.

2 3.6 Experimental Evaluation

In this section, we evaluate three aspects of CryptDB: the types of queries and applications CryptDB
is able to support, the level of security CryptDB provides, and the performance impact of using
CryptDB. For this analysis, we use seven applications as well as a large trace of SQL queries.

We note that CryptDB does not require any changes to existing applications because the CryptDB
proxy exports a SQL interface. This means that one can take an SQL-backed application that exists
today and run it on top of CryptDB with no changes. Similarly, we made no changes to MySQL,
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Application Total Consider Needs Needs Needs Non-plaintext cols. with MinEnc: Most sensitive
cols. for enc. plaintext HOM SEARCH RND SEARCH DET OPE cols. at HIGH

phpBB 563 23 0 1 0 21 0 1 1 6 / 6
HotCRP 204 22 0 2 1 18 1 1 2 18 / 18
grad-apply 706 103 0 0 2 95 0 6 2 94 / 94
OpenEMR 1, 297 566 7 0 3 526 2 12 19 525 / 540
MIT 6.02 15 13 0 0 0 7 0 4 2 1 / 1
PHP-calendar 25 12 2 0 2 3 2 4 1 3 / 4
TPC-C 92 92 0 8 0 65 0 19 8 —
sql.mit.edu 128, 840 128, 840 1, 094 1, 019 1, 125 80, 053 350 34, 212 13, 131 —
. . . with in-proxy 128, 840 128, 840 571 1, 016 1, 135 84, 008 398 35, 350 8, 513 —
processing
. . . contains pass 2, 029 2, 029 2 0 0 1, 936 0 91 0 —
. . . contains content 2, 521 2, 521 0 0 52 2, 215 52 251 3 —
. . . contains priv 173 173 0 4 0 159 0 12 2 —

Figure 3-5: Steady-state onion levels for database columns required by a range of applications
and traces. “Needs plaintext” indicates that CryptDB cannot execute the application’s queries over
encrypted data for that column. For the applications in the top group of rows, sensitive columns were
determined manually, and only these columns were considered for encryption. For the bottom group
of rows, all database columns were automatically considered for encryption. For sql.mit.edu, we
also show the results for columns containing a keyword (e.g., priv) which could indicate a sensitive
field. The rightmost column considers the application’s most sensitive database columns, and reports
the number of them that have MinEnc in HIGH (both terms are defined in S3.6.2).

making it thus easier to port CryptDB to another DBMS.

We analyze the functionality and security of CryptDB on three more applications, on TPC-C,
and on a large trace of SQL queries. The additional three applications are OpenEMR, an electronic
medical records application storing private medical data of patients; the web application of an MIT
class (6.02), storing students’ grades; and PHP-calendar, storing people’s schedules. The large trace
of SQL queries comes from a popular MySQL server at MIT, sql.mit.edu. This server is used
primarily by web applications running on scripts.mit.edu, a shared web application hosting
service operated by MIT’s Student Information Processing Board (SIPB). In addition, this SQL
server is used by a number of applications that run on other machines and use sql.mit.edu only
to store their data. Our query trace spans about ten days, and includes approximately 126 million
queries. Figure 3-4 summarizes the schema statistics for sql.mit.edu; each database is likely to
be a separate instance of some application.

Finally, we evaluate the overall performance of CryptDB on a query mix from TPC-C, and
perform a detailed analysis through microbenchmarks.

In the six applications (not counting TPC-C), we only encrypt sensitive columns, according to
a manual inspection. Some fields were clearly sensitive (e.g., grades, private message, medical
information), but others were only marginally so (e.g., the time when a message was posted). There
was no clear threshold between sensitive or not, but it was clear to us which fields were definitely
sensitive. In the case of TPC-C, we encrypt all the columns in the database in single-principal mode
so that we can study the performance and functionality of a fully encrypted DBMS. All fields are
considered for encryption in the large query trace as well.
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◇ 3.6.1 Functional Evaluation

To evaluate what columns, operations, and queries CryptDB can support, we analyzed the queries
issued by six web applications, the TPC-C queries, and the SQL queries from sql.mit.edu. The
results are shown in the left half of Figure 3-5.

CryptDB supports most queries; the number of columns in the “needs plaintext” column, which
counts columns that cannot be processed in encrypted form by CryptDB, is small relative to the
total number of columns. For PHP-calendar and OpenEMR, CryptDB does not support queries on
certain sensitive fields that perform string manipulation (e.g., substring and lowercase conversions)
or date manipulation (e.g., obtaining the day, month, or year of an encrypted date). However, if
these functions were precomputed with the result added as standalone columns (e.g., each of the
three parts of a date were encrypted separately), CryptDB would support these queries.

The next two columns, “needs HOM” and “needs SEARCH”, reflect the number of columns for
which that encryption scheme is needed to process some queries. The numbers suggest that these
encryption schemes are important; without these schemes, CryptDB would be unable to support
those queries.

Based on an analysis of the larger sql.mit.edu trace, we found that CryptDB should be able
to support operations over all but 1,094 of the 128,840 columns observed in the trace. The “in-
proxy processing” shows analysis results where we assumed the proxy can perform some lightweight
operations on the results returned from the DBMS server. Specifically, this included any operations
that are not needed to compute the set of resulting rows or to aggregate rows (that is, expressions that
do not appear in a WHERE, HAVING, or GROUP BY clause, or in an ORDER BY clause with a LIMIT, and
are not aggregate operators). With in-proxy processing, CryptDB should be able to process queries
over encrypted data over all but 571 of the 128,840 columns, thus supporting 99.5% of the columns.

Of those 571 columns, 222 use a bitwise operator in a WHERE clause or perform bitwise aggrega-
tion, such as the Gallery2 application, which uses a bitmask of permission fields and consults them
in WHERE clauses. Rewriting the application to store the permissions in a different way would allow
CryptDB to support such operations. Another 205 columns perform string processing in the WHERE
clause, such as comparing whether lowercase versions of two strings match. Storing a keyed hash
of the lowercase version of each string for such columns, similar to the JOIN-ADJ scheme, could
support case-insensitive equality checks for ciphertexts. 76 columns are involved in mathemati-
cal transformations in the WHERE clause, such as manipulating dates, times, scores, and geometric
coordinates. 41 columns invoke the LIKE operator with a column reference for the pattern; this
is typically used to check a particular value against a table storing a list of banned IP addresses,
usernames, URLs, etc. Such a query can also be rewritten if the data items are sensitive.

◇ 3.6.2 Security Evaluation

To understand the amount of information that would be revealed to the adversary in practice, we
examine the steady-state onion levels of different columns for a range of applications and queries. To
quantify the level of security, we define the MinEnc of a column to be the weakest onion encryption
scheme exposed on any of the onions of a column when onions reach a steady state (i.e., after the
application generates all query types, or after running the whole trace). We consider RND and HOM
to be the strongest schemes, followed by SEARCH, followed by DET and JOIN, and finishing with
the weakest scheme which is OPE. For example, if a column has onion Eq at RND, onion Ord at
OPE and onion Add at HOM, the MinEnc of this column is OPE.
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The right side of Figure 3-5 shows the MinEnc onion level for a range of applications and query
traces. We see that most fields remain at RND, which is the most secure scheme. For example,
OpenEMR has hundreds of sensitive fields describing the medical conditions and history of patients,
but these fields are mostly just inserted and fetched, and are not used in any computation. A number
of fields also remain at DET, typically to perform key lookups and joins. OPE, which leaks order,
is used the least frequently, and mostly for fields that are marginally sensitive (e.g., timestamps and
counts of messages). Thus, CryptDB’s adjustable security provides a significant improvement in
confidentiality over revealing all encryption schemes to the server.

To analyze CryptDB’s security for specific columns that are particularly sensitive, we define a
new security level, HIGH, which includes the RND and HOM encryption schemes, as well as DET
for columns having no repetitions (in which case DET is logically equivalent to RND). These are
highly secure encryption schemes leaking virtually nothing about the data. DET for columns with
repeats and OPE are not part of HIGH as they reveal relations to the DBMS server. The rightmost
column in Figure 3-5 shows that most of the particularly sensitive columns (again, according to
manual inspection) are at HIGH.

For the sql.mit.edu trace queries, approximately 6.6% of columns were at OPE even with in-
proxy processing; other encrypted columns (93%) remain at DET or above. Out of the columns that
were at OPE, 3.9% are used in an ORDER BY clause with a LIMIT, 3.7% are used in an inequality
comparison in a WHERE clause, and 0.25% are used in a MIN or MAX aggregate operator (some of
the columns are counted in more than one of these groups). It would be difficult to perform these
computations in the proxy without substantially increasing the amount of data sent to it.

Although we could not examine the schemas of applications using sql.mit.edu to determine
what fields are sensitive—mostly due to its large scale—we measured the same statistics as above for
columns whose names are indicative of sensitive data. In particular, the last three rows of Figure 3-5
show columns whose name contains the word “pass” (which are almost all some type of password),
“content” (which are typically bulk data managed by an application), and “priv” (which are typically
some type of private message). CryptDB reveals much less information about these columns than
an average column, almost all of them are supported, and almost all are at RND or DET.

Finally, we empirically validated CryptDB’s confidentiality guarantees by trying real attacks on
phpBB that have been listed in the CVE database [Nat11], including two SQL injection attacks
(CVE-2009-3052 & CVE-2008-6314), bugs in permission checks (CVE-2010-1627 & CVE-2008-
7143), and a bug in remote PHP file inclusion (CVE-2008-6377). We found that, for users not
currently logged in, the answers returned from the DBMS were encrypted; even with root access to
the application server, proxy, and DBMS, the answers were not decryptable.

◇ 3.6.3 Performance Evaluation

To evaluate the performance of CryptDB, we used a machine with two 2.4 GHz Intel Xeon E5620
4-core processors and 12 GB of RAM to run the MySQL 5.1.54 server, and a machine with eight
2.4 GHz AMD Opteron 8431 6-core processors and 64 GB of RAM to run the CryptDB proxy and
the clients. The two machines were connected over a shared Gigabit Ethernet network. The higher-
provisioned client machine ensures that the clients are not the bottleneck in any experiment. All
workloads fit in the server’s RAM.

We compare the performance of a TPC-C query mix when running on an unmodified MySQL
server versus on a CryptDB proxy in front of the MySQL server. We trained CryptDB on the query
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Figure 3-6: Throughput for TPC-C queries, for a varying number of cores on the underlying MySQL
DBMS server.
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Figure 3-7: Throughput of different types of SQL queries from the TPC-C query mix running un-
der MySQL, CryptDB, and the strawman design. “Upd. inc” stands for UPDATE that increments a
column, and “Upd. set” stands for UPDATE which sets columns to a constant.

set (S3.3.5) so there are no onion adjustments during the TPC-C experiments. Figure 3-6 shows the
throughput of TPC-C queries as the number of cores on the server varies from one to eight. In all
cases, the server spends 100% of its CPU time processing queries. Both MySQL and CryptDB scale
well initially, but start to level off due to internal lock contention in the MySQL server, as reported
by SHOW STATUS LIKE ’Table%’. The overall throughput with CryptDB is 21–26% lower than
MySQL, depending on the exact number of cores.

To understand the sources of CryptDB’s overhead, we measure the server throughput for differ-
ent types of SQL queries seen in TPC-C, on the same server, but running with only one core enabled.
Figure 3-7 shows the results for MySQL, CryptDB, and a strawman design; the strawman performs
each query over data encrypted with RND by decrypting the relevant data using a UDF, performing
the query over the plaintext, and re-encrypting the result (if updating rows). The results show that
CryptDB’s throughput penalty is greatest for queries that involve a SUM (2.0× less throughput) and
for incrementing UPDATE statements (1.6× less throughput); these are the queries that involve HOM
additions at the server. For the other types of queries, which form a larger part of the TPC-C mix,
the throughput overhead is modest. The strawman design performs poorly for almost all queries be-
cause the DBMS’s indexes on the RND-encrypted data are useless for operations on the underlying
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Query (& scheme) MySQL CryptDB
Server Server Proxy Proxy⋆

Select by = (DET) 0.10 ms 0.11 ms 0.86 ms 0.86 ms
Select join (JOIN) 0.10 ms 0.11 ms 0.75 ms 0.75 ms
Select range (OPE) 0.16 ms 0.22 ms 0.78 ms 28.7 ms
Select sum (HOM) 0.11 ms 0.46 ms 0.99 ms 0.99 ms
Delete 0.07 ms 0.08 ms 0.28 ms 0.28 ms
Insert (all) 0.08 ms 0.10 ms 0.37 ms 16.3 ms
Update set (all) 0.11 ms 0.14 ms 0.36 ms 3.80 ms
Update inc (HOM) 0.10 ms 0.17 ms 0.30 ms 25.1 ms
Overall 0.10 ms 0.12 ms 0.60 ms 10.7 ms

Figure 3-8: Server and proxy latency for different types of SQL queries from TPC-C. For each
query type, we show the predominant encryption scheme used at the server. Due to details of the
TPC-C workload, each query type affects a different number of rows, and involves a different num-
ber of cryptographic operations. The left two columns correspond to server throughput, which is
also shown in Figure 3-7. “Proxy” shows the latency added by CryptDB’s proxy; “Proxy⋆” shows
the proxy latency without the ciphertext pre-computing and caching optimization (S3.3.5). Bold
numbers show where pre-computing and caching ciphertexts helps. The “Overall” row is the aver-
age latency over the mix of TPC-C queries. “Update set” is an UPDATE where the fields are set to a
constant, and “Update inc” is an UPDATE where some fields are incremented.

Scheme Encrypt Decrypt Special operation
Blowfish (1 int.) 0.0001 ms 0.0001 ms —
AES-CBC (1 KB) 0.008 ms 0.007 ms —
AES-CMC (1 KB) 0.016 ms 0.015 ms —
OPE (1 int.) 9.0 ms 9.0 ms Compare: 0 ms
SEARCH (1 word) 0.01 ms 0.004 ms Match: 0.001 ms
HOM (1 int.) 9.7 ms 0.7 ms Add: 0.005 ms
JOIN-ADJ (1 int.) 0.52 ms — Adjust: 0.56 ms

Figure 3-9: Microbenchmarks of cryptographic schemes, per unit of data encrypted (one 32-bit in-
teger, 1 KB, or one 15-byte word of text), measured by taking the average time over many iterations.

plaintext data. It is pleasantly surprising that the higher security of CryptDB over the strawman also
brings better performance.

To understand the latency introduced by CryptDB’s proxy, we measure the server and proxy
processing times for the same types of SQL queries as above. Figure 3-8 shows the results. We can
see that there is an overall server latency increase of 20% with CryptDB, which we consider modest.
The proxy adds an average of 0.60 ms to a query; of that time, 24% is spent in MySQL proxy,
23% is spent in encryption and decryption, and the remaining 53% is spent parsing and processing
queries. The cryptographic overhead is relatively small because most of our encryption schemes are
efficient; Figure 3-9 shows their performance. OPE and HOM are the slowest, but the ciphertext pre-
computing and caching optimization (S3.3.5) masks the high latency of queries requiring OPE and
HOM. Proxy⋆ in Figure 3-8 shows the latency without these optimizations, which is significantly
higher for the corresponding query types. SELECT queries that involve a SUM use HOM but do not
benefit from this optimization, because the proxy performs decryption, rather than encryption.
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In all TPC-C experiments, the proxy used less than 20 MB of memory. Caching ciphertexts for
the 30, 000 most common values for OPE accounts for about 3 MB, and pre-computing ciphertexts
and randomness for 30,000 values at HOM required 10 MB.

Storage. CryptDB increases the amount of the data stored in the DBMS, because it stores multiple
onions for the same field, and because ciphertexts are larger than plaintexts for some encryption
schemes. For TPC-C, CryptDB increased the database size by 3.76×, mostly due to cryptographic
expansion of integer fields encrypted with HOM (which expand from 32 bits to 2048 bits); strings
and binary data remains roughly the same size.

Adjustable encryption. Adjustable query-based encryption involves decrypting columns to lower-
security onion levels. Fortunately, decryption for the more-secure onion layers, such as RND, is fast,
and needs to be performed only once per column for the lifetime of the system.1 Removing a layer
of RND requires AES decryption, which our experimental machine can perform at ∼200 MB/s per
core. Thus, removing an onion layer is bottlenecked by the speed at which the DBMS server can
copy a column from disk for disk-bound databases.

2 3.7 Security

In this section, we present formally CryptDB’s security guarantees.

◇ 3.7.1 Main Theorems

Recall that data owners can mark certain columns as “sensitive”. For ease of exposition, we assume
that every column not marked is marked with “best-effort encryption”. In our analysis, we assume
that the order-preserving encryption scheme used is the scheme we designed, mOPE [PLZ13], be-
cause it is the only such scheme that does not reveal to the server more than order.

We present our theorems here and later provide formal definitions and proofs.

“Sensitive”. CryptDB provides strong security guarantees for a column marked as sensitive: se-
mantic security [Gol04] or a similar guarantee. Such security means that the encryption leaks noth-
ing about the plaintext values to any polynomial-time adversary (other than their lengths), even when
the adversary has any side information about the data. As mentioned, CryptDB can still compute
on such sensitive data: selection, insertion, deletion, update, summation, and in some cases, equality
checks.

Theorem 1 (Main). CryptDB provides (distinct-) semantic security (Def. 3) for every column
marked as “sensitive”, under standard cryptographic assumptions.

Def. 3 defines (distinct-)semantic security, Def. 10 defines what it means to provide a security
guarantee for a column, and the proof of this theorem is in Sec. 3.7.5.

1Unless the administrator periodically re-encrypts data/columns.
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“Best-effort encryption”. For columns marked as “best-effort”, CryptDB chooses the most secure
encryption scheme from the ones it has available while still supporting the queries issued by the
application. Intuitively, CryptDB aims to gives the DB server the least information enabling the
server to execute the desired queries using a practical model of computation. The practical model
requires that processing on encrypted data happens in the same way as on unencrypted data; for
example, database indexes (which are crucial for performance) should work as before: this implies
the server should be able to perform equality checks on the column indexed. This model makes
CryptDB orders of magnitude more efficient than theoretical approaches.

Theorem 2. Consider any database schema 𝑆 (Def. 7). CryptDB achieves least-knowledge security
(Def. 13) for every column in 𝑆 (Def. 5) that is marked as “best-effort”.

The proof is in Sec. 3.7.5.

Denote by a private column, a column that is annotated with “sensitive” or “best-effort”.
CryptDB never decrypts data to plaintext and even the weakest encryption scheme used by

CryptDB still provides significant security when the adversary does not have side information about
the data in the database:

Corollary 1 (of Th. 1, 2 – Informal: see formal statement in Cor. 1). The probability that any
adversary identifies any one data item in any private column with randomly-chosen values is less
than 𝑛

𝐷−𝑛
+ negl(𝜅), where 𝑛 is the number of values in the column and 𝐷 is the size of the domain

of values.

The proof of this Corollary is in Sec. 3.7.5.
For example, if values are 64-bit long and there are a billion data items in the database, the

chance that an adversary guesses any given data item is less than 1/233, a small number.

We now present two useful facts on columns annotated with “best-effort”:

Fact 1. CryptDB does not decrypt to plaintext at the server any private column.

Fact 2. For any query set 𝑄, for any private column 𝑐 in any schema 𝑆, if no query in 𝑄 performs
comparison or search operations on column 𝑐, CryptDB provides semantic security [Gol04] for
column 𝑐.

◇ 3.7.2 Preliminaries

In the rest of this document, we assume the reader has basic cryptographic knowledge. We introduce
the notation we use.

Let 𝜅 denote the security parameter throughout this paper. For a distribution 𝒟, we say 𝑥 ← 𝒟
when 𝑥 is sampled from the distribution 𝒟. If 𝑆 is a finite set, by 𝑥 ← 𝑆 we mean 𝑥 is sampled
from the uniform distribution over the set 𝑆.

We use 𝑝(·) to denote that 𝑝 is a function that takes one input. Similarly, 𝑝(·, ·) denotes a function
𝑝 that takes two inputs.

We say that a function 𝑓 is negligible in an input parameter 𝜅, if for all 𝑑 > 0, there exists𝐾 such
that for all 𝜅 > 𝐾, 𝑓(𝜅) < 𝑘−𝑑. For brevity, we write: for all sufficiently large 𝜅, 𝑓(𝜅) = negl(𝜅).
We say that a function 𝑓 is polynomial in an input parameter 𝜅, if there exists a polynomial 𝑝 such
that for all 𝜅, 𝑓(𝜅) ≤ 𝑝(𝜅). We write 𝑓(𝜅) = poly(𝜅).
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Let [𝑛] denote the set {1, . . . , 𝑛} for 𝑛 ∈ N*. When saying that a Turing machine 𝐴 is p.p.t. we
mean that 𝐴 is a non-uniform probabilistic polynomial-time machine.

Two ensembles, 𝑋 = {𝑋𝜅}𝜅∈N and 𝑌 = {𝑌𝜅}𝜅∈N, are said to be computationally indistin-
guishable (and denoted {𝑋𝜅}𝜅∈N

𝑐
≈ {𝑌𝜅}𝜅∈N) if for every probabilistic polynomial-time algorithm

𝐷,
|Pr[𝐷(𝑋𝜅, 1

𝜅) = 1]− Pr[𝐷(𝑌𝜅, 1
𝜅) = 1]| = negl(𝜅).

We use the notation Adv𝑂(·) to mean that some algorithm Adv runs with oracle access to 𝑂; the
argument “·” to 𝑂 indicates that, for each request, Adv provides one input to oracle 𝑂.

◇ 3.7.3 Cryptographic notions

Let us recall the security definition of a pseudorandom function ensemble, adapted from [KL07].

Definition 1 (Pseudorandom Function Ensembles). Let PRF : {0, 1}* × {0, 1}* ← {0, 1}* be an
efficient, length-preserving, keyed function. We say PRF is a pseudorandom function if for all PPT

distinguishers 𝐷, for every sufficiently large 𝑛,

𝑃𝑟[𝑘 ← {0, 1}𝑛, 𝐷𝐹 (𝑘,·)(1𝑛) = 1]− 𝑃𝑟[draw a random function 𝐻𝑛;𝐷𝐻𝑛(·)(1𝑛) = 1] = negl(𝑛),

where 𝐻𝑛 : {0, 1}𝑛 → {0, 1}𝑛 maps each input to a random value.

We refer the reader to [Gol04] for definitions of semantic security for both private- and public-
key.

◇ 3.7.4 Formal definitions and statements

Security definitions

We define the notion of distinct-semantic security. Intuitively, this notion is similar to semantic
security as long as one only encrypts distinct values. We refer the reader to [Gol04] for definitions
of semantic security for both private- and public-key.

Definition 2 (DSemExp security experiment). We now describe the distinct-semantic security ex-
periment DSemExpAdv(𝜅), where 𝜅 is the security parameter and Adv an adversary.

1. Let 𝑘 ← KeyGen(1𝜅)

2. (𝑚0,𝑚1)← Advenc𝑘(·)(1𝜅) with |𝑚0| = |𝑚1|.

3. Let 𝑏← {0, 1} and the ciphertext ct← enc𝑘(𝑚𝑏).

4. 𝑏′ ← Advenc𝑘(·)(ct).

5. Output 1 if 𝑏′ = 𝑏 and Adv never requested 𝑚0 or 𝑚1 to enc𝑘(·) oracle, else output 0.

Definition 3 (Distinct semantic security). Consider the DSemExp security experiment in Def. 2. A
private-key encryption scheme (KeyGen, enc, Dec) is distinct-semantically secure if for all PPT Adv,
for all sufficiently large security parameters 𝜅,

Pr[DSemExpAdv(1𝜅) = 1] ≤ 1/2 + negl(𝜅),
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where the probability is taken over the random coins in the experiment and of Adv.

System model

To be able to prove statements about CryptDB’s security, we need a formal model of the system.
Since systems are complex, it is customary to define a simplified system model that captures the
core functionality of the system. The expectation is that the rest of the operations in the system
map closely to one of the operations in the model. Providing a model for the real system (namely,
capturing the hundreds of operators in SQL) in this thesis would be infeasible and not even instruc-
tive/meaningful to the reader.

We consider a database system that only allows queries CREATE, SELECT, INSERT, UPDATE,
DELETE. The only operations and filters allowed are equality and order comparison as well as sum-
mation. We only consider queries to one database, and the extension to more databases is straight-
forward.

The database is formed of tables which have columns.

Definition 4 (Annotation). An annotation is one of the following: “sensitive”, “best-effort encryp-
tion”, and “unencrypted”.

Definition 5 (Column information). A column information consists of a column name (a string), a
domain 𝒟 (for the values that can be in the column), and an annotation.

Definition 6 (Table information). A table information consists of a table name (a string), a positive
integer 𝑛, and a list of 𝑛 column information-s: colinfo1, . . . , colinfo𝑛.

Definition 7 (Schema). A schema is a list of table information.

Definition 8 (Queries). Only the following types of queries are allowed:

∙ “CREATE table (colinfo1, . . . , colinfo𝑛)” for some positive integer 𝑛, where colinfo𝑖 is a
column information and table is a string.

∙ “INSERT INTO table VALUES (𝑣1, . . . , 𝑣𝑛)”, where 𝑣𝑖 is in the domain 𝒟 of colinfo𝑖.

∙ “UPDATE table SET name = const WHERE [filters(table)]”, where name is the name
of a column in table, const is a constant, and [filters] is defined below.

∙ “DELETE FROM table WHERE [filters(table)]”.

∙ “SELECT A, sum(B) FROM table1, table2 WHERE name1 = name2 AND/OR
[filters(table1)] AND/OR [filters(table2)]”, where A, B, and name1 are columns
in table1 and name2 is a column in table2. This query makes uses of projection, sum, join,
and various filters below.

∙ filters(table) can be a series of any of the following terms connected with AND or OR:

– name = const

– name ≥ const
– name ≤ const
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operation onion level
update, delete, insert RND

equality between a value from column 𝑐 and a constant DET
order between a value from column 𝑐 and a constant OPE

join by equality on column 𝑎 and 𝑏 JOIN
project on column 𝑐 RND

sum on column 𝑐 RND
no operation RND

Table 3.1: Operations and the onion levels they require.

with name being the name of a column in table and const a constant in the domain of name.

Definition 9 (Column of a constant in a query 𝑞). The column of a constant in a query 𝑞 is the
column to which the constant is being assigned if 𝑞 is an UPDATE query in the SET clause or if 𝑞 is
an INSERT query, or it is the column to which it is compared in a filter.

For example, in the UPDATE query in Def. 8, the column of the constant const is name.

Definition 10 (Providing security level ℒ for a column 𝑐 - Informal). CryptDB provides a security
level ℒ for a column 𝑐 if all the onions of the column are encrypted with encryption schemes that
achieve ℒ with a key stored at the client, and all the constants for that column (Def. 9) in any query
are encrypted with the same scheme and key.

Definition 11. There are four types of security levels RND, DET, OPE, and JOIN.

The HOM onion level in CryptDB is considered the same as RND in this document because it
also has semantic security. In this document, we do not model SEARCH, although one can view it
as no less secure than DET.

If a column is encrypted with an onion level, it has a certain security guarantee:

onion level security guarantee
RND semantic security, defined in [Gol04]
DET PRF, defined in Def. 1
OPE IND-OCPA, defined in [PLZ13]
JOIN as defined in [PZ12]

The least-knowledge security definition says that no column will have an onion level that is
not needed by some query (we only consider queries that are authorized by the user to run on the
database).

Definition 12 (Exposed onion levels for column 𝑐.). The exposed onion levels for column 𝑐 at a
given time is the set of onion levels such that each onion level is the topmost level on some onion of
column 𝑐.

Definition 13 (Least-knowledge security for column 𝑐 from schema 𝑆.). Let 𝑄 be any set of queries
as in Def. 8. Consider running CryptDB only on queries from 𝑄.

CryptDB achieves least-knowledge security for column 𝑐, if : for each onion level exposed for
column 𝑐 at any point during the execution, there is an operation in 𝑄 that requires that onion level
based on Table 3.1.
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Formal Corollary 1

We now present the formal corollary of Cor. 1. The weakest encryption scheme in CryptDB is
OPE [PLZ13] (all other encryption schemes provide at least the security of OPE). Let OPE.Keygen
be the keygeneration algorithm of the OPE scheme of [PLZ13] and let OPE.Enc be the encryption
algorithm. Recall that OPE.Enc is interactive so we denote by OPE.EncAdv, the encryption algorithm
where Adv is the server as defined in [PLZ13].

Corollary 1 (of Th. 1, 2). Consider any schema 𝑆 with at least one column and any column 𝑐 in the
schema. Let 𝒟 be the domain of each item in column 𝑐. Let OPE be a scheme achieving IND-OCPA
as defined in [PLZ13]. Then, for any stateful PPT adversary Adv, we have:

Pr

⎡⎢⎢⎢⎢⎢⎢⎣
𝑘 ← OPE.Keygen(1𝜅);
𝑛← Adv(1𝜅);
𝑥1, . . . , 𝑥𝑛 ← 𝒟, uniformly and distinct;
{𝑐𝑖 ← OPE.EncAdv(𝑘, 𝑥𝑖)}𝑛𝑖=1;
Adv(𝑐1, . . . , 𝑐𝑛) = (𝑖, 𝑥′𝑖)
s.t. 𝑥𝑖 = 𝑥′𝑖 and 2𝑛 < |𝒟|

⎤⎥⎥⎥⎥⎥⎥⎦ <
𝑛

|𝒟| − 𝑛
+ negl(𝜅).

For simplicity, the values 𝑥1, . . . , 𝑥𝑛 were chosen to be distinct, but one can easily prove a similar
statement for when the values are sampled with replacement.

◇ 3.7.5 Proofs

Proof of Theorem 1

Proof. CryptDB encrypts data in columns marked as sensitive with the following encryption schemes:

∙ RND which is AES in UFE mode, an IND-CCA2 secure scheme; it thus provides an even
stronger security definition than semantic security.

∙ HOM which is Paillier encryption, proven to be semantically secure in [Pai99].

∙ DET is a pseudorandom function (PRF) and Lemma 1 proves that PRFs achieve distinct-
semantic security.

Lemma 1. Any pseudorandom function (PRF), Def. 1, is distinct-semantically secure.

Proof. For contradiction, assume there is a PPT adversary Adv that breaks distinct semantic-security
of a PRF; let us show how to construct a PPT reduction 𝐵 that breaks the security of the PRF. Since
Adv breaks distinct-semantic security, we have

Pr[DSemExpAdv(1𝜅) = 1] > 1/2 + 1/𝛼(𝜅), (3.3)

for some polynomial 𝛼.
𝐵 receives access to an oracle 𝒪 which can either be the PRF function on a key 𝑘 or a random

oracle. To distinguish which is the case, 𝐵 proceeds as follows. 𝐵 starts Adv.

∙ For every request 𝑥 that Adv makes to the enc𝑘(·) oracle, 𝐵 makes a request for 𝑥 to its oracle
𝒪 and returns the result to Adv.
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∙ Adv replies to 𝐵 with 𝑚0 and 𝑚1 and 𝐵 picks a bit at random 𝑏 and returns to Adv the value
𝒪(𝑚𝑏).

∙ For all further requests of Adv to enc𝑘(·), 𝐵 proceeds as before.

∙ Adv returns its guess 𝑏′ to 𝐵. If 𝑏 = 𝑏′, 𝐵 outputs 1 (meaning “PRF”), else 𝐵 outputs 0
(meaning “random function”).

Let win𝐵 be the chance that 𝐵 outputs the correct result. If 𝒪 was a random oracle, Adv has
a chance of exactly half of outputting a correct guess because the encryptions of 𝑚0 and 𝑚1 are
identically distributed and Adv was not allowed to ask enc𝑘 queries to 𝑚0 or 𝑚1. If 𝒪 was the
PRF for some key 𝑘, 𝐵 simulated the input distribution to Adv correctly meaning that Adv has the
advantage of guessing 𝑏 as in Eq. 3.3. Therefore,

Pr[win𝐵] = 1/2 Pr[win𝐵|𝒪 = enc(𝑘,𝐻𝑘)] + 1/2 Pr[win𝐵|𝒪 = enc(𝑘, ·)]
= 1/2 · 1/2 + 1/2(1/2 + 1/𝛼(𝜅))

= 1/2 + 1/2𝛼(𝜅).

Hence, 𝐵 also has a nonneligible advantage of breaking security of the PRF, which concludes our
proof.

Proof of Corollary 1

Proof. For contradiction, assume there is a PPT adversary Adv that breaks the corollary and let us
construct a PPT reduction 𝐵 that breaks the IND-OCPA security of the OPE scheme. To break IND-
OCPA, 𝐵 needs to output two sequences of values 𝑥̄ = 𝑥1, . . . , 𝑥𝑛 and 𝑦 = 𝑦1, . . . , 𝑦𝑛 such that
they have the same order relation (as formalized in [PLZ13]). Then, 𝐵 receives 𝑥̄ or 𝑦 encrypted,
denoted 𝑐1, . . . , 𝑐𝑛, and must decide which of 𝑥̄ or 𝑦 were encrypted. 𝐵 proceeds as follows:

1. 𝐵 starts Adv and receives 𝑛. 𝐵 chooses a sequences 𝑥̄ = 𝑥1, . . . , 𝑥𝑛 from 𝒟 by sampling
uniformly without replacement. Then 𝐵 samples a sequence 𝑦 = 𝑦1, . . . , 𝑦𝑛 uniformly from
all sequences of 𝑛 distinct elements in 𝒟 with the same order as 𝑥̄ such that no element of 𝑦
appears in 𝑥̄. (This can be done by sampling 𝑛 distinct elements from 𝒟 at random that are
different from the elements of 𝑥̄ then sorting 𝑦 to have the same order relation as 𝑥̄. Since
|𝒟| > 2𝑛 such sampling is well defined). 𝐵 outputs 𝑥̄ and 𝑦.

2. 𝐵 receives 𝑐1, . . . , 𝑐𝑛 and sends it to Adv which replies with 𝑖, 𝑣.

3. If 𝑥𝑖 = 𝑣, 𝐵 outputs “it is 𝑥̄”; if 𝑦𝑖 = 𝑣, 𝐵 outputs “it is 𝑦”, otherwise 𝐵 outputs a random
guess.

Even though 𝑥̄ and 𝑦 are restricted to different values, Adv only receives the ciphertext corre-
sponding to one of them, and any one of 𝑥̄ or 𝑦 in isolation is distributed as Adv expects. Therefore,
𝐵 simulates the inputs to Adv perfectly.
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Let’s compute the winning probability of𝐵. For this, we need to introduce notation and quantify
some intermediary probabilities.

Let us denote by wrong𝜅 the chance that Adv outputs 𝑦𝑖 instead of 𝑥𝑖 when 𝑐 encrypts 𝑥̄ or that
Adv outputs 𝑥𝑖 instead of 𝑦𝑖 when 𝑐 encrypts 𝑦. Consider the case when 𝑐 encrypts 𝑥̄. Even if Adv
knows the entire vector 𝑥̄, Adv gets no information about 𝑦 information-theoretically. Moreover, 𝑦
consists of random values. The probability of wrong𝜅 is at least the chance that the value 𝑣 equals
no value in 𝑦, which is 1−

(︀
𝐷−𝑛−1

𝑛

)︀
/
(︀
𝐷−𝑛
𝑛

)︀
; hence,

Pr[wrong𝜅] ≤ 𝑛

𝐷 − 𝑛
(3.4)

Let guess𝜅 be the event that Adv guesses correctly 𝑣. By the hypothesis of the contradiction, we
have

Pr[guess𝜅] ≥ 𝑛

𝐷 − 𝑛
+

1

𝛼(𝜅)
, (3.5)

for some polynomial 𝛼.
We are now ready to compute the winning probability of𝐵; denote by win𝜅 the event that𝐵 wins.

Let us assume that 𝑐 encrypts 𝑥̄ (the case when 𝑐 encrypts 𝑦 results in the same winning probability).
We have

Pr[win𝜅] = Pr[win𝜅|𝑥𝑖 = 𝑣] Pr[𝑥𝑖 = 𝑣] + Pr[win𝜅|𝑦𝑖 = 𝑣] Pr[𝑦𝑖 = 𝑣]

+ Pr[win𝜅|𝑣 /∈ {𝑥𝑖, 𝑦𝑖}] Pr[𝑣 /∈ {𝑥𝑖, 𝑦𝑖}]
= 1 · Pr[𝑥𝑖 = 𝑣] + 0 · Pr[𝑦𝑖 = 𝑣] + 1/2 · Pr[𝑣 /∈ {𝑥𝑖, 𝑦𝑖}]
= Pr[guess𝜅] + 1/2(1− Pr[guess𝜅]− Pr[wrong𝜅])

= 1/2 + 1/2(Pr[guess𝜅]− Pr[wrong𝜅])

≥ 1/2 + 1/2𝛼(𝜅).

Proof of Theorem 2

Proof. We prove the theorem by induction on the queries executed by CryptDB.
The base case of the induction is when no queries were executed. In that case, CryptDB’s initial

onion state for every column has only RND exposed. We can see that this satisfies the base case
because no operation requires RND. Let Col be a column marked with “best-effort”. At inductive
step 𝑖, we assume CryptDB satisfied Theorem 2 for the first 𝑖 queries for column Col, and we show
that, after the 𝑖+ 1-th query, CryptDB still satisfies the theorem statement.

Let 𝑞 be the 𝑖 + 1-th query with 𝑞 ∈ 𝑄. The only time that CryptDB changes the onion level
exposed for column 𝑐 is during an onion adjustment. Onion adjustments only happen for three
operations:

1. There is an operator of the form column Col = const or const = Col. This operation triggers
an adjustment only if the current onion level is RND on the Equality onion. In this case, the
resulting onion level will be DET, which is requires by the “=” operation.
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2. There is an operator of the form column Col ≥ const or const ≥ Col. This operation triggers
an adjustment only if the current onion level is RND on the Order onion. In this case, the
resulting onion level will be OPE, which is required by the “>” operation.

3. There is an operator of the form column Col = Col2 for some other column Col2. This
operation triggers an adjustment only if the current onion level is RND or DET on the Equality
onion. In this case, the resulting onion level will be JOIN, which is required by this operation.

Since the hypothesis was correct up to step 𝑖 and step 𝑖+ 1 introduced only exposed onion levels
that are required by a query in 𝑄, the hypothesis is also correct for step 𝑖 + 1, thus concluding our
proof.

2 3.8 Conclusion

In this chapter, we presented CryptDB, a system that provides a practical and strong level of confi-
dentiality in the face of a significant threat: curious DBAs or hackers gaining access to the database
server. CryptDB meets its goals using two ideas: running queries efficiently over encrypted data
using a novel SQL-aware encryption strategy, and dynamically adjusting the encryption level using
onions of encryption to minimize the information revealed to the untrusted DBMS server.

Our evaluation on a large trace of 126 million SQL queries from a production MySQL server
shows that CryptDB can support operations over encrypted data for 99.5% of the 128,840 columns
seen in the trace. The throughput penalty of CryptDB is modest, resulting in a reduction of 26% on
an industry-standard benchmark as compared to unmodified MySQL. Our security analysis shows
that CryptDB protects most sensitive fields with highly secure encryption schemes for six applica-
tions. CryptDB makes no changes to existing SQL-backed applications or to the database server,
making it easier to adopt. The source code for our implementation is available for download at
http://css.csail.mit.edu/cryptdb/.
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CHAPTER 4

Securing web applications with Mylar

This chapter presents Mylar, a new platform for building web applications that stores only encrypted
data on the server.

2 4.1 Motivation

Using a web application for confidential data requires the user to trust the server to protect the
data from unauthorized disclosures. This trust is often misplaced, however, because there are many
ways in which confidential data could leak from a server. For example, attackers could exploit
a vulnerability in the server software to break in [Tud13], a curious administrator could peek at
the data on the server [Che10, Bor13], or the server operator may be compelled to disclose data
by law [Goo13]. Is it possible to build web applications that protect data confidentiality against
attackers with full access to servers?

A promising approach is to give each user their own encryption key, encrypt a user’s data with
that user’s key in the web browser, and store only encrypted data on the server. This model ensures
that an adversary would not be able to read any confidential information on the server, because they
would lack the necessary decryption keys. In fact, this model has been already adopted by some
privacy-conscious web applications [The13, Meg13].

Unfortunately, this approach suffers from three significant security, functionality, and efficiency
shortcomings. First, a compromised server could provide malicious client-side code to the browser
and extract the user’s key and data. Ensuring that the server did not tamper with the application code
is difficult because a web application consists of many files, such as HTML pages, Javascript code,
and CSS style sheets, and the HTML pages are often dynamically generated.

Second, this approach does not provide data sharing between users, a crucial function of web ap-
plications. To address this problem, one might consider encrypting shared documents with separate
keys, and distributing each key to all users sharing a document via the server. However, distributing
keys via the server is challenging because a compromised server can supply arbitrary keys to users,
and thus trick a user into using incorrect keys.

Third, this approach requires that all of the application logic runs in a user’s web browser because
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it can decrypt the user’s encrypted data. But this is often impractical: for instance, doing a keyword
search would require downloading all the documents to the browser.

This chapter presents Mylar, a new platform for building web applications that stores only en-
crypted data on the server. Mylar makes it practical for many classes of applications to protect con-
fidential data from compromised servers. It leverages the recent shift in web application frameworks
towards implementing logic in client-side Javascript code, and sending data, rather than HTML, over
the network [Met13]; such a framework provides a clean foundation for security. Mylar addresses
the challenges mentioned above with a combination of systems techniques and novel cryptographic
primitives, as follows.

Data sharing. To enable sharing, each sensitive data item is encrypted with a key available to
users who share the item. To prevent the server from cheating during key distribution, Mylar pro-
vides a mechanism for establishing the correctness of keys obtained from the server: Mylar forms
certificate paths to attest to public keys, and allows the application to specify what certificate paths
can be trusted in each use context. In combination with a user interface that displays the appropriate
certificate components to the user, this technique ensures that even a compromised server cannot
trick the application into using the wrong key.

Computing over encrypted data. Keyword search is a common operation in web applications,
but it is often impractical to run on the client because it would require downloading large amounts of
data to the user’s machine. While there exist practical cryptographic schemes for keyword search,
they require that data be encrypted with a single key. This restriction makes it difficult to apply
these schemes to web applications that have many users and hence have data encrypted with many
different keys.

Mylar provides the first cryptographic scheme that can perform keyword search efficiently over
data encrypted with different keys. The client provides an encrypted word to the server and the
server can return all documents that contain this word, without learning the word or the contents of
the documents.

Verifying application code. With Mylar, code running in a web browser has access to the user’s
decrypted data and keys, but the code itself comes from the untrusted server. To ensure that this code
has not been tampered with, Mylar checks that the code is properly signed by the web site owner.
This checking is possible because application code and data are separate in Mylar, so the code is
static. Mylar uses two origins to simplify code verification for a web application. The primary origin
hosts only the top-level HTML page of the application, whose signature is verified using a public
key found in the server’s X.509 certificate. All other files come from a secondary origin, so that if
they are loaded as a top-level page, they do not have access to the primary origin. Mylar verifies the
hash of these files against an expected hash contained in the top-level page.

To evaluate Mylar’s design, we built a prototype on top of the Meteor web application frame-
work [Met13]. We ported 6 applications to protect confidential data using Mylar: a medical appli-
cation for endometriosis patients, a web site for managing homework and grades, a chat application
called kChat, a forum, a calendar, and a photo sharing application. The endometriosis application
is used to collect data from patients with that medical condition, and was designed under the aegis
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Figure 4-1: System overview. Shaded components have access only to encrypted data. Thick borders indicate
components introduced by Mylar.

of the MIT Center for Gynepathology Research by surgeons at the Newton-Wellesley hospital (af-
filiated with the Harvard Medical School) in collaboration with biological engineers at MIT; the
Mylar-secured version is currently being tested by patients and is undergoing IRB approval before
deployment.

Our results show that Mylar requires little developer effort: we had to modify an average of
just 36 lines of code per application. We also evaluated the performance of Mylar on three of the
applications above. For example, for kChat, our results show that Mylar incurs modest overheads: a
17% throughput reduction and a 50 msec latency increase for the most common operation (sending
a message). These results suggest that Mylar is a good fit for multi-user web applications with data
sharing.

2 4.2 Mylar’s architecture

There are three different parties in Mylar: the users, the web site owner, and the server operator.
Mylar’s goal is to help the site owner protect the confidential data of users in the face of a malicious
or compromised server operator.

◇ 4.2.1 System overview

Mylar embraces the trend towards client-side web applications; Mylar’s design is suitable for plat-
forms that:

1. Enable client-side computation on data received from the server.

2. Allow the client to intercept data going to the server and data coming from the server.

3. Separate application code from data, so that the HTML pages supplied by the server are static.

AJAX web applications with a unified interface for sending data over the network, such as Me-
teor [Met13], fit this model. Such frameworks provide a clean foundation for security, because they
send data separately from the HTML page that presents the data. In contrast, traditional server-side
frameworks incorporate dynamic data into the application’s HTML page in arbitrary ways, making
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it difficult to encrypt and decrypt the dynamic data on each page while checking that the fixed parts
of the page have not been tampered with [Sta13].

Mylar’s components

The architecture of Mylar is shown in Figure 4-1. Mylar consists of the four following components:

Browser extension. It is responsible for verifying that the client-side code of a web application
that is loaded from the server has not been tampered with.

Client-side library. It intercepts data sent to and from the server, and encrypts or decrypts that
data. Each user has a private-public key pair. The client-side library stores the private key of the
user at the server, encrypted with the user’s password.1 When the user logs in, the client-side library
fetches and decrypts the user’s private key. For shared data, Mylar’s client creates separate keys that
are also stored at the server in encrypted form.

Server-side library. It performs computation over encrypted data at the server. Specifically, Mylar
supports keyword search over encrypted data, because we have found that many applications use
keyword search.

Identity provider (IDP). For some applications, Mylar needs a trusted identity provider service
(IDP) to verify that a given public key belongs to a particular username. An application needs
the IDP if the application has no trusted way of verifying the users who create accounts, and the
application allows users to choose whom to share data with. For example, if Alice wants to share a
sensitive document with Bob, Mylar’s client needs the public key of Bob to encrypt the document.
A compromised server could provide the public key of an attacker, so Mylar needs a way to verify
the public key. The IDP helps Mylar perform this verification by signing the user’s public key and
username. An application does not need the IDP if the site owner wants to protect against only
passive attacks (S4.2.4), or if the application has a limited sharing pattern for which it can use a
static root of trust (see S4.3.2).

An IDP can be shared by many applications, similar to an OpenID provider [Ope13]. The IDP
does not store per-application state, and Mylar contacts the IDP only when a user first creates an
account in an application; afterwards, the application server stores the certificate from the IDP.

◇ 4.2.2 Mylar for developers

The developer starts with a regular (non-encrypted) web application implemented in Mylar’s under-
lying web platform (Meteor in our prototype). To secure this application with Mylar, a developer
uses Mylar’s API (Figure 4-2), as we explain in the rest of this chapter. First, the developer uses
Mylar’s authentication library for user login and account creation. If the application allows a user
to choose what other users to share data with, the developer should also specify the URL and public
key of a trusted IDP.

1The private key can also be stored at a trusted third-party server, to better protect it from offline password guessing
attacks and to recover from forgotten passwords without re-generating keys.
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Function Semantics

idp config(url, pubkey) Declares the url and pubkey of the IDP and re-
turns the principal corresponding to the IDP.

create user(uname, password, auth princ) Creates an account for user uname which is cer-
tified by principal auth princ.

login(uname, password) Logs in user uname.
logout() Logs out the currently logged-in user.

collection.encrypted({field: princ field}, . . . ) Specify that field in collection should be en-
crypted for the principal in princ field.

collection.auth set([princ field, fields], . . . ) Authenticate the set of fields with principal in
princ field.

collection.searchable(field) Mark field in collection as searchable.
collection.search(word, field, princ, filter, proj) Search for word in field of collection, filter re-

sults by filter and project only the fields in proj
from the results. Use princ’s key to generate the
search token.

princ create(name, creator princ) Create principal named name, sign the princi-
pal with creator princ, and give creator princ
access to it.

princ create static(name, password) Create a static principal called name, hardcode
it in the application, and wrap its secret keys
with password.

princ static(name, password) Return the static principal name; if a correct
password is specified, also load the secret keys
for this principal.

princ current() Return the principal of currently logged in user.
princ lookup(name1, . . . , name𝑘, root) Look up principal named name1 as certified by a

chain of principals named name𝑖 rooted in root
(e.g., the IDP).

granter.add access(grantee) Give the grantee principal access to the granter
principal.

grantee.allow search(granter) Allow matching keywords from grantee on
granter’s data.

Figure 4-2: Mylar API for application developers split in three sections: authentication, encryp-
tion/integrity annotations, and access control. All of the functions except princ create static
and searchable run in the client browser. This API assumes a MongoDB storage model where
data is organized as collections of documents, and each document consists of fieldname-and-value
pairs. Mylar also preserves the generic functionality for unencrypted data of the underlying web
framework.

Second, the developer specifies which data in the application should be encrypted, and who
should have access to it. Mylar uses principals for access control; a principal corresponds to a
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public/private key pair, and represents an application-level access control entity, such as a user, a
group, or a shared document. In our prototype, all data is stored in MongoDB collections, and the
developer annotates each collection with the set of fields that contain confidential data and the name
of the principal that should have access to that data (i.e., whose key should be used).

Third, the developer specifies which principals in the application have access to which other
principals. For example, if Alice wants to invite Bob to a confidential chat, the application must
invoke the Mylar client to grant Bob’s principal access to the chat room principal.

Fourth, the developer changes their server-side code to invoke the Mylar server-side library when
performing keyword search. Our prototype’s client-side library provides functions for common
operations such as keyword search over a specific field in a MongoDB collection.

Finally, as part of installing the web application, the site owner generates a public/private key
pair, and signs the application’s files with the private key using Mylar’s bundling tool. The web
application must be hosted using https, and the site owner’s public key must be stored in the web
server’s X.509 certificate. This ensures that even if the server is compromised, Mylar’s browser
extension will know the site owner’s public key, and will refuse to load client-side code if it has
been tampered with.

◇ 4.2.3 Mylar for users

To obtain the full security guarantees of Mylar, a user must install the Mylar browser extension,
which detects tampered code. However, if a site owner wants to protect against only passive at-
tacks (S4.2.4), users don’t have to install the extension and their browsing experience is entirely
unchanged.

◇ 4.2.4 Threat model

Threats. Both the application and the database servers can be fully controlled by an adversary: the
adversary may obtain all data from the server, cause the server to send arbitrary responses to web
browsers, etc. This model subsumes a wide range of real-world security problems, from bugs in
server software to insider attacks.

Mylar also allows some user machines to be controlled by the adversary, and to collude with
the server. This may be either because the adversary is a user of the application, or because the
adversary broke into a user’s machine.

We call this adversary active, in contrast to a passive adversary that eavesdrops on all information
at the server, but does not make any changes, so that the server responds to all client requests as if it
were not compromised.

Guarantees. Mylar protects a data item’s confidentiality in the face of arbitrary server compro-
mises, as long as none of the users with access to that data item use a compromised machine. Mylar
does not hide data access patterns, or communication and timing patterns in an application. My-
lar provides data authentication guarantees, but does not guarantee the freshness or correctness of
results from the computation at the server.

Assumptions. To provide the above guarantees, Mylar makes the following assumptions. Mylar
assumes that the web application as written by the developer will not send user data or keys to
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untrustworthy recipients, and cannot be tricked into doing so by exploiting bugs (e.g., cross-site
scripting). Our prototype of Mylar is built on top of Meteor, a framework that helps programmers
avoid many common classes of bugs in practice.

Mylar also assumes that the IDP correctly verifies each user’s identity (e.g., email address) when
signing certificates. To simplify the job of building a trustworthy IDP, Mylar does not store any
application state at the IDP, contacts the IDP only when a user first registers, and allows the IDP to
be shared across applications.

Finally, Mylar assumes that the user checks the web browser’s security indicator (e.g., the https
shield icon) and the URL of the web application they are using, before entering any sensitive data.
This assumption is identical to what users must already do to safely interact with a trusted server.
If the user falls for a phishing attack, neither Mylar nor a trusted server can prevent the user from
entering confidential data into the adversary’s web application.

◇ 4.2.5 Security overview

At a high level, Mylar achieves its goal as follows. First, it verifies the application code running in
the browser (S4.5), so that it is safe to give client-side code access to keys and plaintext data. Then,
the client code encrypts the data marked sensitive before sending it to the server. Since users need
to share data, Mylar provides a mechanism to securely share and look up keys among users (S4.3).
Finally, to perform server-side processing, Mylar introduces a new cryptographic scheme that can
perform keyword search over documents encrypted with many different keys, without revealing the
content of the encrypted documents or the word being searched for (S4.4).

2 4.3 Sharing data between users

Many web applications share data between users according to some policy. A simple example is
a chat application, where messages are shared between the sender and the recipients. In Mylar’s
threat model, an application cannot trust the server to enforce the sharing policy, because the server
is assumed to be compromised. As a result, the application must encrypt shared data using a key
that will be accessible to just the right set of users.

Mylar allows an application to specify its security policy in terms of application-defined princi-
pals. In particular, each principal has an application-chosen name, a public key used to encrypt data
for that principal, and a private key used to decrypt that principal’s data.

In addition to allowing the application to create principals, and to use the principals’ keys to
encrypt and decrypt data, Mylar provides two critical operations to the application for managing
principals:

∙ Find a principal so that the application can use the corresponding private key to decrypt data.
The goal is to ensure that only authorized users can get access to the appropriate private key.

∙ Find a principal so that the application can use the corresponding public key to encrypt or
share data with other users. The goal is to ensure that a malicious server cannot trick Mylar
into returning the wrong public key, which could lead the application to share confidential
data with the adversary.
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Figure 4-3: Example access graph for a chat application. Rounded rectangles represent principals,
and arrows represent access relationships. Alice and Bob share the chat room “party” so they both
have access to the principal for this room. Messages in each chat room are encrypted with the key
of the room’s principal.

Mylar cryptographically enforces the above goals by forming two graphs on top of principals: an
access graph, which uses key chains to distribute the private keys of shared principals to users, and
a certification graph, which uses certificate chains to attest to the mapping between a principal name
and its public key.

◇ 4.3.1 Access graph

To ensure that only authorized users can access the private key of a principal, Mylar requires the
application to express its access control policy in terms of access relationships between principals.
Namely, if principal 𝐴 can access principal 𝐵’s private key, then we say 𝐴 has access to 𝐵. The has
access to relation is transitive: if𝐵 in turn has access to𝐶, then𝐴 can access𝐶’s private key as well.
To express the application’s policy in the access graph, the application must create appropriate has
access to relationships between principals. The application can also create intermediate principals
to represent, say, groups of users that all should have access to the same private keys.

As an example, consider a chat application where messages in each chat room should be available
only to that room’s participants. Figure 4-3 shows the access graph for this scenario. Both Alice and
Bob have access to the key encrypting the “party” room, but the boss does not.

Key chaining. To enforce the access graph cryptographically, Mylar uses key chaining, as in
CryptDB [PRZB11]. When an application asks to add a new has access to edge from principal
𝐴 to principal 𝐵, Mylar creates a wrapped key: an encryption of 𝐵’s private keys under the public
key of principal 𝐴. This ensures that a user with access to 𝐴’s private key can decrypt the wrapped
key and obtain 𝐵’s private key. For example, in Figure 4-3, the private key of the “party” chat room
is encrypted under the public key of Alice, and separately under the public key of Bob as well. The
server stores these wrapped keys, which is safe since the keys are encrypted.

In practice, has access to relationships are rooted in user principals, so that a user can gain
access to all of their data when they initially log in and have just the private key of their own user
principal. When Mylar needs to decrypt a particular data item, it first looks up that data item’s
principal, as specified by the encrypted annotation (Figure 4-2). Mylar then searches for a chain
of wrapped keys, starting from the principal of the currently logged in user, and leading to the data
item’s principal.
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◇ 4.3.2 Certification graph

Mylar applications must look up public keys of principals when sharing data, for two broad purposes:
either to encrypt data with that key, or to give some principal access to that key. In both cases, if
a compromised server tricks the client application into using the public key of the adversary, the
adversary will gain access to confidential data. For example, in the chat example, suppose Bob
wants to send a confidential message to the “work” chat room. If the server supplies the adversary’s
public key for the chat room principal and the application client uses it, the adversary will be able to
decrypt the message. Preventing such attacks is difficult because all of the wrapped keys are stored
at the server, and the server may be malicious.

To prevent such attacks, Mylar relies on a certification graph, which allows one principal to
vouch for the name and the public key of another principal. The nodes of this graph are principals
from the access graph together with some authority principals, which are principals providing the
root of trust (described in S4.3.3). Applications create certificate chains for principals, rooted in an
authority principal. For instance, in the chat example, the application can sign the “chatroom:work”
principal with the key of the “user:boss” principal that created the chat room. Using the certification
graph, applications can look up the public key of a principal by specifying the name of the principal
they are looking for, along with a chain of certifications they expect to find.

Since the server is not trusted, there is no single authority to decide on the public key for a given
principal name: in our chat example, both the real boss and a malicious server may have created
chat rooms named “work.” To prevent such naming ambiguity, one approach is to display the names
in a certification chain to the user, similar to how web browsers display the hostname from an X.509
certificate for https web sites. As we describe later in S4.7, if the chat application displays the
email address of the chat room creator (who signed the chat room principal), in addition to the name
of the chat room, the user could distinguish a correct “work” chat room, created by the boss, from
an impostor created by an attacker. This requires Mylar applications to unambiguously map human-
meaningful names, such as the “work” chat room and the identity of the Boss user, onto principal
names, such as “chatroom:work” and “user:boss.”

Mylar’s certificate chains are similar to X.509; the difference is that X.509 typically has fixed
roots of trust and fixed rules for what certificate chains are allowed, whereas Mylar allows the
application to specify different roots of trust and acceptable chains for each lookup.

◇ 4.3.3 Principals providing the root of trust

The authority principals can be either the IDP or static principals. Static principals are access control
entities fixed in the application’s logic. For example, the endometriosis medical application has a
group called “surgeons” representing the surgeons that have access to all patient data. Similarly,
the homework submission application has a group called “staff” representing staff members with
access to all student homework submissions and grades. In these applications, static principals can
altogether remove the need for an IDP.

A developer can create a static principal by running princ create static(name, password) with
the help of a command-line tool. This generates fresh keys for a principal, and encrypts the secret
keys with password, so they can be retrieved only by providing password to princ static. The
resulting public key and encrypted secret key are hardcoded into the application’s source code. This
allows the application to refer to the static principal by name without relying on the IDP.
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Static principals can also certify other principals. For example, in the endometriosis application,
all user accounts are manually created by surgeons. This allows all user principals to be certified by
the static “surgeons” principal, avoiding the need for an IDP to do the same.

◇ 4.3.4 User principals

To create an account for a new user, the application must invoke create user, as shown in Figure 4-
2. This causes the Mylar client to generate a new principal for the user, encrypt the secret key with
the user’s password, and store the principal with the encrypted secret key on the server.

To enable the application to later look up this user’s public key, in the presence of active adver-
saries, the principal must be certified. To do this, the application supplies the auth princ argument
to create user. This is typically either a static principal or the IDP. For static principals, the certifi-
cate is generated directly in the browser that calls create user; the creator must have access to the
private key of auth princ. For example, the endometriosis application, where all users are manually
created by a surgeon, follows this model. If auth princ is the IDP, the Mylar client interprets uname
as the user’s email address, and contacts the IDP, which verifies the user’s email address and signs a
certificate containing the user’s public key and email address.

Even though multiple applications can share the IDP, a buggy or malicious application will not
affect other applications that use the same IDP (unless users share passwords across applications).
This property is ensured by never sending passwords or secret keys to the IDP, and explicitly includ-
ing the application’s origin in the certificate generated by the IDP.

◇ 4.3.5 Data integrity

To prevent an attacker from tampering with the data, Mylar provides two ways to authenticate data,
as follows.

First, all encrypted data is authenticated with a MAC (message authentication code),2 which
means that clients will detect any tampering with the ciphertext. However, an adversary can still
replace the ciphertext of one field in a document with any other ciphertext that was encrypted using
the same key.

To protect against such attacks, developers can specify an authentication set of fields whose
values must be consistent with one other, using the auth set annotation. This annotation guarantees
that if a client receives some document, then all fields in each authentication set were consistent
at some point, according to the corresponding principal. Mylar enforces authentication sets by
computing a MAC over the values of all fields in each set.

For example, in a chat room application, each message has several fields, including the message
body and the (client-generated) timestamp. By putting these two fields into an authentication set,
the developer ensures that an adversary cannot splice together the body of one message with the
timestamp from another message.

Mylar does not guarantee data freshness, or correctness of query results. An adversary can roll
back the entire authentication set to an earlier version without detection, but cannot roll back a subset
of an authentication set.

2For efficiency, Mylar uses authenticated encryption, which conceptually computes both the ciphertext and the MAC
tag in one pass.
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2 4.4 Computing on encrypted data

The challenge facing Mylar in computing over encrypted data is that web applications often have
many users, resulting in data encrypted with many different keys. Existing efficient encryption
schemes for computation over encrypted data, such as keyword search, assume that all data is en-
crypted with a single key [SWP00, KPR12]. Using such a scheme in Mylar would require compu-
tation over one key at a time, which is inefficient.

For example, consider a user with access to 𝑁 documents, where each document is encrypted
with a different key (since it can be shared with a different set of users). Searching for a keyword
in all of these documents would require the user to generate 𝑁 distinct cryptographic search tokens,
and to send all of them to the server. Even for modest values of 𝑁 , such as 1000, this can result in
noticeable computation and network costs for the user’s machine. Moreover, if the 𝑁 keys are not
readily available in the client browser, fetching these keys may bring further overhead.

To address this limitation, Mylar introduces a multi-key search scheme, as described in the rest
of this section.

◇ 4.4.1 Multi-key search

Mylar’s multi-key search scheme provides a simple abstraction. If a user wants to search for a
word in a set of documents on a server, each encrypted with a different key, the user’s machine
needs to provide only a single search token for that word to the server. The server, in turn, returns
each encrypted document that contains the user’s keyword, as long as the user has access to that
document’s key.

The intuition for our scheme is as follows. Say that the documents that a user has access to are
encrypted under keys 𝑘1, . . . , 𝑘𝑛 and the user’s own key is uk. The user’s machine computes a search
token for a word 𝑤 using key uk, denoted tk𝑤uk. If the server had tk𝑤𝑘1 , . . . , tk

𝑤
𝑘𝑛 instead of tk𝑤uk, the

server could match the search token against the encrypted documents using an existing searchable
encryption scheme.

Our idea is to enable the server to compute these tokens by itself; that is, to adjust the initial tk𝑤uk
to tk𝑤𝑘𝑖 for each 𝑖. To allow the server to perform the adjustment, the user’s machine must initially
compute deltas, which are cryptographic values that enable a server to adjust a token from one key
to another key. We use ∆uk→𝑘𝑖 to denote the delta that allows a server to adjust tk𝑤uk to tk𝑤𝑘𝑖 . These
deltas represent the user’s access to the documents, and crucially, these deltas can be reused for
every search, so the user’s machine needs to generate the deltas only once. For example, if Alice
has access to Bob’s data, she needs to provide one delta to the server, and the server will be able to
adjust all future tokens from Alice to Bob’s key.

In terms of security, our scheme guarantees that the server does not learn the word being searched
for, and does not learn the content of the documents. All that the server learns is whether the word
in the search token matched some word in a document, and in the case of repeated searches, whether
two searches were for the same word. Knowing which documents contain the word being searched
for is desirable in practice, to avoid the overhead of returning unnecessary documents.

This chapter presents the multi-key search scheme at a high level, with emphasis on its interface
and security properties as needed in our system. We provide a rigorous description and a crypto-
graphic treatment of the scheme (including formal security definitions and proofs) in a technical
report [PZ13]. Readers that are not interested in cryptographic details can skip to S4.4.3.
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Client-side operations:
procedure KEYGEN() ◁ Generate a fresh key

key ← random value from Z𝑝

return key

procedure ENC(key , word )
𝑟 ← random value from G𝑇

𝑐← ⟨𝑟,𝐻2(𝑟, 𝑒(𝐻(word), 𝑔)key)⟩
return 𝑐

procedure TOKEN(key , word )
◁ Generate search token for matching word

tk ← 𝐻(word)key in G1

return tk
procedure DELTA(key1, key2)

◁ Allow adjusting search token from key1 to key2

∆key1→key2
← 𝑔key2/key1 in G2

return ∆key1→key2

Server-side operations:
procedure ADJUST(tk , ∆𝑘1→𝑘2)

◁ Adjust search token tk from 𝑘1 to 𝑘2
atk ← 𝑒(tk,∆𝑘1→𝑘2) in G𝑇

return atk
procedure MATCH(atk , 𝑐 = ⟨𝑟, ℎ⟩)

◁ Return whether 𝑐 and atk refer to same word
ℎ′ ← 𝐻2(𝑟, atk)

return ℎ′ ?
= ℎ

Figure 4-4: Pseudo-code for Mylar’s multi-key search scheme.

◇ 4.4.2 Cryptographic construction

We construct the multi-key search scheme using bilinear maps on elliptic curves, which, at a high
level, are functions 𝑒 : G1 ×G2 → G𝑇 , where G1, G2, and G𝑇 are special groups of prime order 𝑝
on elliptic curves. Let 𝑔 be a generator of G2. Let 𝐻 and 𝐻2 be certain hash functions on the elliptic
curves. 𝑒 has the property that 𝑒(𝐻(𝑤)𝑎, 𝑔𝑏) = 𝑒(𝐻(𝑤), 𝑔)𝑎𝑏. Figure 4-4 shows pseudo-code for our
multi-key search scheme.

◇ 4.4.3 Indexing search

One efficiency issue with this algorithm is that the server has to scan through every word of every
document to identify a match. This can be slow if the documents are large, but is unavoidable if the
encryption of each word is randomized with a different 𝑟, as in Figure 4-4.

To enable the construction of an efficient index over the words in a searchable document, Mylar
supports an indexable version of this multi-key search scheme. The idea is to remove randomness
without compromising security. Intuitively, randomness is needed to hide whether two words en-
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crypted under the same key are equal. But for words within one document, Mylar can remove the
duplicates at the time the document is encrypted, so per-word randomness is not needed within a
document.

Therefore, to encrypt a document consisting of words 𝑤1, . . . , 𝑤𝑛, the client removes duplicates,
chooses one random value 𝑟, and then uses the same 𝑟 when encrypting each of the words using
ENC().

When searching for word 𝑤 in a document, the server performs the adjustment as before and
obtains atk . It then computes 𝑣 ← COMBINE(𝑟, atk) = ⟨𝑟,𝐻2(𝑟, atk)⟩ using the document’s ran-
domness 𝑟. If one of the words in the document is 𝑤, its encryption will be equal to 𝑣, because they
use the same randomness 𝑟. Therefore, the server can perform direct equality checks on encrypted
words. This means that it can build an index over the encrypted words in the document (e.g., a
hash table), and then use that index and 𝑣 to figure out in constant time if there is a match without
scanning the document.

A limitation is that the server has to use an index per unique key rather than one holistic index.

◇ 4.4.4 Integrating search with the principal graph

Mylar integrates the multi-key search scheme with the principal graph as follows. When a principal
𝑃 is created, Mylar generates a key 𝑘𝑃 using KEYGEN (Figure 4-4). Whenever 𝑃 receives access
to some new principal 𝐴, Mylar includes 𝑘𝐴 in the wrapped key for 𝑃 . The first time a user with
access to 𝑃 comes online, the Mylar client in that user’s browser retrieves 𝑘𝐴 from the wrapped key,
computes ∆𝑘𝑃→𝑘𝐴 ←DELTA(𝑘𝑃 , 𝑘𝐴), and stores it at the server. This delta computation happens
just once for a pair of principals.

To encrypt a document for some principal 𝐴, the user’s browser encrypts each word 𝑤 in the
document separately using ENC(𝑘𝐴, 𝑤). Since the multi-key search scheme does not support de-
cryption, Mylar encrypts all searchable documents twice: once with the multi-key search scheme,
for searching, and once with a traditional encryption scheme like AES, for decryption.

To search for a word 𝑤 with principal 𝑃 , the user’s client uses TOKEN(𝑘𝑃 , 𝑤) to compute a
token tk, and sends it to the server. To search over data encrypted for principal A, the server obtains
∆𝑘𝑃→𝑘𝐴 , and uses ADJUST(tk, ∆𝑘𝑃→𝑘𝐴 ) to adjust the token from 𝑘𝑃 to 𝑘𝐴, obtaining the adjusted
token atk𝐴. Then, for each document encrypted under 𝑘𝐴 with randomness 𝑟, the server computes
𝑣 ← COMBINE(𝑟, atk𝐴) and checks if 𝑣 exists in the document using an index. The server repeats
the same process for all other principals that 𝑃 has access to.

Integrating the access graph with keyword search brings up two challenges. The first comes from
the fact that our multi-key search scheme allows adjusting tokens just once. In the common case of
an access graph where all paths from a user to the data’s encryption key consist of one edge (such
as the graph in Figure 4-3), Mylar associates the search delta with the edge, and stores it along with
the wrapped key. In our chat example, this allows a user’s browser to search over all chat rooms that
the user has access to, by sending just one search token.

Some applications can have a more complex access graph. For example, in the endometriosis
application, all doctors have access to the staff principal, which in turn has access to all patient
principals. Here, the optimal approach is to use the ADJUST() function on the server between
principals with the largest number of edges, so as to maximize the benefit of multi-key search. For
instance, if a doctor wanted to search over patient records, the doctor’s browser should fetch the
staff principal it has access to, and produce a search token using the staff principal’s private key. The
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server would then use ADJUST() to look for matches in documents encrypted with each patient’s
key. Because most of our applications have simple access graphs, our prototype does not automate
this step, and a developer must choose the principal with which to search.

The second challenge comes from the fact that searching over data supplied by an adversary can
leak the word being searched for. For example, suppose an adversary creates a document containing
all the words in a dictionary, and gives the user access to that document. If the user searches for a
word 𝑤 in all of the documents he has access to, including the one from the adversary, the server will
see which of the words in the adversary’s document matches the user’s token, and hence will know
which dictionary word the user searched for. To prevent this, users must explicitly accept access to
a shared document, and developers must invoke the allow search function, provided by Mylar for
this purpose, as appropriate.

2 4.5 Verifying client-side code

Although Mylar uses encryption to protect confidential data stored on the untrusted server, the cryp-
tographic keys and the plaintext data are both available to code executing in the user’s web browser.
The same-origin policy [Zal12] ensures that applications from other origins running in the browser
do not access the data in the Mylar application. However, Mylar must also ensure that code running
in the application’s origin has not been tampered with.

Since the code in a web page is static in Mylar, a strawman solution is to sign this code and
verify the signature in the browser. The strawman does not suffice because of a combination of two
factors. On the one hand, most web applications (including those using Mylar) consist of multiple
files served by the web server. On the other hand, the only practical way to control what is loaded
in a browser is to interpose on individual HTTP requests.

The problem arises because at the level of individual HTTP requests, it is difficult to reason about
what code the browser will execute. For example, if an image is loaded in the context of an <IMG
SRC=...> tag, it will not execute Javascript code. But if the same image is loaded as a top-level
page, the browser’s content-sniffing algorithm may decide the file is actually HTML, and potentially
execute Javascript code embedded in the image [BCS09]. Thus, a well-meaning developer must be
exceedingly careful when including any content, such as images, in their web application. If the
developer inadvertently includes a malicious image file in the application, an adversary can cause
the browser to load that file as a top-level page [BJM08] and trigger this attack. Similar problems
can arise with other content types, including CSS style sheets, PDF files, etc.

Two-origin signing. To address this problem, Mylar uses two origins to host an application. The
primary origin hosts exactly one file: the application’s top-level HTML page. Consequently, this
is the only page that can gain access to the application’s encryption keys and plaintext data in the
browser. All other files, such as images, CSS style sheets, and Javascript code, are loaded from
the secondary origin. Mylar verifies the authenticity of these files to prevent tampering, but if an
adversary tries to load one of these files as a top-level page, it will run with the privileges of the
secondary origin, and would not be able to access the application’s keys and data.

To verify that the application code has not been tampered with, Mylar requires the site owner to
create a public/private key pair, and to sign the application’s top-level HTML page (along with the
corresponding HTTP headers) with the private key. Any references to other content must refer to the
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procedure PROCESSRESPONSE(url, cert, response)
◁ url is the requested URL

◁ cert is server’s X.509 certificate
if cert contains attribute mylar pubkey then

pk ← cert.mylar pubkey
sig ← response.header[”Mylar-Signature”]
if not VERIFYSIG(pk, response, sig) then

return ABORT

if url contains parameter “mylar hash=h” then
if hash(response) ̸= h then return ABORT

return PASS

Figure 4-5: Pseudo-code for Mylar’s code verification extension.

secondary origin, and must be augmented to include a mylar hash=ℎ parameter in the query string,
specifying the expected hash of the response. The hash prevents an adversary from tampering with
that content or rolling it back to an earlier version. Rollback attacks are possible on the top-level
HTML page (because signatures do not guarantee freshness), but in that case, the entire application
is rolled back: hashes prevent the adversary from rolling back some but not all of the files, which
could confuse the application.

This signing mechanism can verify only the parts of an application that are static and supplied
by the web site owner ahead of time. It is up to the application code to safely handle any content
dynamically generated by the server at runtime (S4.2.4). This model is a good fit for AJAX web
applications, in which the dynamic content is only data, rather than HTML or code.

Browser extension. Each user of Mylar applications should install the Mylar browser extension in
their web browser, which verifies that Mylar applications are properly signed before running them.
Figure 4-5 shows the pseudo-code for the Mylar browser extension. The site owner’s public key is
embedded in the X.509 certificate of the web server hosting the web application. Mylar assumes that
certificate authorities will sign certificates for the web application’s hostname only on behalf of the
proper owner of the web application’s domain (i.e., the site owner). Thus, as long as the site owner
includes the public key in all such certificates, then users visiting the correct web site via https will
obtain the owner’s public key, and will verify that the page was signed by the owner.

2 4.6 Implementation

We implemented a prototype of Mylar by building on top of the Meteor web application frame-
work [Met13]. Meteor allows client-side code to read and update data via MongoDB operations,
and also to issue RPCs to the server. Mylar intercepts and encrypts/decrypts data accessed via the
MongoDB interface, but requires developers to explicitly handle data passed via RPCs. We have not
found this to be necessary in our experience.

We use the SJCL library [SHB09] to perform much of our cryptography in Javascript, and use
elliptic curves for most public-key operations, owing to shorter ciphertexts and higher performance.
As in previous systems, Mylar uses faster symmetric-key encryption when possible [PRZB11]. For
bilinear pairings, we use the PBC C++ library to improve performance, which runs either as a Native
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// On both the client and the server:
idp = idp config(url, pubkey);
Messages.encrypted({”message”: ”roomprinc”});
Messages.auth set([”roomprinc”, [”id”, ”message”, ”room”, ”date”]]);
Messages.searchable(”message”);

// On the client:
function create user(uname, password):

create user(uname, password, idp);
function create room(roomtitle):

princ create(roomtitle, princ current());
function invite user(username):

global room princ;
room princ.add access(princ lookup(username, idp));

function join room(room):
global cur room, room princ;
cur room = room;
room princ = princ lookup(room.name, room.creator, idp);

function send message(msg):
global cur room, room princ;
Messages.insert({message: msg, room: cur room.id,

date: new Date().toString(),
roomprinc: room princ});

function search(word):
return Messages.search(word, ”message”, princ current(), all, all);

Figure 4-6: Pseudo-code for changes to the kChat application to encrypt messages. Not shown is
unchanged code for managing rooms, receiving and displaying messages, and login/logout (Mylar
provides wrappers for Meteor’s user accounts API).

Client module (for Chrome), as a plugin (for Firefox), or as an NDK-based application (for Android
phones). To verify code in the user’s browser, we developed a Firefox extension. Mylar comprises
∼9,000 lines of code in total.

When looking up paths in the principal graphs, Mylar performs breadth-first search. We have
not found this to be a bottleneck in our experience so far, but more efficient algorithms, such as
meet-in-the-middle, are possible.

2 4.7 Building a Mylar application

To demonstrate how a developer can build a Mylar application, we show the changes that we made
to the kChat application to encrypt messages. In kChat, users can create chat rooms, and existing
members of a chat room can invite new users to join. Only invited users have access to the messages
from the room. A user can search over data from the rooms he has access to. Figure 4-6 shows the
changes we made to kChat, using Mylar’s API (Figure 4-2).

The call to Messages.encrypted specifies that data in the “message” field of that collection
should be encrypted. This data will be encrypted with the public key of the principal specified in the
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Figure 4-7: Two screenshots from kChat. On the top, Alice is chatting with Bob as intended. On the
bottom, the server provided a fake “sensitive” chat room created by the adversary; Alice can detect
this by checking the creator’s email address.

Application LoC LoC added Number and types of fields secured Existed Keyword
before for Mylar before? search on

kChat [Kiq] 793 45 1 field: chat messages Yes messages
endometriosis 3659 28 tens of medical fields: mood, pain, surgery, . . . Yes N/A
submit 8410 40 3 fields: grades, homework, feedback Yes homework
photo sharing 610 32 5 fields: photos, thumbnails, captions, . . . Yes N/A
forum 912 39 9 fields: posts body, title, creator, user info, . . . No posts
calendar 798 30 8 fields: event body, title, date, user info, . . . No events

WebAthena [Ben13] 4800 0 N/A: used for code authentication only Yes N/A

Figure 4-8: Applications ported to Mylar. “LoC before” reports the number of lines of code in
the unmodified application, not including images or Meteor packages. “Existed before” indicates
whether the application was originally built independent of Mylar.

“roomprinc” field. All future accesses to the Messages collection will be transparently encrypted
and decrypted by Mylar from this point. The call to Messages.searchable specifies that clients will
need to search over the “message” field; consequently, Mylar will store a searchable encryption of
each message in addition to a standard ciphertext.

When a user creates a new room (create room), the application in turn creates a new principal,
named after the room title and signed by the creator’s principal. To invite a user to a room, the
application needs to give the new user access to the room principal, which it does by invoking
add access in invite user.

When joining a room (join room), the application must look up the room’s public key, so that
it can encrypt messages sent to that room. The application specifies both the expected room title
as well as the room creator as arguments to princ lookup, to distinguish between rooms with the
same title. By displaying both the room title and the creator email address, as in Figure 4-7, the
application helps the user distinguish the correct room from an identically named room that an
adversary created.

To send a message to a chat room, kChat needs to specify a principal in the roomprinc field
of the newly inserted document. In this case, the application keeps the current room’s principal
in the room princ global variable. Similarly, when searching for messages containing a word, the
application supplies the principal whose key should be used to generate the search token. In this
case, kChat uses the current user principal, princ current().
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2 4.8 Evaluation

This section answers two main questions: first, how much developer effort is required to use Mylar,
and second, what are the performance overheads of Mylar?

◇ 4.8.1 Developer effort

To measure the amount of developer effort needed to use Mylar, we ported 6 applications to Mylar.
Two of these applications plan to start using Mylar in production in the near future: a medical
application in which endometriosis patients record their symptoms, and a web site for managing
homework and grades for a class at MIT. We also ported an existing chat application called kChat,
in which users share chat rooms by invitation and exchange private messages, and a photo sharing
application. We also built a Meteor-based forum and calendar, which we then ported to Mylar.
Finally, to demonstrate the generality of Mylar’s code verification, we used it to verify the code for
WebAthena [Ben13], an in-browser Javascript Kerberos client.

Figure 4-8 summarizes the fields we secured with Mylar in the above applications, along with
how much code the developer had to change. In the case of the endometriosis application, fields
were stored in the database as field name and field value pairs, so encrypting the generic “value”
field secured tens of different kinds of data. In the other apps, a field corresponded to one kind of
sensitive data. The results show that Mylar requires little developer effort to protect a wide range of
confidential data, averaging 36 lines of code per application.

◇ 4.8.2 Performance

Mylar’s performance goal is to avoid significantly affecting the user experience with the web appli-
cation. To evaluate whether Mylar meets this goal, we answer the following questions:

∙ How much latency does Mylar add to the web application’s overall user interface?

∙ How much throughput overhead does Mylar impose on a server?

∙ Is Mylar’s multi-key search important to achieve good performance?

∙ How much storage overhead does Mylar impose?

To answer these questions, we measured the performance of kChat, the homework submission ap-
plication (“submit”), and the endometriosis application. Although kChat has only one encrypted
field, every message sent exercises this field. We used two machines running recent versions of
Debian Linux to perform our experiments. The server had an Intel Xeon 2.8 GHz processor and
4 GB of RAM; the client had eight 10-core Intel Xeon E7-8870 2.4 GHz processors with 256 GB
of RAM. The client machine is significantly more powerful to allow us to run enough browsers to
saturate the server. For browser latency experiments, we simulate a 5 Mbit/s client-server network
with 20 msec round-trip latency. All experiments were done over https, using nginx as an https
reverse proxy on the server. We used Selenium to drive a web browser for all experiments. We also
evaluated Mylar on Android phones and found that performance remained acceptable, but we omit
these results for brevity.
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Figure 4-9: End-to-end latency of four operations in kChat. Transmit includes the time from when
one user sends a message to when another user receives it.
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Figure 4-10: Server throughput for kChat.

End-to-end latency. Figure 4-9 shows the end-to-end latency Mylar introduces for four main op-
erations in kChat: transmitting a message, joining a room, searching for a word in all rooms, and
inviting a user to a room. For message transmission, we measured the time from the sender clicking
“send” until the message renders in the recipient’s browser. This is the most frequent operation in
kChat, and Mylar adds only 50 msec of latency to it. This difference is mostly due to searchable
encryption, which takes 43 msec. The highest overhead is for inviting a user, due to principal op-
erations: looking up and verifying a user principal (218 msec) and wrapping the key (167 msec).
Overall, we believe the resulting latency is acceptable for many applications, and subjectively the
application still feels responsive.

We also measured the latency of initially loading a page. The original kChat application loads in
291 msec. The Mylar version of kChat, without the code verification extension, loads in 356 msec,
owing to Mylar’s additional code. Enabling the code verification extension increases the load time
to 1109 msec, owing to slow signature verification in the Javascript-based extension. Using native
code for signature verification, as we did for bilinear pairings, would reduce this overhead. Note
that users experience the page load latency only when first navigating to the application; subsequent
clicks are handled by the application without reloading the page.

We also measured the end-to-end latency of the most common operations in the endometriosis
application (completing a medical survey and reading such a survey), and the submit application (a
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Application Operation Latency Latency Tput w/o Tput with Tput
for latency w/o Mylar with Mylar Mylar Mylar units

submit send and read a 65 msec 606 msec 723 394 submissions/minsubmit w/o search submission 70 msec 595

endometriosis fill in/read survey 1516 msec 1582 msec 6993 6130 field updates/min

Figure 4-11: Latency and throughput (abbreviated tput) of different applications with and without
Mylar. The latency is the end-to-end time to perform the most common operation in that application.
For submit, the latency is the time from one client submitting an assignment until another client
obtains that submission. For endometriosis, the latency is the time from one client filling out a
survey until another client obtains the survey.

student uploading an assignment, and a staff member reading such a submission); the results are
shown in Figure 4-11. For the submit application, we used real data from 122 students who used
this application during the fall of 2013 in MIT’s 6.858 class. Submit’s latency is higher than that
of other applications because the amount of data (student submissions) is larger, so encryption with
search takes longer. For comparison, we also show the latency of submit when search is turned off.
The search encryption can happen asynchronously so the user does not have to wait for it.

Throughput. To measure Mylar’s impact on server throughput, we used kChat, and we set up
many pairs of browsers—a sender and a receiver—where the sender continuously sends new mes-
sages. Receivers count the total number of messages received during a fixed interval. Figure 4-10
shows the results, as a function of the total number of clients (each pair of browsers counts as 2
clients). Mylar decreases the maximum server throughput by 17%. Since the server does not per-
form any cryptographic operations, Mylar’s overhead is due to the increase in message size caused
by encryption, and the encrypted search index that is added to every message to make it searchable.

Figure 4-11 also shows the server throughput of the endometriosis and class submit application
when clients perform representative operations.

Search. To evaluate the importance of Mylar’s multi-key search, we compare it to two alternative
approaches for secure search. The first alternative is single-key server-side search, in which the
client generates a token for every key by directly computing the adjusted token from our multi-key
search. This alternative is similar to prior work on encrypted keyword search. In this case, the client
looks up the principal for every room, computes a token for each, and the server uses one token
per room. The second alternative is to perform the search entirely at the client, by downloading all
messages. In this case, the client still needs to look up the principal for each room so that it can
decrypt the data.

Figure 4-12 shows the time taken to search for a word in kChat for a fixed number of total
messages spread over a varying number of rooms, using multi-key search and the two alternatives
described above. We can see that multi-key search is much faster than either of the two alternatives,
even with a small number of rooms. The performance of the two alternatives is dominated by the
cost of looking up the principal for each room and obtaining its private key. Multi-key search does
not need to do this, because the server directly uses the deltas, and it achieves good performance
because both ADJUST and MATCH are fast, as shown in Figure 4-13.
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Figure 4-12: End-to-end latency of keyword search in kChat, searching over 100 6-word messages,
spread over a varying number of rooms.
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Figure 4-13: Time taken to run each multi-key search operation.

Storage overhead. For kChat, the server storage overhead after inserting 1,000 messages with
Mylar was 4× that of unmodified kChat. This is due to three factors: principal graphs (storing
certificates and wrapped keys), symmetric key encryption, and searchable encryption. Our prototype
stores ciphertexts in base-64 encoding; using a binary encoding would reduce storage overheads.

2 4.9 Discussion

Mylar focuses on protecting confidential data in web applications. However, Mylar’s techniques for
searching over encrypted data and for verifying keys are equally applicable to desktop and mobile
phone applications; the primary difference is that code verification becomes simpler, since applica-
tions are explicitly installed by the user, instead of being downloaded at application start time.

Mylar relies on X.509 certificates to supply the web site owner’s public key for code verification.
Alternative schemes could avoid the need for fully trusted certificate authorities [Tho11, WAP08],
and the Mylar extension could allow users to manually specify site owner public keys for especially
sensitive web sites.

Revoking access to shared data is difficult, because Mylar cannot trust the server to forget a
wrapped key. Complete revocation requires re-encrypting shared data under a new key, and giving
legitimate users access to the new key. In less sensitive situations, it may suffice to try deleting the
key from the server, which would work if the server is not compromised at the time of the deletion.

2 4.10 Conclusion

In this chapter, we presented Mylar, a novel web application framework that enables developers to
protect confidential data in the face of arbitrary server compromises. Mylar leverages the recent shift
to exchanging data, rather than HTML, between the browser and server, to encrypt all data stored on
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the server, and decrypt it only in users’ browsers. Mylar provides a principal abstraction to securely
share data between users, and uses a browser extension to verify code downloaded from the server
that runs in the browser. For keyword search, which is not practical to run in the browser, Mylar
introduces a cryptographic scheme to perform keyword search at the server over data encrypted with
different keys. Experimental results show that using Mylar requires few changes to an application,
and that the performance overheads of Mylar are modest.

Mylar and the applications discussed in this chapter are available at http://css.csail.mit.edu/
mylar/.
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CHAPTER 5

Multi-key searchable encryption

In this section, we present the multi-key searchable encryption scheme we designed for Mylar, and
prove its security formally. This scheme is an example of a situation when there did not exist an
encryption scheme that fit Mylar’s scenario, and we had to design a new scheme. In a nutshell, this
scheme enables keyword search over data encrypted with different keys. We present the scheme
standalone, independent from Mylar, because we think it could be useful in other settings as well.

2 5.1 Introduction

As discussed in this thesis, a promising approach to protecting data confidentiality against adver-
saries who compromise servers is to store encrypted data on servers, and to encrypt and decrypt
documents only on client machines. In the case of a multi-user application, each user may have
access to a different set of documents stored on the server; this can be achieved by ensuring that
each document is encrypted with a separate per-document key, and arranging for each user’s client
machine to have access to the keys of the documents that the corresponding user has access to.

One challenge with this approach lies in supporting applications that allow users to search for
documents that contain a given word. Many applications, such as document sharing, chat, forums,
and calendars, support search over documents shared by different users. Prior work on searchable
encryption schemes would require the client to provide the server with a search token under each
key that a matching document might be encrypted with, and thus the number of tokens scales with
the number of documents to search. This can be slow when there is a large number of documents.

We present a cryptographic scheme that allows a client to provide a single search token to the
server, but still allows the server to search for that token’s word in documents encrypted with different
keys. We call such a scheme multi-key search. Intuitively, the scheme hides the content of the
document and the words one searches for, and the only information the server learns is whether some
word being searched for matches a word in a document. We formalize the security guarantees with
cryptographic security definitions and prove the security of our scheme under variants of the Bilinear
Decisional Diffie-Hellman and External Diffie-Hellman assumptions, as well as in the random oracle
model. The scheme is practical and was designed to be included in a new system for protecting data
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Figure 5-1: Access graph example.

confidentiality against attacks on the server.
The most challenging aspect when coming up with such a scheme is that there is no single trusted

user; for example, in many web applications, anyone, including an adversary, can create an account
and become a user. As a result, users cannot agree on a secret, and each document must be encrypted
under different keys that are generated independently, rather than generated from a common secret
key. Another challenge is that the scheme must be practical because our goal is to use it in a real
system.

In the rest of the chapter, we explain the problem setting in Sec. 5.2, we provide syntax and se-
curity definitions in Sec. 5.4, we present our construction together with a performance measurement
in Sec. 5.5 and 5.6, respectively, and finally, we prove the security of our scheme in Sec. 5.8 under
the assumptions in Sec. 5.7. We compare our scheme to related work in Sec. 8.2.3.

2 5.2 Problem setting

In our model, there is a set of users, a server, and a set of documents. The server stores encrypted
documents. Each user has access to a subset of the documents. A user can create a document and
then give access to other users to the document by giving them the decryption key of the document.
We call the graph of user accesses to documents, an access graph, defined below. Fig. 5-1 shows an
example of an access graph.

Definition 14 (Access graph). An access graph 𝐺 = (𝑈,𝐷,𝐸) consists of a set of users 𝑈 , a set
of documents 𝐷, as well as a set of edges 𝐸, where an edge 𝑒 is a pair (𝑖, 𝑗) for 𝑖 ∈ 𝑈 and 𝑗 ∈ 𝐷
denoting user 𝑖 has access to document 𝑗. We write 𝑒 ∈ 𝐺 to mean that 𝑒 ∈ 𝐸.

At a high level, the following security guarantees are desirable. If some user was not given
access to a document, the user should not be able to read the contents of that document or search
over that document, even if the user colludes with the server. The setting is entirely distributed.
Each user generates his key and there is no trusted party for choosing keys, and no globally trusted
user. Moreover, there is no trusted party to create document keys or to help with providing access to
documents.

The functionality goal is to allow a user to search a word over all the documents he can access,
say 𝑛 documents, even if those documents are encrypted under different keys. Note that the user has
access to all the keys for these 𝑛 documents, but the user should only give one search token to the
server, instead of 𝑛 tokens.
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Let’s now consider a more concrete model for such a multi-key search. We denote the key of
user 𝑖 with uk𝑖, and the key of document 𝑗 with 𝑘𝑗 . Consider that a user, say Alice, (with key uk𝐴)
has 𝑛 encrypted documents at the server, and each is encrypted under a key 𝑘𝑗 for 𝑗 = 1 . . . 𝑛. Alice
wants to search for a word 𝑤 over all the documents she has access to, so she uses uk𝐴 to compute
a token for a word 𝑤. In order to allow the server to match the token against words encrypted with
𝑘1, . . . , 𝑘𝑛, Alice gives the server some public information called delta. Alice provides one delta per
key 𝑘𝑗 , denoted ∆uk𝐴,𝑘𝑗 . The server can use ∆uk𝐴,𝑘𝑗 to convert a search token under key uk𝐴 to a
search token under 𝑘𝑗 , a process we call adjust. In this way, the server can obtain tokens for word
𝑤 under 𝑘1, . . . , 𝑘𝑛 while only receiving one token from Alice, and then performing a traditional
single-key search with the new tokens.

Multi-key search provides efficiency guarantees over single-key search. If 𝑇 is the total number
of words Alice searches, she provides 𝑂(𝑛+ 𝑇 ) pieces of information to the server: 𝑛 deltas and 𝑇
tokens, the size of all of which only depends on the security parameter. In contrast, if Alice uses a
single-key searchable encryption as in previous work, she provides 𝑂(𝑛𝑇 ) pieces of information to
the sever, because she provides 𝑛 tokens, one for each key 𝑘𝑗 , for each of 𝑇 words.

2 5.3 Preliminaries

We denote by 𝜅 the security parameter throughout this chapter. For a distribution𝒟, we write 𝑥← 𝒟
when 𝑥 is sampled from the distribution 𝒟. If 𝑆 is a finite set, by 𝑥 ← 𝑆 we mean 𝑥 is sampled
from the uniform distribution over the set 𝑆.

We use 𝑝(·) to denote that 𝑝 is a function that takes one input. Similarly, 𝑝(·, ·) denotes a function
𝑝 that takes two inputs.

We say that a function 𝑓 is negligible in an input parameter 𝜅, if for all 𝑑 > 0, there exists𝐾 such
that for all 𝜅 > 𝐾, 𝑓(𝜅) < 𝑘−𝑑. For brevity, we write: for all sufficiently large 𝜅, 𝑓(𝜅) = negl(𝜅).
We say that a function 𝑓 is polynomial in an input parameter 𝜅, if there exists a polynomial 𝑝 such
that for all 𝜅, 𝑓(𝜅) ≤ 𝑝(𝜅). We write 𝑓(𝜅) = poly(𝜅). A similar definition holds for polylog(𝜅).

Let [𝑛] denote the set {1, . . . , 𝑛} for 𝑛 ∈ N*.
When saying that a Turing machine 𝐴 is PPT we mean that 𝐴 is a probabilistic polynomial-time

machine.
Two ensembles, 𝑋 = {𝑋𝜅}𝜅∈N and 𝑌 = {𝑌𝜅}𝜅∈N, are said to be computationally indistinguish-

able (denoted {𝑋𝜅}𝜅∈N
𝑐
≈ {𝑌𝜅}𝜅∈N) if for every probabilistic polynomial-time algorithm 𝐷,

|Pr[𝐷(𝑋𝜅, 1
𝜅) = 1]− Pr[𝐷(𝑌𝜅, 1

𝜅) = 1]| = negl(𝜅).

We use asymmetric bilinear map groups of Type 2 for our construction [GPS08]. Let G1 and
G2 be two disjoint cyclic subgroups on an elliptic curve of Type 2, and let 𝑒 be a non-degenerate
bilinear map 𝑒 : G1 ×G2 → G𝑇 . Let params = (𝑝,G1,G2,G𝑇 , 𝑒, 𝑔1, 𝑔2, 𝑔𝑇 )← CSetup(1𝜅) be the
procedure that generates curve parameters, where 𝑔1, 𝑔2, and 𝑔𝑇 are generators of G1, G2, and G𝑇 .

2 5.4 Syntax and security definitions

We now formalize the syntax and security definitions.
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Definition 15 (Multi-key search). A multi-key search scheme MK is a tuple of algorithms (MK.Setup,
MK.KeyGen, MK.Delta, MK.Token, MK.Enc, MK.Adjust, MK.Match) as follows:

∙ params ← MK.Setup(1𝜅): Takes as input the security parameter and outputs system wide
parameters.

∙ 𝑘 ← MK.KeyGen(params): Takes as input the system parameters and outputs a secret key,
which could be a key for a user or for a document.

∙ ∆← MK.Delta(𝑘1, 𝑘2): Takes as input two keys and outputs a delta.

∙ tk← MK.Token(𝑘, 𝑤): Takes as input a key 𝑘 and a word 𝑤 and outputs a search token tk.

∙ 𝑐 ← MK.Enc(𝑘, 𝑤): Takes as input a key 𝑘 and a word 𝑤 and outputs an encryption of the
word 𝑐.

∙ stk← MK.Adjust(tk,∆): Takes as input a token tk and a delta ∆ and outputs a search token
tk′.

∙ 𝑏← MK.Match(stk, 𝑐): Takes as input a search token stk and a ciphertext 𝑐 and outputs a bit
b.

Correctness. For any polynomial 𝑛(·), for every sufficiently large security parameters 𝜅, for all
𝑤 ̸= 𝑤′ ∈ {0, 1}𝑛(𝜅),

Pr

⎡⎢⎢⎢⎢⎣
params← MK.Setup(1𝜅);
uk← MK.KeyGen(params); 𝑘 ← MK.KeyGen(params);
∆← MK.Delta(uk, 𝑘);
stk← MK.Adjust(MK.Token(uk, 𝑤),∆) :
MK.Match(stk,MK.Enc(𝑘, 𝑤)) = True and MK.Match(stk,MK.Enc(𝑘, 𝑤′)) = False

⎤⎥⎥⎥⎥⎦ = 1−negl(𝜅).

Correctness says that when searching for a word 𝑤, encryptions of the word 𝑤 in some document
will match (after adjusting the token for 𝑤 to the key of the document), but encryptions of a different
word 𝑤′ will not match the search.

For simplicity, we do not include a decryption algorithm in the syntax of the scheme, but a
multi-key search scheme can be easily augmented with a decryption algorithm by appending to each
ciphertext produced in MK.Enc a symmetric-key semantically secure encryption with the same key
as the argument to MK.Enc.

Remark 1. In an alternate syntax, each user has a public key pk, and the algorithm MK.Delta takes
as input the public key of a user instead of his private key. A public-key MK.Delta algorithm has the
advantage that when a user, say Alice, wants to give access to another user, say Bob, to a document,
Alice can just compute the delta to the document for Bob and provide it to the server. (In fact, our
construction can be adapted to public-key by setting the public key of a user to pk = 𝑔

1/uk
2 , where uk

is the secret key of the user.)
However, inherently, such a multi-key scheme cannot hide the word searched for because the

functionality of the scheme allows a dictionary attack. Assume that an adversary wants to learn
what Alice searches for, and let pk𝐴 be Alice’s public key. An adversary can create a document
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with some key 𝑘, and encrypt in this document every word of a dictionary using key 𝑘. Then, the
adversary can produce a delta for Alice to this document by computing ∆𝐴 := MK.Delta(pk𝐴, 𝑘).
Now, for every search token tk of Alice, the adversary computes stk := MK.Adjust(tk,∆𝐴) and uses
stk to find a match in the encrypted dictionary. Once a match is found, the adversary knows what
word the user searched for.

Intuitively, we want two security properties from the MK scheme: the ciphertext and the token
should not reveal the value of the underlying plaintext, and the only information revealed to the
server is whether a search token matches a ciphertext only when the server has a delta for some
document or whether one is searching for the same word as before. Moreover, if the key of a
document leaks, the key of the user should not leak and the contents of the other documents the user
has access to should not leak.

We formalize these properties with two games, data hiding and token hiding, that express these
goals. One holistic security definition would be a stronger guarantee, but that greatly complicates
the proofs. Nevertheless, the separate definitions also capture the desired security goals.

◇ 5.4.1 Data hiding

Data hiding requires that the adversary not be able to distinguish between ciphertexts of two values
not matched by some token. The case when the token matches a ciphertext is handled by the token
hiding game. In the following definition, documents are numbered from 0 onwards and users from
1 onwards. The reason there is document 0 is that this is a special document used in the challenge.

Definition 16 (Data hiding game). The data hiding game is between a challenger Ch and an adver-
sary Adv on security parameter 𝜅 and public parameters params.

∙ Ch computes params← CSetup(1𝜅) and provides them to Adv.

∙ Adv provides an access graph 𝐺 with users numbered from 1 and documents numbered from
0 to Ch along with keys 𝑘𝑗 for every document with 𝑗 > 0.

∙ Ch generates 𝑘0 ← MK.KeyGen(1𝜅, params) for document 0. Then, for every user 𝑖, it gener-
ates uk𝑖 ← MK.KeyGen(1𝜅) and for every edge (𝑖, 𝑗) ∈ 𝐺, it provides MK.Delta(uk𝑖, 𝑘𝑗) to
Adv.

∙ Challenge step: Adv chooses 𝑤*
0, 𝑤

*
1 ← {0, 1}𝑛(𝜅) and provides 𝑤*

0, 𝑤
*
1 to Ch. Ch chooses a

random bit b and provides MK.Enc(𝑘0, 𝑤
*
b) to Adv.

∙ Adaptive step: Adv makes the following queries to Ch adaptively. The ℓ-th query can be:

1. “Encrypt 𝑤ℓ to document 0”: Ch returns MK.Enc(𝑘0, 𝑤ℓ).

2. “Token for word 𝑤ℓ for user 𝑖”: Ch returns MK.Token(uk𝑖, 𝑤ℓ).

∙ Adv outputs b′, its guess for b.

Restriction on Adv: for all token queries 𝑤ℓ for user 𝑖, if (𝑖, 0) ∈ 𝐺, it must be that 𝑤ℓ /∈ {𝑤*
0, 𝑤

*
1}.

Adv wins the game if 𝑏′ = 𝑏. Let winAdv(𝜅) be the random variable indicating whether Adv wins
the game for security parameter 𝜅.
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Definition 17. A multi-key search scheme is data hiding if, for all PPT adversaries Adv, for all
sufficiently large 𝜅, Pr[winAdv(𝜅)] < 1/2 + negl(𝜅).

Here is how the definition models our intentions:

∙ The fact that Adv can provide keys for all documents except for the challenge one models
the fact that an adversary could steal keys of document or create documents, but such actions
should not allow Adv to learn information about a document he does not own.

∙ The restriction on the token queries of Adv is required because otherwise Adv could distin-
guish the ciphertexts based on the functionality of the scheme.

∙ Note that Adv can ask tokens for words that are part of the challenge (e.g., 𝑤0 or 𝑤1) for users
that do not have a delta to document 0. This ensures that any user 𝑖 that does not have a delta
to a document cannot search that document.

∙ We do not need to allow Adv to ask for encrypt queries to documents 𝑖 for 𝑖 > 0 because Adv
has the corresponding secret keys and can encrypt by itself.

A stronger definition would allow an adaptive step before the challenge step as well. Our scheme
can also be proven secure in that setting, but results in a more complicated proof, which we do not
provide here.

◇ 5.4.2 Token hiding

Token hiding requires that an adversary cannot learn the word one searches for.

Definition 18. A 𝑢-free document in a particular graph is a document with no edge from user 𝑢 in
that graph. A 𝑢-free user in a particular graph is a user that has edges only to 𝑢-free documents in
that graph.

User 0 will be the challenge user, for which Adv will have to distinguish tokens. Thus, we will
refer to 0-free users and 0-free documents as simply “free users” and “free documents”.

Definition 19 (Token hiding game). The token hiding game is between a challenger Ch and an
adversary Adv on security parameter 𝜅 and public parameters params.

∙ Ch computes params← CSetup(1𝜅) and provides them to Adv.

∙ Adv provides an access graph 𝐺 with users numbered from 0 and documents numbered from
1, along with keys uk𝑖 for every free user 𝑖 and 𝑘𝑗 for every free document 𝑗.

∙ Ch generates uk𝑖 ← MK.KeyGen(1𝜅) for every non-free user 𝑖, 𝑘𝑗 ← MK.KeyGen(1𝜅) for
every non-free document 𝑗. For every edge (𝑖, 𝑗) ∈ 𝐺, Ch sends MK.Delta(uk𝑖, 𝑘𝑗) to Adv.

∙ Adaptive step. Adv makes the following queries to Ch adaptively. At query ℓ:

1. “Encrypt 𝑤ℓ for document 𝑗”: Ch returns MK.Enc(𝑘𝑗, 𝑤ℓ).

2. “Token 𝑤ℓ for user 𝑖” with 𝑖 > 0: receives MK.Token(uk𝑖, 𝑤ℓ).
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∙ Challenge step: Adv sends 𝑤*
0 and 𝑤*

1 to Ch and receives MK.Token(uk0, 𝑤
*
b) for a random

bit b.

∙ Adv repeats the adaptive step.

∙ Adv outputs b′, its guess for b.

Restriction on Adv: For every “Token 𝑤ℓ for user 𝑖” query: 𝑤ℓ /∈ {𝑤*
0, 𝑤

*
1} or user 𝑖 is free. For

every “Encrypt 𝑤ℓ for document 𝑗” query: 𝑤ℓ /∈ {𝑤*
0, 𝑤

*
1} or document 𝑗 is free.

Adv wins the game if 𝑏′ = 𝑏. Let wintokenAdv (𝜅) be the random variable indicating whether Adv
wins the game for security parameter 𝜅.

Definition 20. A multi-key search scheme is token-hiding if, for all PPT adversaries Adv, for all
sufficiently large 𝜅, Pr[wintokenAdv (𝜅)] < 1/2 + negl(𝜅).

As before, the reason Adv can pick keys is to signify that Adv can corrupt certain users or
documents, or can even create nodes in the access graph.

The constraints on the game are so that the adversary cannot distinguish the challenge words
trivially, because the functionality of the scheme distinguishes them (either because there is a search
match or the token is deterministic). Note that the definition (and in fact the scheme as well) allows
an adversary to tell if two tokens are equal: in practice, if the same set of documents match a token,
it is likely that the token is the same so we did not consider important to hide this equality relation
among tokens. A solution for hiding the token is to use composite groups and multiply a random
element from the second group to the token, but we do not explore this further here.

2 5.5 Construction

Let 𝐻 : {0, 1}* → G1 and 𝐻2 : G𝑇 ×G𝑇 → {0, 1}* be hash functions, modeled as random oracles.
Our multi-key search scheme is as follows:

∙ params← MK.Setup(1𝜅): return (𝑝,G1,G2,G𝑇 , 𝑒, 𝑔1, 𝑔2, 𝑔𝑇 )← CSetup(1𝜅).

∙ 𝑘 ← MK.KeyGen(params): return 𝑘 ← Z𝑝.

∙ ∆← MK.Delta(𝑘1, 𝑘2): return ∆ = 𝑔
𝑘2/𝑘1
2 ∈ G2.

∙ tk← MK.Token(𝑘, 𝑤): return tk = 𝐻(𝑤)𝑘 ∈ G1.

∙ 𝑐← MK.Enc(𝑘, 𝑤): Draw 𝑟 ← G𝑇 . Output 𝑐 =
(︀
𝑟,𝐻2(𝑟, 𝑒(𝐻(𝑤), 𝑔2)

𝑘)
)︀
.

∙ tk′ ← MK.Adjust(tk,∆): return tk′ = 𝑒(tk,∆) ∈ G𝑇 .

∙ 𝑏← MK.Match(tk, 𝑐): Let 𝑐 = (𝑟, ℎ). Return 𝐻2(𝑟, tk)
?
= ℎ.

Remark 2 (Alternate constructions). Using asymmetric pairings here is crucial for security. With
symmetric pairings (𝐺1 = 𝐺2), there is an attack that can determine the search word: given 𝐻(𝑤),
𝐻(𝑤)𝑘, and 𝐻(𝑤2), one can distinguish 𝐻(𝑤2)

𝑘 from 𝑅 by computing crossed pairings and thus
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can do a dictionary attack. Asymmetric groups prohibit applying the pairing between elements of
G1.

Another way to hide the search token would be to employ composite-order groups and multiply
a random element 𝑅 ∈ 𝐺ℎ by the token for a word. One can also simulate composite order groups
with standard groups using the orthogonal vector space techniques of Freeman and Lewko, which
enables faster implementations.

Remark 3 (Indexed search). If the encryption scheme were deterministic, it would be easier to
search for matches because an index could be constructed over the data. To make the scheme
indexable in this way, one can modify MK.Enc to just output 𝑒(𝐻(𝑤), 𝑔2)

𝑘. If a user makes sure
that there are no repetitions of words 𝑤 in a document encrypted with the same key, making the
encryption deterministic results in roughly the same security guarantees (although the data-hiding
definitions need a few changes).

Theorem 3. The scheme above is a data- and token-hiding multi-key search scheme, based on the
BDHV and XDHV assumptions in the random oracle model for 𝐻 and 𝐻2.

Proof. We prove correctness of the scheme here, and in Sec. 5.8, we prove that it achieves the
security properties.

Consider the setup from the correctness definition: params← MK.Setup(1𝜅), 𝑘1 ← MK.KeyGen(params),
𝑘2 ← MK.KeyGen(params), ∆← MK.Delta(𝑘1, 𝑘2), tk← MK.Adjust(MK.Token(𝑘1, 𝑤),∆).

This means that tk = 𝑒(𝐻(𝑤)𝑘1 , 𝑔
𝑘2/𝑘1
2 ) = 𝑒(𝐻(𝑤), 𝑔2)

𝑘2 .
Then 𝐻2(𝑟, tk) = 𝐻2(𝑟, 𝑒(𝐻(𝑤), 𝑔2)

𝑘2), so MK.Match(tk,MK.Enc(𝑘2, 𝑤)) outputs True as de-
sired.

The chance that 𝐻2(𝑟, 𝑒(𝐻(𝑤), 𝑔2)
𝑘2) = 𝐻2(𝑟, 𝑒(𝐻(𝑤′), 𝑔2)

𝑘2) is statistically negligible (in fact,
it can be zero if the hash functions’ output size is not smaller than the input size). Therefore,
MK.Match(tk,MK.Enc(𝑘2, 𝑤

′)) outputs False. We thus showed correctness of our scheme.

2 5.6 Implementation

We implemented the scheme in C++ and used the PBC library [Lyn] for implementation of a Type 2
curve [GPS08], called Type D in the library. Below are evaluation results on an AMD Opteron(tm)
Processor 2.4GHz, running on one core, when scheme is encrypting average-sized words, randomly
generated. The scheme has a modest overhead.

Algorithm MK.KeyGen MK.Delta MK.Token MK.Enc MK.Adjust MK.Match
Time (ms) 0.35 6.3 0.89 6.3 5.5 0.0021

2 5.7 Assumptions

Our construction can be proven secure under variants of the Decisional Diffie-Hellman and External
Diffie-Hellman assumptions, both of which are standard assumptions and were used in previous
constructions, and in the random oracle model. Our assumptions are simple variants of these, and
one can verify they hold in the generic group model.
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Definition 21 (Bilinear Diffie-Hellman Variant (BDHV) assumption). For all PPT algorithms Adv,
for every sufficiently large security parameter 𝜅,

|Pr[params← CSetup(1𝜅); 𝑎, 𝑏, 𝑐← Z𝑝 : Adv(params, 𝑔𝑎1 , 𝑔
𝑏
2, 𝑔

1/𝑎
2 , 𝑔𝑐1, 𝑒(𝑔1, 𝑔2)

𝑎𝑏𝑐) = 1]−
Pr[params← CSetup(1𝜅); 𝑎, 𝑏, 𝑐← Z𝑝, 𝑅← G𝑇 : Adv(params, 𝑔𝑎1 , 𝑔

𝑏
2, 𝑔

1/𝑎
2 , 𝑔𝑐1, 𝑅) = 1]| = negl(𝜅).

Definition 22 (External Diffie-Hellman Variant (XDHV) assumption). For all PPT algorithms Adv,
for every sufficiently large security parameter 𝜅,

|Pr[params← CSetup(1𝜅); 𝑎, 𝑏, 𝑐,𝑚← Z𝑝 : Adv(params, 𝑔𝑎1 , 𝑔
𝑏
1, 𝑔

𝑎𝑏
1 , 𝑔

𝑐𝑎
2 , 𝑔

𝑐𝑑
2 , 𝑔

𝑑
1 , 𝑔

1/𝑑
2 ) = 1]−

Pr[params← CSetup(1𝜅); 𝑎, 𝑏, 𝑐,𝑚← Z𝑝, 𝑅← G1 : Adv(params, 𝑔𝑎1 , 𝑔
𝑏
1, 𝑅, 𝑔

𝑐𝑎
2 , 𝑔

𝑐𝑑
2 , 𝑔

𝑑
1 , 𝑔

1/𝑑
2 ) = 1]|

= negl(𝜅).

This assumption consists of the XDH assumption in the first three terms, but with extra informa-
tion about 𝑎 in the form of 𝑔𝑐𝑎2 , but masked by 𝑐, which itself is masked by 𝑑.

As mentioned, we also model the hash functions 𝐻 and 𝐻2 as random oracles.

2 5.8 Security proof

The proofs are in the random oracle model for 𝐻 and 𝐻2, and 𝐻 is a programmable random oracle.
To show that our scheme is secure with either of the security games, we consider a sequence

of hybrid games starting from the game in the security definition in consideration, moving through
gradually simpler games, and reaching the final game; in the final game, no adversary can guess the
challenge bit b correctly with more than negligible chance information-theoretically.

During the sequence of hybrid games, we will sometimes show that Game “target” ⇐ Game
“new”, meaning that if a scheme is secure in Game “new”, it will be secure in Game “target”, so it
suffices to prove that the scheme is secure in Game “new”.

Other times, we will show that Game “target” ⇔ Game “new” meaning that the games are
computationally indistinguishable. We will not review here the notion of game indistinguishability.
Loosely speaking, any PPT adversary𝒟 playing the role of the adversary in Game “target” and Game
“new” cannot tell in which of the two games it is. If two games are computationally indistinguishable
and no PPT adversary can win in one game with more than negligible probability, then no PPT

adversary can win in the other game either.
For brevity, we do not include in the hybrid games the initial step in which Ch computes

params ← CSetup(1𝜅) and provides them to Adv, the fact that Adv always has access to 𝐻1 and
𝐻2, as well as the final step when Adv outputs his guess for b, the challenger’s bit. For clarity, we
highlight certain parts of a game in blue, to indicate that these are differences from the previous
game.

◇ 5.8.1 Data hiding proof

Proof. The sequence of hybrid games in the proof are related as follows:
Data hiding game⇐ Game 1⇐ Game 2⇐ Game 3 BDHV⇔ Game 4⇐ Game 5.
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Games 1– 3 provide gradual simplications of the original game. Game 4 is computationally
indistinguishable from Game 3 based on the BDHV assumption. In Game 5, any adversary has
chance of guessing statistically close to 1/2.

Game 1 no longer has the keys 𝑘𝑗 for 𝑗 > 0: see the difference in blue. We will also replace the
algorithms of the multi-key scheme with the exact quantities returned.

Game 1

∙ Adv1 provides an access graph 𝐺 with one document, labeled 0, and any number of users.

∙ Ch1 generates 𝑘0 ← MK.KeyGen(1𝜅, params) for document 0. Then, Ch1 provides 𝑔𝑘0/uk𝑖1

for every edge (𝑖, 0) ∈ 𝐺, and 𝑔1/uk𝑖1 for every user 𝑖.

∙ Adv1 provides 𝑤*
0, 𝑤

*
1.

∙ Ch1 chooses a random bit b and provides 𝑟*, 𝐻2(𝑟
*, 𝑒(𝐻(𝑤*

b), 𝑔2)
𝑘0).

∙ Adaptive step: Adv1 makes the following queries to Ch1 adaptively. The ℓ-th query can
be:

1. “Encrypt 𝑤ℓ”: Ch1 returns 𝑟ℓ, 𝐻2(𝑟ℓ, 𝑒(𝐻(𝑤ℓ), 𝑔2)
𝑘0).

2. “Token for word 𝑤ℓ for user 𝑖”: Ch1 returns 𝐻(𝑤ℓ)
uk𝑖 .

Restriction on Adv1: for all token queries 𝑤ℓ for user 𝑖, if (𝑖, 0) ∈ 𝐺, it must be that 𝑤ℓ /∈
{𝑤*

0, 𝑤
*
1}.

If the scheme is secure in this game, then it is secure in the data hiding game. The reason is that
if there is there is a PPT adversary Adv that wins in the data hiding game, there is a PPT adversary
Adv1 that wins the Game 1. Adv1 can use Adv to win Game 1. Adv1 can simulate the inputs to Adv
by simply storing the 𝑘𝑗 values from Adv and computing 𝑔𝑘𝑗/uk𝑖 when given 𝑔1/uk𝑖 , as in the third
step of the data-hiding game that Adv is expecting.

Next, we would like to remove from the game users that do not have access to document 0. The
intuition is that whatever information the adversary gets about those users is unrelated to document
0 and hence to the challenge. We create a new game in which the adversary creates only users with
access to document 0.

Game 2

∙ Adv2 provides an access graph 𝐺 with one document, labeled 0, and any number of users
all with access to document 0.

∙ Ch2 generates 𝑘0 ← MK.KeyGen(1𝜅, params) and provides 𝑔𝑘0/uk𝑖2 and 𝑔1/uk𝑖2 for every
user 𝑖.

∙ Adv2 provides 𝑤*
0, 𝑤

*
1.
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∙ Ch2 chooses a random bit b and provides 𝑟*, 𝐻2(𝑟
*, 𝑒(𝐻(𝑤*

b), 𝑔2)
𝑘0).

∙ Adaptive step: Adv2 makes the following queries to Ch2 adaptively. The ℓ-th query can
be:

1. “Encrypt 𝑤ℓ”: Ch2 returns 𝑟ℓ, 𝐻2(𝑟ℓ, 𝑒(𝐻(𝑤ℓ), 𝑔2)
𝑘0).

2. “Token for word 𝑤ℓ for user 𝑖”: Ch2 returns 𝐻(𝑤ℓ)
uk𝑖 .

Restriction on Adv2: for all 𝑤ℓ in token queries, 𝑤ℓ /∈ {𝑤*
0, 𝑤

*
1}.

Claim 1. If a scheme is secure in Game 2, the scheme is secure in Game 1.

Proof. For contradiction, let Adv1 be an adversary that breaks Game 1, and let us construct an
adversary Adv2 that breaks Game 2. Adv2’s strategy is as follows: for users 𝑖 with access to doc
0, Adv2 uses its challenger Ch2 to answer token queries of Adv1; for other users, Adv2 generates a
random key for each such user 𝑖, uk𝑖, and answers Adv1’s queries using that key.

Let Ch2 be the challenger of Adv2 in Game 2. Adv2 works as follows:

1. Receive a graph 𝐺 from Adv1. Construct a graph 𝐺′ which is 𝐺 from which we remove the
users with no access to doc 0 as well as their edges. Provide 𝐺′ to Ch2. Receive 𝑔𝑘0/uk𝑖2 and
𝑔
1/uk𝑖
2 for every user 𝑖 ∈ 𝐺′ from Ch2. Choose uk𝑖 ← MK.KeyGen(1𝜅) for all users 𝑖 ∈ 𝐺′−𝐺.

For every edge (𝑖, 0), compute 𝑔1/uk𝑖2 . Provide all this information to Adv1.

2. Adv2 gets 𝑤*
0 and 𝑤*

1 from Adv1, forwards them to Ch2 and returns Ch2’s answer.

3. Adaptive step: answer Adv1’s queries as follows:

∙ Forward any encrypt query to Ch2 and provide Ch2’s result to Adv1.

∙ Forward any token request for user 𝑖 ∈ 𝐺′ to Ch2 and return answer to Adv1. Compute
𝐻(𝑤ℓ)

uk𝑖 for every user 𝑖 ∈ 𝐺−𝐺′ using the generated uk𝑖.

4. Adv2 outputs Adv1’s decision.

We can see that since Adv1 makes no token queries containing 𝑤*
0, 𝑤

*
1 for users with access to

doc 0, Adv2 will also satisfy the restriction in Game 2.
We can see that Adv2 simulates Adv1’s inputs perfectly and when Adv1 distinguishes, so does

Adv2; since Adv1 wins in Game 1 with nonnegligible probability, Adv2 also wins in Game 2 with the
same probability, concluding the proof.

We would like to simplify the game by only allowing encryption queries to 𝑤*
0 and 𝑤*

1. Note
that Adv2 can compute by himself the result of any encrypt query for a word 𝑤ℓ /∈ {𝑤*

0, 𝑤
*
1} by

simply requesting a token for 𝑤ℓ for any user and using the delta information 𝑔𝑘0/uk𝑖2 . So it suffices
to receive encryptions for the 𝑤*

0 and 𝑤*
1 only, as in the following game.
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Game 3

∙ Adv3 provides an access graph 𝐺 with one document, labeled 0, and any number of users
all with access to document 0.

∙ Ch3 generates 𝑘0 ← MK.KeyGen(1𝜅, params) and provides 𝑔𝑘0/uk𝑖2 and 𝑔1/uk𝑖2 for every
user 𝑖.

∙ Adv3 provides 𝑤*
0, 𝑤

*
1.

∙ Ch3 chooses a random bit b and provides 𝑟*, 𝐻2(𝑟
*, 𝑒(𝐻(𝑤*

b), 𝑔2)
𝑘0).

∙ Adaptive step: Adv3 makes the following queries to Ch3 adaptively. The ℓ-th query can be

– “Encrypt 𝑤ℓ”, for 𝑤ℓ ∈ {𝑤*
0, 𝑤

*
1}: Ch3 returns 𝑟ℓ, 𝐻2(𝑟ℓ, 𝑒(𝐻(𝑤ℓ), 𝑔2)

𝑘0)

– “Token for word 𝑤ℓ /∈ {𝑤*
0, 𝑤

*
1} for user 𝑖”: Ch3 returns 𝐻(𝑤ℓ)

uk𝑖 .

Claim 2. If a scheme is secure in Game 3, the scheme is secure in Game 2.

Proof. For contradiction, assume there is a PPT adversary Adv2 that can break Game 2, and let us
show how to construct an PPT adversary Adv3 that can break Game 3.

Let Ch3 be the challenger of Adv3 in Game 3. The idea is that Adv3 will answer encrypt queries
for word 𝑤ℓ /∈ {𝑤*

0, 𝑤
*
1} by asking for a token for 𝑤ℓ and then computing the ciphertext, and for

words 𝑤*
0 or 𝑤*

1, by asking Ch3 for encryptions. Adv3 proceeds as follows.

1. Adv3 receives the graph𝐺 from Adv2. Adv3 creates an additional user 𝐼 with edge to document
0 and adds it to𝐺. Adv3 sends the new graph to Ch3, records the answers from Ch3 and returns
all answers to Adv2 except for 𝑔𝑘0/uk𝐼2 and 𝑔1/uk𝐼2 .

2. Challenge step: Adv3 receives 𝑤*
0, 𝑤

*
1 from Adv2 and provides them to Ch3. Adv3 forwards

these to Ch3 and receives 𝑟*, 𝐻2(𝑟
*, 𝑒(𝐻(𝑤*

b), 𝑔2)
𝑘0). Adv3 sends all these values to Adv2.

3. Adv3 answers the queries of Adv2 from the adaptive step as follows:

∙ “Encrypt 𝑤ℓ” : If 𝑤ℓ ∈ {𝑤*
0, 𝑤

*
1}, Adv3 sends this query to Ch3 and returns Ch3’s

result. Else Adv3 asks Ch3 for “token 𝑤ℓ user 𝐼”, receives 𝐻(𝑤ℓ)
uk𝐼 and computes

𝑟,𝐻2(𝑟, 𝑒(𝐻(𝑤ℓ), 𝑔2)
𝑘0) for some 𝑟 ← Z𝑝 by using 𝑘0/uk𝐼 .

∙ “Token 𝑤ℓ for user 𝑖”: forward this query to Ch3 and send the response to Adv2.

4. Adv3 outputs Adv2 decision.

We can see that Adv3 plays the game with Ch3 correctly because it never asks Ch3 for encryption
to words not in {𝑤*

0, 𝑤
*
1}. Moreover, Adv3 simulates the inputs to Adv2 exactly so Adv3 also has a

nonnegligible chance of deciding correctly equal to the one of Adv2, which concludes the proof.
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We now use the BDHV assumption to replace 𝑒(𝐻(𝑤*
𝑏 ), 𝑔2) with a random value 𝑅, which is

desirable so that the adversary loses the information about 𝑏 that 𝑒(𝐻(𝑤*
𝑏 ), 𝑔2) provides.

Game 4

∙ Adv4 provides an access graph 𝐺 with one document, labeled 0, and any number of users
all with access to document 0.

∙ Ch4 generates 𝑘0 ← MK.KeyGen(1𝜅, params) and provides 𝑔𝑘0/uk𝑖2 and 𝑔1/uk𝑖2 for every
user 𝑖.

∙ Adv4 provides 𝑤*
0, 𝑤

*
1.

∙ Ch4 chooses a random bit b and provides 𝑟*, 𝐻2(𝑟
*, 𝑅) for 𝑅← G𝑇 .

∙ Adaptive step: Adv4 makes the following queries to Ch4 adaptively. The ℓ-th query can
be:

1. “Encrypt 𝑤ℓ” for 𝑤ℓ ∈ {𝑤*
0, 𝑤

*
1}: If 𝑤ℓ = 𝑤*

b, Ch4 returns 𝑟ℓ and 𝐻2(𝑟ℓ, 𝑅), else Ch4
returns 𝑟ℓ, 𝐻2(𝑟ℓ, 𝑅

𝛼), where 𝛼 is such that 𝑔𝛼1 = 𝐻(𝑤*
1−𝑏)/𝐻(𝑤*

b).

2. “Token for word 𝑤ℓ for user 𝑖” for 𝑤ℓ /∈ {𝑤0, 𝑤1}: Ch4 returns 𝐻(𝑤ℓ)
uk𝑖 .

Claim 3. Assuming BDHV and that 𝐻 is a programmable random oracle, Game 3 and Game 4 are
computationally indistinguishable.

Proof. For contradiction, we assume that there is a PPT adversary 𝒟 that distinguishes the two
games, and show how to construct a PPT reduction 𝐵 that breaks BDHV.

𝐵 receives as input params, 𝑔𝑎1 , 𝑔
𝑏
2, 𝑔

1/𝑎
2 , 𝑔𝑐1 and 𝑇 , where 𝑇 is either 𝑒(𝑔1, 𝑔2)𝑎𝑏𝑐 or random. To

distinguish what is 𝑇 , 𝐵 proceeds as follows.
𝐵 wants to embed some of the values from its challenge into the random oracle results when

𝒟 queries for 𝑤*
0 or 𝑤*

1. However, 𝒟 could make queries to these values before declaring to 𝐵 the
values in the challenge step.

As a solution, 𝐵 will guess which of the queries to the random oracle𝐻 are for challenge values.
Without loss of generality, assume that 𝒟 makes unique queries to 𝐻 . We have three cases:

∙ 𝐵 makes no query to the random oracle 𝐻 including 𝑤*
0 or 𝑤*

1 before the challenge step.

∙ 𝐵 queries exactly one of 𝑤*
0 and 𝑤*

1 to 𝐻 before the challenge step.

∙ 𝐵 queries both 𝑤*
0 and 𝑤*

1 to 𝐻 before the challenge step.

Let 𝑖0 be the guessed index of the query to 𝐻 in which 𝐵 requests 𝑤*
0; 𝑖0 could be ⊥ if 𝐵 does

not request this value before the challenge step. Let 𝑝 be a polynomial upper-bounding the runtime
of 𝒟 and hence the number of queries to 𝐻 that 𝒟 makes. 𝐵 assigns a probability of 1/3 to each
case above and draws 𝑖0, 𝑖1 from 1, . . . , 𝑝(𝜅).

When 𝒟 provides 𝑤*
0 and 𝑤*

1 to 𝐵 in the challenge step, 𝐵 can check whether it guessed 𝑖0 and
𝑖1 correctly. If it did not, 𝐵 outputs a random guess in its game, and halts.
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∙ Initialization: 𝐵 generates params and sends them to 𝒟. 𝐵 chooses 𝛼← Z𝑝.

∙ 𝐻 simulation: Initialize oracle. For each query 𝑤 of 𝒟 to 𝐻 , 𝐵 does:

– If this is the 𝑖0-th query, return 𝑔𝑐1.

– If this is the 𝑖1-th query, return 𝑔𝑐𝛼1 .

– Otherwise, choose 𝑞 ← Z𝑝, store oracle[𝑤] := 𝑞 and return 𝑔𝑞1.

∙ 𝐵 receives a graph 𝐺 from 𝒟. For each user 𝑖 > 1, let ∆𝑖 ← Z𝑝 and let ∆1 := 1. Instead of
𝑔
𝑘0/uk𝑖
2 , provide 𝑔𝑏/Δ𝑖

2 , and instead of 𝑔1/uk𝑖2 , provide 𝑔1/𝑎2 to 𝒟.

∙ Challenge step: Receive 𝑤*
0 and 𝑤*

1 from 𝒟. Validate whether 𝑖0 and 𝑖1 were correct guesses.
If not, output a bit at random and halt. Else, provide 𝑟*, 𝐻2(𝑟

*, 𝑇 ) to 𝒟.

∙ For each query of 𝒟 during adaptive step:

– For “encrypt 𝑤ℓ”: if 𝑤ℓ = 𝑤*
b, return 𝑟ℓ and 𝐻2(𝑟ℓ, 𝑇 ), else return 𝑟ℓ, 𝐻2(𝑟ℓ, 𝑇

𝛼).

– For “Token 𝑤ℓ user 𝑖”: return 𝑔𝑎Δ𝑖oracle[𝑤ℓ]
1 .

∙ Output 𝒟’s answer.

Let us argue that 𝐵 simulates the inputs to 𝒟 correctly. All the inputs to the random oracle 𝐻
are correctly distributed, and the chance that 𝑐 equals some value 𝑞 drawn by 𝐵 is statistically small.

𝐵 will have a chance of 1/poly of guessing correctly 𝑖0 and 𝑖1. Therefore, all we have to show
is that when 𝐵 guesses these values correctly, 𝐵 has a nonnegligible chance of outputting b.

For this purpose, let us show that the inputs 𝐵 provides to 𝒟 are statistically close to the inputs
from Game 3. Consider the following change of variables and note it preserves distributions:

𝑎↔ uk1, 𝑏↔ 𝑘0/uk1, 𝑔
𝑐
1 ↔ 𝐻(𝑤*

b), 𝑔
𝑐𝛼
1 ↔ 𝐻(𝑤*

1−b), ∆𝑖 ↔ uk𝑖/uk1

𝐵 sends 𝒟: 𝑔1/𝑎Δ𝑖

2 = 𝑔
1/uk𝑖
2 , 𝑔𝑏/Δ𝑖

2 = 𝑔
𝑘0/uk𝑖
2 .

For “encrypt” and the challenge step, note that if 𝑇 = 𝑒(𝑔1, 𝑔2)
𝑎𝑏𝑐 then 𝑇 = 𝑒(𝐻(𝑤*

b), 𝑔2)
𝑘0 as

in Game 3, else 𝑇 has the same distribution as 𝑅 in Game 4.
For “token”, 𝑔𝑎Δ𝑖×oracle[𝑤ℓ]

1 = 𝐻(𝑤ℓ)
uk𝑖 , as desired.

Finally, when 𝒟 distinguishes Game 3 from Game 4, B also breaks the BDHV assumption,
which completes the proof.

Note that in Game 4, all the information using uk𝑖, 𝑘0 is useless to an adversary because the
challenge ciphertexts do not depend on these values. Therefore, we can simplify further the game:

Game 5

∙ Adv5 provides 𝑤*
0, 𝑤

*
1.

∙ Ch5 chooses a random bit b and provides 𝑟*, 𝐻2(𝑟
*, 𝑅) for 𝑅← G𝑇 .
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∙ Adv5 can repeat the following query; query ℓ is “Encrypt 𝑤ℓ” for 𝑤ℓ ∈ {𝑤*
0, 𝑤

*
1}: Ch5

draws 𝑟ℓ ← Z𝑝; if 𝑤ℓ = 𝑤*
b, Ch5 returns 𝑟ℓ, 𝐻2(𝑟ℓ, 𝑅), else Ch5 returns 𝑟ℓ, 𝐻2(𝑟ℓ, 𝑅

𝛼),
where 𝛼 is such that 𝑔𝛼1 = 𝐻(𝑤*

1−𝑏)/𝐻(𝑤*
b).

By the security of the random oracle 𝐻2, no Adv can distinguish in Game 5 with non-negligible
probability, concluding our proof.

◇ 5.8.2 Token hiding proof

Proof. We will create a set of hybrid games that progressively simplify the game until it becomes
easy to show that Adv cannot learn b.

The first game, Game 1 is the same as the token hiding game except that it removes the encrypt
queries. The intuition is that the output of the encrypt algorithm in our construction can be deduced
from the outputs of the token and delta algorithms.

Game 1

1. Adv1 provides 𝐺 along with keys uk𝑖 and 𝑘𝑗 for free users and documents.

2. Ch1 generates a new key for every non-free user 𝑖 and document 𝑗 using MK.KeyGen(1𝜅).
For every edge (𝑖, 𝑗) ∈ 𝐺, Ch1 sends MK.Delta(uk𝑖, 𝑘𝑗) to Adv1.

3. Adaptive step: Adv1’s ℓ-th query is “Token 𝑤ℓ for user 𝑖” and Adv1 receives
MK.Token(uk𝑖, 𝑤).

4. Adv1 provides 𝑤*
0 and 𝑤*

1 to Ch1. Ch1 chooses 𝑏 ← {0, 1} and sends MK.Token(uk0, 𝑤
*
𝑏 )

to Adv1.

5. Adv1 runs the adaptive step again.

Restriction on Adv1: For every “Token 𝑤ℓ for user 𝑖” query: 𝑤ℓ /∈ {𝑤*
0, 𝑤

*
1} or user 𝑖 is free.

Claim 4. If a scheme is secure with Game 1, the scheme must be token hiding.

Proof. For contradiction, assume there is a PPT adversary Adv that wins the token hiding game, and
let us construct a PPT adversary Adv1 that wins Game 1. Let Ch1 be the challenger in Game 1. Adv1
uses Adv as follows.

∙ On input a graph 𝐺 and keys from Adv, Adv1 simply forwards these to Ch1. Adv1 forwards
the responses from Ch1 to Adv and records these as well.

∙ Adaptive step: For “Token” queries, Adv1 sends the same queries to Ch1 and forwards the
responses to Adv.
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For a query “Encrypt 𝑤ℓ for document 𝑗”, Adv1 proceeds as follows. If document 𝑗 is free,
Adv1 knows 𝑘𝑗 from Adv so it simply computes MK.Enc(𝑘𝑗, 𝑤ℓ). If document 𝑗 is non-free,
Adv1 must have a delta between user 0 and document 𝑗, say ∆0,𝑗 . Adv1 requests “Token 𝑤ℓ

for document 0” to Ch1, which is a valid request because 𝑤ℓ /∈ {𝑤0,𝛼, 𝑤1,𝛼}𝛼 because of the
constraints on Adv. Upon receiving token Token back, Adv1 sends 𝑟,𝐻2(𝑟, 𝑒(𝑡,∆0,𝑗)) to Adv.

∙ Adv1 forwards the challenges from Adv to Ch1 and sends Ch1’s answer to Adv1.

∙ Adv1 proceeds as above in the second adaptive step.

∙ Adv1 ouputs Adv’s answer.

We can see that Adv1 simulates Adv’s inputs perfectly. Since Adv wins in the token hiding game
with non-negligible probability, so will Adv1 win in Game 1.

To simplify the game further, we would like to remove the free documents and the free users
from the game, and only work with non-free users and documents.

Game 2

1. Adv2 provides a graph 𝐺 that has only non-free documents and users.

2. Ch2 generates a new key for every user 𝑖 and document 𝑗 using MK.KeyGen(1𝜅). For
every edge (𝑖, 𝑗) ∈ 𝐺, Ch2 provides 𝑔𝑘𝑗/uk𝑖2 to Adv2. For every user 𝑖 > 0, Ch2 provides
𝑔
1/uk𝑖
2 .

3. Adaptive step: Adv2’s ℓ-th query can be “Token 𝑤ℓ for user 𝑖”, in which case it receives
𝐻(𝑤ℓ)

uk𝑖 from Ch2.

4. Adv2 provides 𝑤*
0 and 𝑤*

1 to Ch2. Ch2 chooses b at random and provides 𝐻(𝑤*
b)

uk0 to
Adv2.

5. Adv2 runs the adaptive step again.

Restriction on Adv2: 𝑤ℓ /∈ {𝑤*
0, 𝑤

*
1}, for all ℓ.

Claim 5. If a scheme is secure with Game 2, the scheme is secure with Game 1.

Proof. For contradiction, assuming there is a PPT adversary Adv1 for Game 1, let us show how to
construct a PPT reduction Adv2 that wins in Game 2. Let Ch2 be the challenger of Adv2 in Game 2.
Adv2 works as follows:

∙ Receive 𝐺 from Adv1 along with uk𝑖 and 𝑘𝑗 for all free nodes. Remove from 𝐺 all free nodes
and thus obtain a new graph 𝐺′. Send 𝐺′ to Ch2. Store uk𝑖, 𝑘𝑗 .
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∙ Ch2 replies with 𝑔𝑘𝑗/uk𝑖2 and 𝑔1/uk𝑖2 corresponding to non-free nodes. Adv2 needs to compute
all deltas for 𝐺 for Adv1. For an edge between two free nodes, Adv2 has both keys so it can
directly compute the delta. For an edge between two non-free nodes, Adv2 got 𝑔𝑘𝑗/uk𝑖2 from
Adv1. For an edge between a non-free user 𝑖 and a free document 𝑗, Adv2 knows 𝑔1/uk𝑖2 and 𝑘𝑗
so it can compute delta 𝑔𝑘𝑗/uk𝑖2 . To provide 𝑔1/uk𝑖2 to Adv1, Adv2 either uses its knowledge of
uk𝑖 for free users or receives this value from Ch2.

∙ Adv2 now answers Adv1’s queries, which are of the form “Token 𝑤ℓ for user 𝑖”. We have two
cases. If 𝑖 is a free user, Adv2 can directly compute the token using uk𝑖. If 𝑖 is non-free, 𝑖 can
ask Ch2 for the token and forward it to Adv2.

We can see that Adv2 still satisfies the constraints of its game and simulates the inputs to Adv1
perfectly. Moreover, whenever Adv1 wins, Adv2 wins as well.

We now write a final hybrid in which 𝐻(𝑤𝑏,ℓ)
uk0 is a random value preserving the equality

relations of 𝑤𝑏,ℓ. Claim 6 shows that Game 2 and Game 3 are computationally indistinguishable.

Game 3

1. Adv3 provides 𝐺 with only non-free documents and users.

2. Ch3 generates a new key for every user 𝑖 and document 𝑗 using MK.KeyGen(1𝜅). For
every edge (𝑖, 𝑗) ∈ 𝐺, Ch3 provides 𝑔𝑘𝑗/uk𝑖2 to Adv3. For every user 𝑖 > 0, Ch3 provides
𝑔
1/uk𝑖
2 .

3. Adaptive step: Adv3 queries ℓ-th query: “Token 𝑤ℓ for user 𝑖” and receives 𝐻(𝑤ℓ)
uk𝑖 .

4. Adv3 provides 𝑤*
0 and 𝑤*

1 to Ch3. Ch3 chooses b at random and sends 𝑅, for 𝑅← G𝑇 .

5. Adv3 runs the adaptive step again.

Restriction on Adv3: 𝑤ℓ /∈ {𝑤*
0, 𝑤

*
1}, for all ℓ.

We can see that in this game Adv3 receives no information about b information theoretically. The
chance Adv3 has to guess b is exactly 1/2, which completes our proof.

Claim 6. Assuming XDHV holds, Game 2 is computationally indistinguishable from Game 3, in the
random oracle model for 𝐻 .

Proof. For contradiction, assume that there is a PPT adversary 𝒟 that can distinguish the two games
(i.e., distinguish between Ch2 and Ch3). Let us construct a PPT adversary 𝐵 that can break the
XDHV assumption.

Let 𝑝 be a polynomial in which 𝒟 runs. As in the proof of data hiding, 𝐵 wants to embed
a ciphertext from its challenge, 𝑔𝑏1 into the oracle result to 𝒟, when 𝒟 queries for the challenge
ciphertext 𝑤*

b. However, 𝒟 can query 𝑤*
b to 𝐻 before the challenge step, so before 𝐵 knows the

value of 𝑤*
b. Therefore, 𝐵 will guess which of the queries to the random oracle 𝐻 are 𝑤*

b. If during
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the challenge step the guess turns out to be incorrect, 𝐵 outputs a bit at random and halts. Otherwise
𝐵 proceeds.

𝐵 receives as input 𝑔𝑎1 , 𝑔
𝑏
1, 𝑇, 𝑔

𝑐𝑎
2 , 𝑔

𝑐𝑑
2 , 𝑔

𝑑
1 , 𝑔

1/𝑑
2 and must decide if 𝑇 = 𝑔𝑎𝑏1 or 𝑇 is random.

∙ 𝐻 simulation: 𝐵 flips a coin, and if the coin is heads, 𝐵 predicts that 𝒟 will never ask for 𝑤*
b

to the random oracle; otherwise, 𝐵 predicts that 𝒟 with ask for 𝑤*
b and chooses an index at

random 𝐼 ∈ {0, . . . , 𝑝(𝜅)} to represent the index of the query during which 𝒟 will ask for 𝑤*
b.

For each query 𝑤 of 𝒟 to 𝐻 , 𝐵 does:

– If this is the 𝐼-th query, return 𝑔𝑏1.

– Otherwise, choose 𝑞 ← Z𝑝, store oracle[𝑤] := 𝑞 and return 𝑔𝑞1.

∙ Initialization. 𝐵 starts adversary 𝒟 and receives a graph 𝐺. 𝐵 provides the following infor-
mation for the graph. For each document 𝑗, let 𝛼𝑗 ← Z𝑝 if 𝑗 > 1 and let 𝛼1 := 1 for 𝑗 = 1.
For each user 𝑖, let ∆𝑖 ← Z𝑝 if 𝑖 > 1, and let ∆1 := 1 if 𝑖 = 1.

– 𝑔
𝑘𝑗/uk0
2 := 𝑔

𝑑𝑐𝛼𝑗

2 , for 𝑗 ≥ 1.

– 𝑔
𝑘𝑗/uk𝑖
2 := 𝑔

𝑎𝑐𝛼𝑗/Δ𝑖

2 .

– 𝑔
1/uk𝑖
2 := 𝑔

1/𝑑Δ𝑖

2 .

∙ Adaptive step: If user is 0, 𝐵 outputs 𝑔𝑎oracle[𝑤]
1 . Otherwise, user 𝑖 > 0, and 𝐵 outputs

𝑔
𝑑Δ𝑖oracle[𝑤]
1 . Note that it is crucial that 𝑤 ̸= 𝑤*

b because 𝐵 would not know oracle[𝑤*
b] (which

should be b).

∙ 𝐵 receives 𝑤*
0 and 𝑤*

1. 𝐵 checks if 𝑤*
b is indeed the 𝐼-th element 𝒟 queried to 𝐻 , 𝐵’s guess.

If not, 𝐵 outputs a random bit and halts. Otherwise, 𝐵 sends 𝑇 to 𝒟.

∙ 𝐵 proceeds as in the adaptive step.

∙ 𝐵 outputs 𝒟’s decision.

Let us argue that 𝐵 simulates the inputs to 𝒟 correctly, whenever 𝐵 does not halt early. All the
inputs to the random oracle 𝐻 are uniformly random distributed, and the chance that 𝑎 equals some
value 𝑞 drawn by 𝐵 is statistically small.

Consider the following change of variables and note that it preserves distributions:

𝑎↔ uk0, 𝑔
𝑏
1 ↔ 𝐻(𝑤*

b), 𝑐↔ 𝑘1/uk1uk0, 𝑑↔ uk1, ∆𝑖 ↔ uk𝑖/uk1, 𝛼𝑗 ↔ 𝑘𝑗/𝑘1.

The quantities 𝒟 receives are:

∙ For 𝑔𝑘𝑗/uk02 with 𝑗 ≥ 1: 𝑔𝑑𝑐𝛼𝑗

2 = 𝑔
uk1

𝑘1
uk0uk1

𝑘𝑗
𝑘1

2 = 𝑔
𝑘𝑗 ,uk0
2 , as desired.

∙ For 𝑔𝑘𝑗/uk𝑖2 : 𝑔𝑎𝑐𝛼𝑗/Δ𝑖

2 = 𝑔
𝑘1
uk1

𝛼𝑗
Δ𝑖

2 = 𝑔
𝑘𝑗/uk𝑖
2 , as desired,
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∙ For 𝑔1/uk𝑖2 : 𝑔1/𝑑Δ𝑖

2 = 𝑔
1

uk1Δ𝑖
2 = 𝑔

1/uk𝑖
2 , as desired.

∙ Adaptive step: 𝑔𝑎oracle[𝑤ℓ]
1 = 𝐻(𝑤ℓ)

uk0 , and 𝑔𝑑Δ𝑖oracle[𝑤]
1 = 𝐻(𝑤)uk𝑖 as desired.

∙ If 𝑇 is random, the challenge step is as in Game 3. When 𝑇 = 𝑔𝑎𝑏1 = 𝐻(𝑤*
b)

uk0 , the challenge
step is as in Game 2.

We can see that 𝐵 simulates the inputs to 𝒟 statistically close, whenever 𝐵 does not halt early.
Since 𝒟 has a nonnegligible chance of distinguishing Game 3 from Game 2, when 𝐵 does not halt,
𝐵 also has a non-negligible chance of breaking the the XDHV assumption. The chance that 𝐵 does
not halt is at least 1/2𝑝, so the overall advantage of 𝐵 remains non-negligible.
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CHAPTER 6

Functional encryption

In this chapter, we present one [GKP+13a] of our two functional encryption schemes [GKP+13a]
and [GKP+13b]. This scheme enables computing any function on encrypted data. We present the
scheme briefly, and delegate formal proofs to our extended paper [GKP+12].

2 6.1 Introduction

This thesis discusses the importance of computing on encrypted data. A fundamental question with
this approach is: who can decrypt the results of computations on encrypted data? If data is encrypted
using FHE, anyone can perform a computation on it (with knowledge of the public key), while the
result of the computation can be decrypted only using the secret key. However, the secret key
allows decrypting all data encrypted under the corresponding public key. This model suffices for
certain applications, but it rules out a large class of applications in which the party computing on
the encrypted data needs to determine the computation result on its own. For example, spam filters
should be able to determine if an encrypted email is spam and discard it, without learning anything
else about the email’s content. With FHE, the spam filter can run the spam detection algorithm
homomorphically on an encrypted email and obtain an encrypted result; however, it cannot tell if
the algorithm deems the email spam or not. Having the data owner provide the decryption key to the
spam filter is not a solution: the spam filter can now decrypt all the emails as well!

A promising approach to this problem is functional encryption [SW05, GPSW06, KSW08,
LOS+10, OT10, O’N10, BSW11]. In functional encryption, anyone can encrypt data with a master
public key mpk and the holder of the master secret key can provide keys for functions, for example
sk𝑓 for function 𝑓 . Anyone with access to a key sk𝑓 and a ciphertext 𝑐 for 𝑥 can obtain the result
of the computation in plaintext form: 𝑓(𝑥). The security of FE requires that the adversary does not
learn anything about 𝑥, other than the computation result 𝑓(𝑥). It is easy to see, for example, how
to solve the above spam filter problem with a functional encryption scheme. A user Alice publishes
her public key online and gives the spam filter a key for the filtering function. Users sending email
to Alice will encrypt the email with her public key. The spam filter can now determine by itself, for
each email, whether to store it in Alice’s mailbox or to discard it as spam, without learning anything
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about Alice’s email (except for whether it was deemed spam or not).
The recent impossibility result of Agrawal, Gorbunov, Vaikuntanathan and Wee [AGVW12]

says that functional encryption schemes where an adversary can receive an arbitrary number of
keys for general functions are impossible for a natural simulation-based security definition;1 stated
differently, any functional encryption scheme that can securely provide 𝑞 keys for general functions
must have ciphertexts growing linearly in 𝑞. Since any scheme that can securely provide a single
key yields a scheme that can securely provide 𝑞 keys by repetition, the question becomes if one
can construct a functional encryption scheme that can securely provide a single key for a general
function under this simulation-based security definition. Such a single-key functional encryption
scheme is a powerful tool, enabling the applications we will discuss.

In this chapter, we construct the first single-key functional encryption scheme for a general
function that is succinct: the size of the ciphertext grows with the depth 𝑑 of the circuit computing
the function and is independent of the size of the circuit. Up until our work, the known constructions
of functional encryption were quite limited. First, the works of Boneh and Waters [BW07], Katz,
Sahai and Waters [KSW08], Agrawal, Freeman and Vaikuntanathan [AFV11], and Shen, Shi and
Waters [SSW09] show functional encryption schemes (based on different assumptions) for a very
simple function: the inner product function 𝑓𝑦 (or a variant of it), that on input 𝑥 outputs 1 if and only
if ⟨𝑥, 𝑦⟩ = 0.2 These works do not shed light on how to extend beyond inner products. Second, Sahai
and Seyalioglu [SS10a] and Gorbunov, Vaikuntanathan and Wee [GVW12] provide a construction
for single-key functional encryption for one general function with a non-succinct ciphertext size (at
least the size of a universal circuit computing the functions allowed by the scheme3). [SS10a] was
the first to introduce the idea of single-key functional encryption and [GVW12] also extends it to
allow the adversary to see secret keys for 𝑞 functions of his choice, by increasing the size of the
ciphertexts linearly with 𝑞 where 𝑞 is known in advance.4 We emphasize that the non-succinctness
of these schemes is particularly undesirable and it precludes many useful applications of functional
encryption (e.g., delegation, reusable garbled circuits, FHE for Turing machines), which we achieve.
For example, in the setting of delegation, a data owner wants to delegate her computation to a cloud,
but the mere effort of encrypting the data is greater than computing the circuit directly, so the owner
is better off doing the computation herself.

We remark that functional encryption (FE) arises from, and generalizes, a beautiful sequence
of papers on attribute-based encryption (including [SW05, GPSW06, BSW07, GJPS08, LOS+10,
Wat11, Wat12, LW12a]), and more generally predicate encryption (including [BW07, KSW08,
OT09]). We denote by attribute-based encryption (ABE) an encryption scheme where each ci-
phertext 𝑐 of an underlying plaintext message 𝑚 is tagged with a public attribute 𝑥. Each secret
key sk𝑓 is associated with a predicate 𝑓 . Given a key sk𝑓 and a ciphertext 𝑐 = enc(𝑥,𝑚), the
message 𝑚 can be recovered if and only if 𝑓(𝑥) is true. Whether the message gets recovered or
not, the attribute 𝑥 is always public; in other words, the input to the computation of 𝑓 , 𝑥, leaks

1This impossibility result holds for non-adaptive simulation-based security, which is weaker than some ex-
isting simulation-based definitions such as adaptive security. Nevertheless, this result does not carry over to
indistinguishability-based definitions, for which possibility or impossibility is currently an open question. In this chap-
ter, we are interested in achieving the simulation-based definition.

2These inner-product schemes allow an arbitrary number of keys.
3A universal circuit ℱ is a circuit that takes as input a description of a circuit 𝑓 and an input string 𝑥, runs 𝑓 on 𝑥

and outputs 𝑓(𝑥).
4Namely, parameter 𝑞 (the maximum number of keys allowed) is fixed during setup, and the ciphertexts size grows

linearly with 𝑞.
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with attribute-based encryption, whereas with functional encryption, nothing leaks about 𝑥 other
than 𝑓(𝑥). Therefore, attribute-based encryption offers qualitatively weaker security than functional
encryption. Attribute-based encryption schemes were also called public-index predicate encryption
schemes in the literature [BSW11]. Boneh and Waters [BW07] introduced the idea of not leaking
the attribute as in functional encryption (also called private-index functional encryption).

Very recently, the landscape of attribute-based encryption has significantly improved with the
works of Gorbunov, Vaikuntanathan and Wee [GVW13], and Sahai and Waters [SW12], who con-
struct attribute-based encryption schemes for general functions, and are a building block for our
results.

◇ 6.1.1 Our Results

Our main result is the construction of a succinct single-key functional encryption scheme for general
functions. We demonstrate the power of this result by showing that it can be used to address the long-
standing open problem in cryptography of reusing garbled circuits, as well as making progress on
other open problems.

We can state our main result as a reduction from any attribute-based encryption and any fully
homomorphic encryption scheme. In particular, we show how to construct a (single-key and suc-
cinct) functional encryption scheme for any class of functionsℱ by using a homomorphic encryption
scheme which can do homomorphic evaluations for any function inℱ and an attribute-based encryp-
tion scheme for a “slightly larger” class of functions ℱ ′; ℱ ′ is the class of functions such that for
any function 𝑓 ∈ ℱ , the class ℱ ′ contains the function computing the 𝑖-th bit of the FHE evaluation
of 𝑓 .

Theorem 4. There is a single-key functional encryption scheme with succinct ciphertexts (indepen-
dent of circuit size) for the class of functions ℱ assuming the existence of
∙ a fully homomorphic encryption scheme for the class of functions ℱ , and
∙ a (single-key) attribute-based encryption scheme for a class of predicates ℱ ′ (as above).

The literature has considered two types of security for ABE and FE: selective and full security .
We show that if the underlying ABE scheme is selectively or fully secure, our resulting FE scheme
is selectively or fully secure, respectively.

Two very recent results achieve attribute-based encryption for general functions. Gorbunov,
Vaikuntanathan and Wee [GVW13] achieve ABE for general circuits of bounded depth based on the
subexponential Learning With Errors (LWE) intractability assumption. Sahai and Waters [SW12]
achieve ABE for general circuits under the less standard k-Multilinear Decisional Diffie-Hellman
(see [SW12] for more details); however, when instantiated with the only construction of multilinear
maps currently known [GGH12], they also achieve ABE for general circuits of bounded depth. Our
scheme can be instantiated with any of these schemes because our result is a reduction.

When coupling our theorem with the ABE result of [GVW13] and the FHE scheme of [BV11a,
BGV12], we obtain:

Corollary 2 (Informal). Under the subexponential LWE assumption, for any depth 𝑑, there is a
single-key functional encryption scheme for general functions computable by circuits of depth 𝑑.
The scheme has succinct ciphertexts: their size is polynomial in the depth 𝑑 (and does not depend
on the circuit size).
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This corollary holds for both selective and full security definitions, since [GVW13] constructs
both selectively secure and fully secure ABE schemes. However, the parameters of the LWE as-
sumption are different in the two cases. For selective security, the LWE assumption reduces to
the (polynomial) hardness of approximating shortest vectors in a lattice up to sub-exponential ap-
proximation factors. This assumption is known as the gapSVP assumption with sub-exponential
approximation factors. For full security, the LWE assumption reduces to the same assumption as
above, but where the hardness is assumed to hold even against sub-exponential time adversaries.
Namely, the assumption is that it is hard to approximate shortest vectors in a lattice up to sub-
exponential approximation factors in sub-exponential time. Both of these assumptions are quite
standard and well-studied assumptions that are believed to be true. (We refer the reader to our full
paper [GKP+12] for details.)

Another corollary of our theorem is that, given a universal ABE scheme (the scheme is for all
classes of circuits, independent of depth) and any fully homomorphic encryption scheme, there is a
universal functional encryption scheme whose ciphertext size does not depend on the circuit’s size
or even the circuit’s depth.

As mentioned, extending our scheme to be secure against an adversary who receives 𝑞 keys is
straightforward. The basic idea is simply to repeat the scheme 𝑞 times in parallel. This strategy
results in the ciphertext size growing linearly with 𝑞, which is unavoidable for the simulation-based
security definition we consider, because of the discussed impossibility result [AGVW12]. Stated in
these terms, our scheme is also a 𝑞-collusion-resistant functional encryption scheme like [GVW12],
but our scheme’s ciphertexts are succinct, whereas [GVW12]’s are proportional to the circuit size.

From now on, we restrict our attention to the single-key case, which is the essence of the new
scheme. In the body of the chapter we often omit the single-key or succinct adjectives and whenever
we refer to a functional encryption scheme, we mean a succinct single-key functional encryption
scheme.

We next show how to use our main theorem to make significant progress on some of the most
intriguing open questions in cryptography today: the reusability of garbled circuits, a new paradigm
for general function obfuscation, as well as applications to fully homomorphic encryption with
evaluation running in input-specific time rather than in worst-case time, and to publicly verifiable
delegation. Succinctness plays a central role in these applications and they would not be possible
without it.

Main Application: Reusable Garbled Circuits

A circuit garbling scheme, which has been one of the most useful primitives in modern cryptography,
is a construction originally suggested by Yao in the 80s in the context of secure two-party computa-
tion [Yao82]. This construction relies on the existence of a one-way function to encode an arbitrary
circuit 𝐶 (“garbling” the circuit) and then encode any input 𝑥 to the circuit (where the size of the
encoding is short, namely, it does not grow with the size of the circuit 𝐶); a party given the garbling
of 𝐶 and the encoding of 𝑥 can run the garbled circuit on the encoded 𝑥 and obtain 𝐶(𝑥). The most
basic properties of garbled circuits are circuit and input privacy: an adversary learns nothing about
the circuit 𝐶 or the input 𝑥 other than the result 𝐶(𝑥).

Over the years, garbled circuits and variants thereof have found many applications: two party
secure protocols [Yao86], multi-party secure protocols [GMW87], one-time programs [GKR08],
KDM-security [BHHI10], verifiable computation [GGP10], homomorphic computations [GHV10]
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and others. However, a basic limitation of the original construction remains: it offers only one-time
usage. Specifically, providing an encoding of more than one input compromises the secrecy of the
circuit. Thus, evaluating the circuit 𝐶 on any new input requires an entirely new garbling of the
circuit.

The problem of reusing garbled circuits has been open for 30 years. Using our newly con-
structed succinct functional encryption scheme we are now able to build reusable garbled circuits
that achieve circuit and input privacy: a garbled circuit for any computation of depth 𝑑 (where the
parameters of the scheme depend on 𝑑), which can be run on any polynomial number of inputs with-
out compromising the privacy of the circuit or the input. More generally, we prove the following:

Theorem 5 (Informal). There exists a polynomial 𝑝, such that for any depth function 𝑑, there is a
reusable circuit garbling scheme for the class of all arithmetic circuits of depth 𝑑, assuming there is
a single-key functional encryption scheme for all arithmetic circuits of depth 𝑝(𝑑).5

Corollary 3 (Informal). Under the subexponential LWE assumption, for any depth function 𝑑, there
exists a reusable circuit garbling scheme with circuit and input privacy for all arithmetic circuits of
depth 𝑑.

We note that the parameters of this LWE assumption imply its reducibility to the assumption that
gapSVP is hard to break in sub-exponential time with sub-exponential approximation factors. (We
refer the reader to our full paper [GKP+12] for details.)

Reusability of garbled circuits (for depth-bounded computations) implies a multitude of applica-
tions as evidenced by the research on garbled circuits over the last 30 years. We note that for many
of these applications, depth-bounded computation suffices. We also note that some applications do
not require circuit privacy. In that situation, our succinct single-key functional encryption scheme
already provides reusable garbled circuits with input-privacy and, moreover, the encoding of the
input is a public-key algorithm.

We remark that [GVW13] gives a restricted form of reusable circuit garbling: it provides au-
thenticity of the circuit output, but does not provide input privacy or circuit privacy, as we do here.
Informally, authenticity means that an adversary cannot obtain a different yet legitimate result from
a garbled circuit. We note that most of the original garbling circuit applications (e.g., two party
secure protocols [Yao86], multi-party secure protocols [GMW87]) rely on the privacy of the input
or of the circuit.

One of the more intriguing applications of reusable garbled circuits pertains to a new model for
program obfuscation, token-based obfuscation, which we discuss next.

Token-Based Obfuscation: a New Way to Circumvent Obfuscation Impossibility Results

Program obfuscation is the process of taking a program as input, and producing a functionally equiv-
alent but different program, so that the new program reveals no information to a computationally
bounded adversary about the original program, beyond what “black box access” to the program re-
veals. Whereas ad-hoc program obfuscators are built routinely, and are used in practice as the main
software-based technique to fight reverse engineering of programs, in 2000 Barak et al. [BGI+11],

5For this application we need to assume that the underlying functional encryption scheme is fully secure (as opposed
to only selectively secure).
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followed by Goldwasser and Kalai [GK05], proved that program obfuscation for general functions is
impossible using software alone, with respect to several strong but natural definitions of obfuscation.

The results of [BGI+11, GK05] mean that there exist functions which cannot be obfuscated. Still,
the need to obfuscate or “garble” programs remains. A long array of works attempts to circumvent
the impossibility results in various ways, including adding secure hardware components [GKR08,
GIS+10, BCG+11], relaxing the definition of security [GR07], or considering only specific functions
[Wee05, CKVW10].

The problem of obfuscation seems intimately related to the “garbled circuit” problem where
given a garbling of a circuit 𝐶 and an encoding for an input 𝑥, one can learn the result of 𝐶(𝑥)
but nothing else. One cannot help but wonder whether the new reusable garbling scheme would
immediately imply a solution for the obfuscation problem (which we know is impossible). Consider
an example illustrating this intuition: a vendor obfuscates her program (circuit) by garbling it and
then gives the garbled circuit to a customer. In order to run the program on (multiple) inputs 𝑥𝑖, the
customer simply encodes the inputs according to the garbling scheme and thus is able to compute
𝐶(𝑥𝑖). Unfortunately, although close, this scenario does not work with reusable garbled circuits.
The key observation is that encoding 𝑥 requires knowledge of a secret key! Thus, an adversary
cannot produce encoded inputs on its own, and needs to obtain “tokens” in the form of encrypted
inputs from the data owner.

Instead, we propose a new token-based model for obfuscation. The idea is for a vendor to
obfuscate an arbitrary program as well as provide tokens representing rights to run this program
on specific inputs. For example, consider that some researchers want to obtain statistics out of
an obfuscated database containing sensitive information (the obfuscated program is the program
running queries with the secret database hardcoded in it). Whenever the researchers want to input a
query 𝑥 to this program, they need to obtain a token for 𝑥 from the program owner. To produce each
token, the program owner does little work. The researchers perform the bulk of the computation by
themselves using the token and obtain the computation result without further interaction with the
owner.

Claim 7. Assuming a reusable garbling scheme for a class of circuits, there is a token-based obfus-
cation scheme for the same class of circuits.

Corollary 4 (Informal). Under the subexponential LWE assumption, for any depth function 𝑑, there
exists a token-based obfuscation scheme for all arithmetic circuits of depth 𝑑.

It is worthwhile to compare the token-based obfuscation model with previous work addressing
obfuscation using trusted-hardware components such as [GIS+10, BCG+11]. In these schemes,
after a user finishes executing the obfuscated program on an input, the user needs to interact with
the trusted hardware to obtain the decryption of the result; in comparison, in our scheme, the user
needs to obtain only a token before the computation begins, and can then run the computation and
obtain the decrypted result by herself.

Computing on Encrypted Data in Input-Specific Time

All current FHE constructions work according to the following template. For a fixed input size, a
program is transformed into an arithmetic circuit; homomorphic evaluation happens gate by gate on
this circuit. The size of the circuit reflects the worst-case running time of the program: for example,
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every loop is unfolded into the maximum number of steps corresponding to the worst-case input,
and each function is called the maximum number of times possible. Such a circuit can be potentially
very large, despite the fact that there could be many inputs on which the execution is short.

A fascinating open question has been whether it is possible to perform FHE following a Turing-
machine-like template: the computation time is input-specific and can terminate earlier depending
on the input at hand. Of course, to compute in input-specific time, the running time must unavoid-
ably leak to the evaluator, but such leakage is acceptable in certain applications and the efficiency
gains can be significant; therefore, such a scheme provides weaker security than fully homomorphic
encryption (namely, nothing other than the running time leaks about the input), at the increase of
efficiency.

Using our functional encryption scheme, we show how to achieve this goal. The idea is to use
the scheme to test when an encrypted circuit computation has terminated, so the computation can
stop earlier on certain inputs. We overview our technique in Sec. 6.1.2.

Because the ciphertexts in our functional encryption scheme grow with the depth of the circuits,
such a scheme is useful only for Turing machines that can be expressed as circuits of depth at
most 𝑑(𝑛) for inputs of size 𝑛. We refer to such Turing machines as d-depth-bounded (see our full
paper [GKP+12] for details).

Theorem 6. There is a scheme for evaluating Turing machines on encrypted inputs in input-specific
time for any class of 𝑑-depth-bounded Turing machines, assuming the existence of a succinct single-
key functional encryption scheme for circuits of depth 𝑑,6 and a fully homomorphic encryption
scheme for circuits of depth 𝑑.

Corollary 5 (Informal). Under the subexponential LWE assumption, for any depth 𝑑, there is a
scheme for evaluating Turing machines on encrypted data in input-specific time for any class of
𝑑-depth-bounded Turing machines.

The parameters of this LWE assumption are the same as discussed in Corollary 2.

Publicly Verifiable Delegation with Secrecy

Recently, Parno, Raykova and Vaikuntanathan [PRV12] showed how to construct a 2-message del-
egation scheme that is publicly verifiable, in the preprocessing model, from any attribute-based
encryption scheme. This reduction can be combined with [GVW13]’s ABE scheme to achieve such
a delegation scheme.

However, this scheme does not provide secrecy of the inputs: the prover can learn the inputs.
By replacing the ABE scheme in the construction of [PRV12] with our new functional encryption
scheme, we add secrecy to the scheme; namely, we obtain a delegation scheme which is both pub-
licly verifiable as in [PRV12] (anyone can verify that a transcript is accepting using only public
information) and secret (the prover does not learn anything about the input of the function being
delegated).7 More specifically, we construct a 2-message delegation scheme in the preprocessing
model that is based on the subexponential LWE assumption, and is for general depth-bounded cir-
cuits, where the verifier works in time that depends on the depth of the circuit being delegated, but

6As in previous applications, we need to assume that the underlying functional encryption scheme is fully secure (as
opposed to only selectively secure).

7We note that secrecy can be easily obtained by using an FHE scheme, however, this destroys public-verifiability.
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is independent of the size of the circuit, and the prover works in time dependent on the size of the
circuit. For more details, see our full paper [GKP+12].

◇ 6.1.2 Technique Outline

Our functional encryption scheme. We first describe the ideas behind our main technical result:
a reduction from attribute-based encryption (ABE) and fully homomorphic encryption (FHE) to
functional encryption (FE).

Compute on encrypted data with FHE. A natural starting point is FHE because it enables compu-
tation on encrypted data, which is needed with functional encryption. Using FHE, the FE encryption
of an input 𝑥 consists of an FHE encryption of 𝑥, denoted 𝑥̂, while the secret key for a function 𝑓
is simply 𝑓 itself. The semantic security of FHE provides the desired security (and more) because
nothing leaks about 𝑥; however, using FHE evaluation, the evaluator obtains an encrypted computa-
tion result, ̂︂𝑓(𝑥), instead of the decrypted value 𝑓(𝑥). Giving the evaluator the FHE decryption key
is not an option because the evaluator can use it to decrypt 𝑥 as well.

Attempt to decrypt using a Yao garbled circuit. We would like the evaluator to decrypt the FHE
ciphertext ̂︂𝑓(𝑥), but not be able to decrypt anything else. An idea is for the owner to give the
evaluator a Yao garbled circuit for the FHE decryption function FHE.Dec with the FHE secret key
hsk hardcoded in it, namely a garbled circuit for FHE.Dechsk. When the owner garbles FHE.Dechsk,
the owner also obtains a set of garbled circuit labels {𝐿𝑖

0, 𝐿
𝑖
1}𝑖. The evaluator must only receive the

input labels corresponding to ̂︂𝑓(𝑥): namely, the labels {𝐿𝑖
𝑏𝑖
}𝑖 where 𝑏𝑖 is the 𝑖-th bit of ̂︂𝑓(𝑥). But

this is not possible because the owner does not know a priori ̂︂𝑓(𝑥) which is determined only after
the FHE evaluation; furthermore, after providing more than one set of labels (which happens when
encrypting another input 𝑥′), the security of the garbled circuit (and hence of the FHE secret key) is
compromised. One idea is to have the owner and the evaluator interact, but the syntax of functional
encryption does not allow interaction. Therefore, the evaluator needs to determine the set of labels
corresponding to ̂︂𝑓(𝑥) by herself, and should not obtain any other labels.

Constraining decryption using ABE. It turns out that what we need here is very close to what
ABE provides. Consider the following variant of ABE that can be constructed easily from a standard
ABE scheme. One encrypts a value 𝑦 together with two messages 𝑚0,𝑚1 and obtains a ciphertext
𝑐 ← ABE.Enc(𝑦,𝑚0,𝑚1). Then, one generates a key for a predicate 𝑔: sk𝑔 ← ABE.KeyGen(𝑔).
The decryption algorithm on input 𝑐 and sk𝑔 outputs 𝑚0 if 𝑔(𝑦) = 0 or outputs 𝑚1 if 𝑔(𝑦) = 1.

Now consider using this ABE variant multiple times, once for every 𝑖 ∈ {1, . . . , size of ̂︂𝑓(𝑥)}.
For the 𝑖-th invocation of ABE.Enc, let𝑚0,𝑚1 be the garbled labels𝐿𝑖

0, 𝐿
𝑖
1, and let 𝑦 be 𝑥̂: ABE.Enc(𝑥̂,

𝐿𝑖
0, 𝐿

𝑖
1). Next, for the 𝑖-th invocation of ABE.KeyGen, let 𝑔 be FHE.Eval𝑖𝑓 (the predicate returning

the 𝑖-th bit of the evaluation of 𝑓 on an input ciphertext): ABE.KeyGen(FHE.Eval𝑖𝑓 ). Then, the eval-

uator can use ABE.Dec to obtain the needed label: 𝐿𝑖
𝑏𝑖

where 𝑏𝑖 is the 𝑖-th bit of ̂︂𝑓(𝑥). Armed with
these labels and the garbled circuit, the evaluator decrypts 𝑓(𝑥).

The security of the ABE scheme ensures the evaluator cannot decrypt any other labels, so the
evaluator cannot learn more than 𝑓(𝑥). Finally, note that the one-time aspect of garbled circuits
does not restrict the number of encryptions with our FE scheme because the encryption algorithm
generates a new garbled circuit every time; since the garbled circuit is for the FHE decryption
algorithm (which is a fixed algorithm), the size of the ciphertexts remains independent of the size of
𝑓 .
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We now explain how to use this result to obtain the aforementioned applications.

From FE to reusable garbled circuits. The goal of garbled circuits is to hide the input and the
circuit𝐶. Our succinct single-key FE already provides a reusable garbling scheme with input privacy
(the single key corresponds to the circuit to garble). To obtain circuit privacy, the insight is to
leverage the secrecy of the inputs to hide the circuit. The first idea that comes to mind is to generate
a key for the universal circuit instead of 𝐶, and include 𝐶 in the ciphertext when encrypting an input.
However, this approach will yield large ciphertexts, as large as the circuit size.

Instead, the insight is to garble 𝐶 by using a semantically secure encryption scheme E.Enc
together with our FE scheme: the garbling of 𝐶 will be an FE secret key for a circuit 𝑈 that contains
E.Encsk(𝐶); on input (sk, 𝑥), 𝑈 uses sk to decrypt𝐶 and then runs𝐶 on the input 𝑥. The token for an
input 𝑥 will be an FE encryption of (sk, 𝑥). Now, even if the FE scheme does not hide E.Encsk(𝐶),
the security of the encryption scheme E hides 𝐶.

Computing on encrypted data in input-specific time. We now summarize our approach to eval-
uating a Turing machine (TM) 𝑀 homomorphically over encrypted data without running in worst-
case time on all inputs. We refer the reader to our full paper [GKP+12] for a formal presentation.

Our idea is to use our functional encryption scheme to enable the evaluator to determine at
various intermediary steps in the evaluation whether the computation finished or not. For each
intermediary step, the client provides a secret key for a function that returns a bit indicating whether
the computation finished or not. However, if the client provides a key for every computation step,
then the amount of keys corresponds to the worst-case running time. Thus, instead, we choose
intermediary points spaced at exponentially increasing intervals. In this way, the client generates
only a logarithmic number of keys, namely for functions indicating if the computation finishes in
1, 2, 4, . . . , 2𝑖, . . . , 2⌈log 𝑡max⌉ steps, where 𝑡max is the worst-case running time of 𝑀 on all inputs of a
certain size.

Because of the single-key aspect of our FE scheme, the client cannot provide keys for an arbitrary
number of TMs to the evaluator. However, this does not mean that the evaluator can run only an a
priori fixed number of TMs on the encrypted data. The reason is that the client can provide keys for
the universal TMs 𝑈0, . . . , 𝑈⌈log 𝑡max⌉, where TM 𝑈𝑖 is the TM that on input a TM 𝑀 and a value 𝑥,
runs 𝑀 on 𝑥 for 2𝑖 steps and outputs whether 𝑀 finished.

Therefore, in an offline preprocessing phase, the client provides 1 + ⌈log 𝑡max⌉ keys where the
𝑖-th key is for a circuit corresponding to 𝑈𝑖, each key being generated with a different master secret
key. The work of the client in this phase is at least 𝑡max which is costly, but this work happens only
once and is amortized over all subsequent inputs in the online phase.

In an online phase, the client receives an input 𝑥 and wants the evaluator to compute 𝑀(𝑥) for
her. The client provides FE encryptions of (𝑀,𝑥) to the evaluator together with an FHE ciphertext
(𝑀̂, 𝑥̂) for (𝑀,𝑥) to be used for a separate FHE evaluation. The evaluator tries each key sk𝑈𝑖

from
the preprocessing phase and learns the smallest 𝑖 for which the computation of 𝑀 on 𝑥 stops in 2𝑖

steps. The evaluator then computes a universal circuit of size 𝑂̃(2𝑖) and evaluates it homomorphi-
cally over (𝑀̂, 𝑥̂), obtaining the FHE encryption of 𝑀(𝑥). Thus, we can see that the evaluator runs
in time polynomial in the runtime of 𝑀 on 𝑥.
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2 6.2 Preliminaries

Let 𝜅 denote the security parameter throughout this chapter. For a distribution 𝒟, we say 𝑥 ← 𝒟
when 𝑥 is sampled from the distribution𝒟. If 𝑆 is a finite set, by 𝑥← 𝑆 we mean 𝑥 is sampled from
the uniform distribution over the set 𝑆. Let [𝑛] denote the set {1, . . . , 𝑛} for 𝑛 ∈ N*. When saying
that a Turing machine 𝐴 is p.p.t. we mean that 𝐴 is a non-uniform probabilistic polynomial-time
machine.

In this chapter, we only work with arithmetic circuits over GF(2). These circuits have two types
of gates: + mod 2 and × mod 2. Unless the context specifies otherwise, we consider circuits with
one bit of output (also called boolean).

◇ 6.2.1 Building Blocks

We present the building blocks that our construction relies on. We provide only informal definitions
and theorems here, and refer the reader to our full paper [GKP+12] for their formal counterparts.

The LWE assumption. The security of our results will be based on the Learning with Errors
(LWE) assumption, first introduced by Regev [Reg05]. Regev showed that solving the LWE problem
on average is (quantumly) as hard as solving the approximate version of several standard lattice
problems, such as gapSVP in the worst case. Peikert [Pei09] later removed the quantum assumption
from a variant of this reduction. Given this connection, we state all our results under worst-case
lattice assumptions, and in particular, under (a variant of) the gapSVP assumption. We refer the
reader to [Reg05, Pei09] for details about the worst-case/average-case connection.

The best known algorithms to solve these lattice problems with an approximation factor 2ℓ𝜖 in
ℓ-dimensional lattices run in time 2𝑂̃(ℓ1−𝜖) [AKS01, MV10] for any constant 0 < 𝜖 < 1. Specifically,
given the current state-of-the-art on lattice algorithms, it is quite plausible that achieving approxi-
mation factors 2ℓ𝜖 for these lattice problems is hard for polynomial time algorithms.

FHE. Fully homomorphic encryption enables an evaluator to compute on encrypted data without
learning anything about the underlying data. Formally, a 𝒞-homomorphic encryption scheme FHE
for a class of circuits 𝒞 is a tuple of polynomial-time algorithms (FHE.KeyGen, FHE.Enc, FHE.Dec,
FHE.Eval). The key generation algorithm FHE.KeyGen(1𝜅) takes as input the security parameter 1𝜅

and outputs a public/secret key pair (hpk, hsk). The encryption algorithm FHE.Enc (hpk, 𝑥 ∈ {0, 1})
takes as input the public key hpk and a bit 𝑥 and outputs a ciphertext 𝜓, whereas the decryption algo-
rithm FHE.Dec(hsk, 𝜓) takes as input the secret key hsk and a ciphertext 𝜓 and outputs a decrypted
bit. The homomorphic evaluation algorithm FHE.Eval(hpk, 𝐶, 𝜓1, 𝜓2, . . . , 𝜓𝑛) takes as input the
public key hpk, 𝑛 ciphertexts 𝜓1, . . . , 𝜓𝑛 (which are encryptions of bits 𝑥1, . . . , 𝑥𝑛) and a circuit
𝐶 ∈ 𝒞 that takes 𝑛 bits as input. It outputs a ciphertext 𝜓𝐶 which decrypts to 𝐶(𝑥1, . . . , 𝑥𝑛). The
security definition is semantic security (or IND-CPA).

A fully homomorphic encryption scheme is homomorphic for the class of all polynomial-sized
circuits. A special type of homomorphic encryption, called leveled fully homomorphic encryption,
suffices for our purposes: in a 𝑑-leveled FHE scheme, FHE.KeyGen takes an additional input 1𝑑 and
the resulting scheme is homomorphic for all depth-𝑑 arithmetic circuits over GF(2).
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Theorem 7 ([BV11a, BGV12]). Assume that there is a constant 0 < 𝜖 < 1 such that for every
sufficiently large ℓ, the approximate shortest vector problem gapSVP in ℓ dimensions is hard to
approximate to within a 2𝑂(ℓ𝜖) factor in the worst case. Then, for every 𝑛 and every polynomial
𝑑 = 𝑑(𝑛), there is an IND-CPA secure 𝑑-leveled fully homomorphic encryption scheme where en-
crypting 𝑛 bits produces ciphertexts of length poly(𝑛, 𝜅, 𝑑1/𝜖), the size of the circuit for homomorphic
evaluation of a function 𝑓 is size(𝐶𝑓 ) ·poly(𝑛, 𝜅, 𝑑1/𝜖) and its depth is depth(𝐶𝑓 ) ·poly(log 𝑛, log 𝑑).

Garbled circuits. Garbled circuits were initially presented by Yao [Yao82], then proven secure by
Lindell and Pinkas [LP09], and recently formalized by Bellare et al. [BHR12].

A garbling scheme for a family of circuits 𝒞 = {𝒞𝑛}𝑛∈N, where 𝒞𝑛 is a set of boolean circuits
taking 𝑛-bit inputs, is a tuple of p.p.t. algorithms Gb = (Gb.Garble,Gb.Enc,Gb.Eval) such that
Gb.Garble(1𝜅, 𝐶) takes as input the security parameter 𝜅 and a circuit 𝐶 ∈ 𝒞𝑛 for some 𝑛, and
outputs the garbled circuit Γ and a secret key sk; Gb.Enc(sk, 𝑥) takes as input 𝑥 ∈ {0, 1}* and
outputs an encoding 𝑐 whose size must not depend on the size of the circuit 𝐶; and Gb.Eval(Γ, 𝑐)
takes as input a garbled circuit Γ and an encoding 𝑐, and outputs a value 𝑦 that must be equal to
𝐶(𝑥).

The garbling scheme presented by Yao has a specific property that is useful in various secure
function evaluation (SFE) protocols and in our construction as well. The secret key is of the form
sk = {𝐿0

𝑖 , 𝐿
1
𝑖 }𝑛𝑖=1 and the encoding of an 𝑛-bit input 𝑥 is of the form 𝑐 = (𝐿𝑥1

1 , . . . , 𝐿
𝑥𝑛
𝑛 ) where 𝑥𝑖 is

the 𝑖-th bit of 𝑥.
Two security guarantees are of interest: input privacy (the input to the garbled circuit does not

leak to the adversary) and circuit privacy (the circuit does not leak to the adversary). In all known
garbling schemes, these properties hold only for one-time evaluation of the circuit: the adversary
can receive at most one encoding of an input to use with a garbled circuit; obtaining more than one
encoding breaks these security guarantees. More formally, the security definition states that there
exists a p.p.t. simulator SimGarble that given the result 𝐶(𝑥) of a (secret) circuit 𝐶 on a single (secret)
input 𝑥, and given the sizes of 𝐶 and 𝑥 (but not the actual values of 𝐶 and 𝑥), outputs a simulated
garbled circuit Γ̃ and an encoding 𝑐, (Γ̃, 𝑐)← SimGarble(1

𝜅, 𝐶(𝑥), 1|𝐶|, 1|𝑥|), that are computationally
indistinguishable from the real garbled circuit Γ and encoding 𝑐.

Theorem 8 ([Yao82, LP09]). Assuming one-way functions exist, there exists a Yao (one-time) gar-
bling scheme that is input- and circuit-private for all circuits over GF(2).

◇ 6.2.2 Attribute-Based Encryption (ABE)

Attribute-based encryption is an important component of our construction. We present a slight (but
equivalent) variant of ABE that better serves our goal.

Definition 23. An attribute-based encryption scheme (ABE) for a class of predicates 𝒫 = {𝒫𝑛}𝑛∈N
represented as boolean circuits with 𝑛 input bits, and a message spaceℳ is a tuple of algorithms
(ABE.Setup, ABE.KeyGen, ABE.Enc, ABE.Dec) as follows:

∙ ABE.Setup(1𝜅): Takes as input a security parameter 1𝜅 and outputs a public master key fmpk
and a master secret key fmsk.

∙ ABE.KeyGen(fmsk, 𝑃 ): Given a master secret key fmsk and a predicate 𝑃 ∈ 𝒫 , outputs a key
fsk𝑃 corresponding to 𝑃 .
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∙ ABE.Enc(fmpk, 𝑥,𝑀0,𝑀1): Takes as input the public key fmpk, an attribute 𝑥 ∈ {0, 1}𝑛, for
some 𝑛, and two messages 𝑀0,𝑀1 ∈ℳ and outputs a ciphertext 𝑐.

∙ ABE.Dec(fsk𝑃 , 𝑐): Takes as input a secret key for a predicate and a ciphertext and outputs
𝑀* ∈ℳ.

Correctness. For any polynomial 𝑛(·), for every sufficiently large security parameter 𝜅, if 𝑛 = 𝑛(𝜅),
for all predicates 𝑃 ∈ 𝒫𝑛, attributes 𝑥 ∈ {0, 1}𝑛, messages 𝑀0,𝑀1 ∈ℳ:

Pr

⎡⎢⎢⎣
(fmpk, fmsk)← ABE.Setup(1𝜅);
fsk𝑃 ← ABE.KeyGen(fmsk, 𝑃 );
𝑐← ABE.Enc(fmpk, 𝑥,𝑀0,𝑀1);
𝑀* ← ABE.Dec(fsk𝑃 , 𝑐) : 𝑀* = 𝑀𝑃 (𝑥)

⎤⎥⎥⎦ = 1− negl(𝜅).

Informally, the security of ABE guarantees that nothing leaks about 𝑀0 if 𝑃 (𝑥) = 1 and nothing
leaks about 𝑀1 if 𝑃 (𝑥) = 0. However, the scheme does not hide the attribute 𝑥, and 𝑥 may leak no
matter what 𝑃 (𝑥) is. The security of ABE is thus conceptually weaker than the security for FE: the
input that the computation happens on leaks with ABE, while this input does not leak with FE.

We call an ABE or FE scheme for circuits of depth 𝑑 a 𝑑-leveled ABE or d-leveled FE scheme,
respectively.

Theorem 9 ([GVW13]). Assume there is a constant 0 < 𝜖 < 1 such that for every sufficiently large
ℓ, the approximate shortest vector problem gapSVP in ℓ dimensions is hard to approximate to within
a 2𝑂(ℓ𝜖) factor in poly(ℓ) (resp. 2ℓ𝜖) time. Then, for every 𝑛 and every polynomial 𝑑 = 𝑑(𝑛), there
is a selectively (resp. fully) secure 𝑑-leveled attribute-based encryption scheme where encrypting 𝑛
bits produces ciphertexts of length poly(𝑛, 𝜅, 𝑑1/𝜖) (resp. poly(𝑛, 𝜅, 𝑑1/𝜖

2
)).

◇ 6.2.3 Functional Encryption (FE)

We recall the functional encryption definition from the literature [KSW08, BSW11, GVW12] with
some notational changes.

Definition 24. A functional encryption scheme FE for a class of functionsℱ = {ℱ𝑛}𝑛∈N represented
as boolean circuits with an 𝑛-bit input, is a tuple of four p.p.t. algorithms (FE.Setup, FE.KeyGen,
FE.Enc, FE.Dec) such that:

∙ FE.Setup(1𝜅) takes as input the security parameter 1𝜅 and outputs a master public key fmpk and
a master secret key fmsk.

∙ FE.KeyGen(fmsk, 𝑓) takes as input the master secret key fmsk and a function 𝑓 ∈ ℱ and outputs
a key fsk𝑓 .

∙ FE.Enc(fmpk, 𝑥) takes as input the master public key fmpk and an input 𝑥 ∈ {0, 1}* and outputs
a ciphertext 𝑐.

∙ FE.Dec(fsk𝑓 , 𝑐) takes as input a key fsk𝑓 and a ciphertext 𝑐 and outputs a value 𝑦.

Correctness. For any polynomial 𝑛(·), for every sufficiently large security parameter 𝜅, for 𝑛 =
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𝑛(𝜅), for all 𝑓 ∈ ℱ𝑛, and all 𝑥 ∈ {0, 1}𝑛,

Pr[(fmpk, fmsk)← FE.Setup(1𝜅); fsk𝑓 ← FE.KeyGen(fmsk, 𝑓);

𝑐← FE.Enc(fmpk, 𝑥) : FE.Dec(fsk𝑓 , 𝑐) = 𝑓(𝑥)]

= 1− negl(𝜅).

Intuitively, the security of functional encryption requires that an adversary should not learn any-
thing about the input 𝑥 other than the computation result 𝐶(𝑥), for some circuit 𝐶 for which a key
was issued (the adversary can learn the circuit 𝐶). In this chapter, we present only the definition of
full security and defer the definition of selective security to our full paper [GKP+12]. The security
definition states that whatever information an adversary is able to learn from the ciphertext and the
function keys can be simulated given only the function keys and the output of the function on the
inputs.

Definition 25. (FE Security) Let FE be a functional encryption scheme for the family of functions
ℱ = {ℱ𝑛}𝑛∈N. For every p.p.t. adversary 𝐴 = (𝐴1, 𝐴2) and p.p.t. simulator 𝑆, consider the
following two experiments:

expreal
FE,𝐴(1𝜅): expideal

FE,𝐴,𝑆(1𝜅):

1: (fmpk, fmsk) ←
FE.Setup(1𝜅)

2: (𝑓, state𝐴)← 𝐴1(fmpk)
3: fsk𝑓 ←

FE.KeyGen(fmsk, 𝑓)
4: (𝑥, state′𝐴) ←
𝐴2(state𝐴, fsk𝑓 )

5: 𝑐 ←
FE.Enc(fmpk, 𝑥)

6: Output (state′𝐴, 𝑐)

5: 𝑐 ←
𝑆(fmpk, fsk𝑓 , 𝑓, 𝑓(𝑥), 1|𝑥|)

6: Output (state′𝐴, 𝑐)

The scheme is said to be (single-key) FULL-SIM−secure if there exists a p.p.t. simulator 𝑆 such
that for all pairs of p.p.t. adversaries (𝐴1, 𝐴2), the outcomes of the two experiments are computa-
tionally indistinguishable: {︂

expreal
FE,𝐴(1𝜅)

}︂
𝜅∈N

𝑐
≈

{︂
expideal

FE,𝐴,𝑆(1𝜅)

}︂
𝜅∈N

.

2 6.3 Our Functional Encryption

In this section, we present our main result: the construction of a functional encryption scheme FE.
We refer the reader to the introduction (Sec. 6.1.2) for an overview of our approach, and we proceed
directly with the construction here.

We use three building blocks in our construction: a (leveled) fully homomorphic encryption
scheme FHE, a (leveled) two-outcome attribute-based encryption scheme ABE, and a Yao garbling
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scheme Gb.
For simplicity, we construct FE for functions outputting one bit; functions with larger outputs

can be handled by repeating our scheme below for every output bit. Let 𝜆 = 𝜆(𝜅) be the length of
the ciphertexts in the FHE scheme (both from encryption and evaluation). The construction of FE =
(FE.Setup, FE.KeyGen, FE.Enc, FE.Dec) proceeds as follows.

Setup FE.Setup(1𝜅): Run the setup algorithm for the ABE scheme 𝜆 times:

(fmpk𝑖, fmsk𝑖)← ABE.Setup(1𝜅) for 𝑖 ∈ [𝜆].

Output as master public key and secret key:

MPK = (fmpk1, . . . , fmpk𝜆) and MSK = (fmsk1, . . . , fmsk𝜆).

Key Generation FE.KeyGen(MSK, 𝑓): Let 𝑛 be the number of bits in the input to the circuit 𝑓 .
If hpk is an FHE public key and 𝜓1, . . . , 𝜓𝑛 are FHE ciphertexts, let FHE.Eval𝑖𝑓 (hpk, 𝜓1, . . . , 𝜓𝑛)
be the 𝑖-th bit of the homomorphic evaluation of 𝑓 on 𝜓1, . . . , 𝜓𝑛 (FHE.Eval(hpk, 𝑓, 𝜓1, . . . , 𝜓𝑛)),
where 𝑖 ∈ [𝜆]. Thus, FHE.Eval𝑖𝑓 : {0, 1}|hpk| × {0, 1}𝑛𝜆 → {0, 1}.

1. Run the key generation algorithm of ABE for the functions FHE.Eval𝑖𝑓 (under the different master
secret keys) to construct secret keys:

fsk𝑖 ← ABE.KeyGen(fmsk𝑖,FHE.Eval
𝑖
𝑓 ) for 𝑖 ∈ [𝜆].

2. Output the tuple fsk𝑓 := (fsk1, . . . , fsk𝜆) as the secret key for the function 𝑓 .

Encryption FE.Enc(MPK, 𝑥): Let 𝑛 be the number of bits of 𝑥, namely 𝑥 = 𝑥1 . . . 𝑥𝑛. Encryption
proceeds in three steps.

1. Generate a fresh key pair (hpk, hsk) ← FHE.KeyGen(1𝜅) for the (leveled) fully homomorphic
encryption scheme. Encrypt each bit of 𝑥 homomorphically: 𝜓𝑖 ← FHE.Enc(hpk, 𝑥𝑖). Let
𝜓 := (𝜓1, . . . , 𝜓𝑛) be the encryption of the input 𝑥.

2. Run the Yao garbled circuit generation algorithm to produce a garbled circuit for the FHE de-
cryption algorithm FHE.Dec(hsk, ·) : {0, 1}𝜆 → {0, 1} together with 2𝜆 labels 𝐿𝑏

𝑖 for 𝑖 ∈ [𝜆] and
𝑏 ∈ {0, 1}. Namely, (︂

Γ, {𝐿0
𝑖 , 𝐿

1
𝑖 }𝜆𝑖=1

)︂
← Gb.Garble(1𝜅,FHE.Dec(hsk, ·)),

where Γ is the garbled circuit and the 𝐿𝑏
𝑖 are the input labels.

3. Produce encryptions 𝑐1, . . . , 𝑐𝜆 using the ABE scheme:

𝑐𝑖 ← ABE.Enc
(︀
fmpk𝑖, (hpk, 𝜓), 𝐿0

𝑖 , 𝐿
1
𝑖

)︀
for 𝑖 ∈ [𝜆],

where (hpk, 𝜓) comes from the first step, and the labels (𝐿0
𝑖 , 𝐿

1
𝑖 ) come from the second step.

4. Output the ciphertext 𝑐 = (𝑐1, . . . , 𝑐𝜆,Γ).
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Decryption FE.Dec(fsk𝑓 , 𝑐):
1. Run the ABE decryption algorithm on the ciphertexts 𝑐1, . . . , 𝑐𝜆 to recover the labels for the

garbled circuit. In particular, let

𝐿𝑑𝑖
𝑖 ← ABE.Dec(fsk𝑖, 𝑐𝑖) for 𝑖 ∈ [𝜆],

where 𝑑𝑖 is equal to FHE.Eval𝑖𝑓 (hpk, 𝜓).

2. Now, armed with the garbled circuit Γ and the labels 𝐿𝑑𝑖
𝑖 , run the garbled circuit evaluation

algorithm to compute

Gb.Eval(Γ, 𝐿𝑑1
1 , . . . , 𝐿

𝑑𝜆
𝜆 ) = FHE.Dec(hsk, 𝑑1𝑑2 . . . 𝑑𝜆) = 𝑓(𝑥).

We now provide a proof for our main Theorem 4, delegating certain details to the full pa-
per [GKP+12].

of Theorem 4. Let us first argue that the scheme is correct. We examine the values we obtain in
FE.Dec(fsk𝑓 , 𝑐). In Step (1), by the correctness of the ABE scheme used, 𝑑𝑖 is FHE.Eval𝑖𝑓 (hpk, 𝜓):
FHE.Eval𝑖𝑓 comes from fsk𝑓 and (hpk, 𝜓) come from 𝑐𝑖. Therefore, the inputs to the garbled circuit
Γ in Step (2) are the set of 𝜆 labels corresponding to the value of FHE.Eval𝑓 (hpk, 𝜓). By the
correctness of the FHE scheme, this value corresponds to an FHE encryption of 𝑓(𝑥). Finally, by
the correctness of the garbled circuit scheme, and by how Γ was constructed in FE.Enc, the FHE
ciphertext gets decrypted by Γ correctly, yielding 𝑓(𝑥) as the output from FE.Dec.

We now prove the succinctness property—namely, that the size of FE ciphertexts is independent
of the size of the circuit. FE’s ciphertext is the output of FE.Enc, which outputs 𝜆 ciphertexts from
ABE.Enc and a garbled circuit from Gb.Garble. These add up as follows. First, 𝜆 = ctsizeFHE, the
size of the ciphertext in FHE. Second, we denote the size of the ciphertext produced by ABE.Enc as
ctsizeABE(·), which is a function of ABE.Enc’s input size. The input provided by FE.Enc to ABE.Enc
consists of pksizeFHE bits for hpk, 𝑛 · ctsizeFHE bits for 𝜓, and poly(𝜅) bits for the labels. Finally,
the garbled circuit size is polynomial in the size of the input circuit passed to Gb.Garble, which in
turn is polynomial in sksizeFHE and ctsizeFHE. Thus, we obtain the overall ciphertext size of FE:
ctsizeFE = ctsizeFHE · ctsizeABE(pksizeFHE +𝑛 · ctsizeFHE + poly(𝜅)) + poly(𝜅, sksizeFHE, ctsizeFHE).
We can thus see that if FHE and ABE produce ciphertexts and public keys independent of the circuit
size, then so will our functional encryption scheme.

Finally, we prove security of our scheme based on Def. 25. We construct a p.p.t. simulator 𝑆
that achieves Def. 25. 𝑆 receives as input (MPK, fsk𝑓 , 𝑓, 𝑓(𝑥), 1𝑛) and must output 𝑐 such that the
real and ideal experiments in Def. 25 are computationally indistinguishable. Intuitively, 𝑆 runs a
modified version of FE.Enc to mask the fact that it does not know 𝑥.
Simulator 𝑆 on input (MPK, fsk𝑓 , 𝑓, 𝑓(𝑥), 1𝑛):
1. Choose a key pair (hpk, hsk) ← FHE.KeyGen(1𝜅) for the homomorphic encryption scheme

(where 𝑆 can derive the security parameter 𝜅 from the sizes of the inputs it gets). Encrypt
0𝑛 (𝑛 zero bits) with FHE by encrypting each bit individually and denote the ciphertext 0̂ :=
(0̂1 ← FHE.Enc(hpk, 0),. . ., 0̂𝑛 ← FHE.Enc(hpk, 0)).

2. Let SimGarble be the simulator for the Yao garbling scheme (described in Sec. 6.2.1) for the class
of circuits corresponding to FHE.Dec(hsk, ·). Run SimGarble to produce a simulated garbled cir-
cuit Γ̃ for the FHE decryption algorithm FHE.Dec(hsk, ·) : {0, 1}𝜆 → {0, 1} together with the
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simulated encoding consisting of one set of 𝜆 labels 𝐿̃𝑖 for 𝑖 = 1 . . . 𝜆. Namely,(︂
Γ̃, {𝐿̃𝑖}𝜆𝑖=1

)︂
← SimGarble(1

𝜅, 𝑓(𝑥), 1|FHE.Dec(hsk,·)|, 1𝜆).

The simulator 𝑆 can invoke SimGarble because it knows 𝑓(𝑥), and can compute the size of the
FHE.Dec(hsk, ·) circuit, and 𝜆 from the sizes of the input parameters.

3. Produce encryptions 𝑐1, . . . , 𝑐𝜆 under the ABE scheme in the following way. Let

𝑐𝑖 ← ABE.Enc
(︁
fmpk𝑖, (hpk, 0̂), 𝐿̃𝑖, 𝐿̃𝑖

)︁
,

where 𝑆 uses each simulated label 𝐿̃𝑖 twice.

4. Output 𝑐 = (𝑐1, . . . , 𝑐𝜆, Γ̃).

To prove indistinguishability of the real and ideal experiments (Def. 25), we define a sequence
of hybrid experiments, and then invoke the security definitions of the underlying schemes (FHE,
garbled circuit, and ABE respectively) to show that the outcome of the hybrid experiments are com-
putationally indistinguishable.

Hybrid 0 is the output of the ideal experiment from Def. 25 for our FE construction with simulator
𝑆.
Hybrid 1 is the same as Hybrid 0, except that the simulated ciphertext for Hybrid 1 (which we
denote 𝑐(1)), changes. Let 𝑐(1) be the ciphertext obtained by running the algorithm of 𝑆, except that
in Step (3), encrypt 𝑥 instead of 0, namely:

𝑐
(1)
𝑖 ← ABE.Enc

(︁
fmpk𝑖, (hpk, 𝜓), 𝐿̃𝑖, 𝐿̃𝑖

)︁
,

where 𝜓 ← (FHE.Enc(hpk, 𝑥1), . . . ,FHE.Enc(hpk, 𝑥𝑛)). Let

𝑐(1) = (𝑐
(1)
1 , . . . , 𝑐

(1)
𝜆 , Γ̃).

Hybrid 2 is the same as Hybrid 1, except that in Step (2), the ciphertext contains a real garbled
circuit (︂

Γ, {𝐿0
𝑖 , 𝐿

1
𝑖 }𝜆𝑖=1

)︂
← Gb.Garble(FHE.Dec(hsk, ·)).

Let 𝑑𝑖 = FHE.Eval𝑖𝑓 (hpk, 𝜓). In Step (3), include 𝐿𝑑𝑖 twice in the ABE encryption; namely:

𝑐
(2)
𝑖 ← ABE.Enc

(︀
fmpk𝑖, (hpk, 𝜓), 𝐿𝑑𝑖

𝑖 , 𝐿
𝑑𝑖
𝑖

)︀
, and

𝑐(2) = (𝑐
(2)
1 , . . . , 𝑐

(2)
𝜆 ,Γ).

Hybrid 3 is the output of the real experiment from Def. 25 for our FE construction.
In our full paper [GKP+12], we prove that each pair of consecutive hybrids are computationally

indistinguishable: Hybrid 0 and Hybrid 1 by the security of the homomorphic scheme FHE, Hybrid
1 and Hybrid 2 by the security of the garbled circuit scheme Gb, and Hybrid 2 and Hybrid 3 by the
security of the ABE scheme ABE, thus completing our proof.
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Instantiating the components with the leveled fully homomorphic encryption scheme of [BV11a]
(see Theorem 7), the leveled attribute-based encryption scheme of [GVW13] (see Theorem 9) and
Yao garbled circuit from one-way functions (see Theorem 8), we get the following corollary of
Theorem 4:

Corollary 6 (The LWE Instantiation). Assume that there is a constant 0 < 𝜖 < 1 such that for
every sufficiently large ℓ, the approximate shortest vector problem gapSVP in ℓ dimensions is hard
to approximate to within a 2𝑂(ℓ𝜖) factor in the worst case in time poly(ℓ) (resp. 2ℓ𝜖) time. Then,
for every 𝑛 and every polynomial 𝑑 = 𝑑(𝑛), there is a selectively secure (resp. fully secure) func-
tional encryption scheme for depth 𝑑 circuits, where encrypting 𝑛 bits produces ciphertexts of length
poly(𝑛, 𝜅, 𝑑1/𝜖) (resp. poly(𝑛1/𝜖, 𝜅, 𝑑1/𝜖

2
)).

2 6.4 Reusable Garbled Circuits

In this section, we show how to use our functional encryption scheme to construct reusable garbled
circuits. The syntax of a reusable garbling scheme RGb = (RGb.Garble, RGb.Enc, RGb.Eval) is the
same as the syntax for a one-time garbling scheme (Sec. 6.2.1). The security of the scheme (defined
in our full paper [GKP+12]), intuitively says that a garbled circuit can be used with many encodings
while still hiding the circuit and the inputs. More formally, a garbling scheme is input- and circuit-
private with reusability if there exists a stateful p.p.t. simulator 𝑆 = (𝑆1, 𝑆2) such that 𝑆1, when
given as input a circuit size |𝐶|, outputs a simulated garbled circuit, and 𝑆2 when given as input
𝐶(𝑥) outputs a simulated encoding of 𝑥. The simulated garbled circuit and the encodings must be
computationally indistinguishable from the real garbled circuit and encodings. Note that 𝑆 never
gets 𝑥 or 𝐶 and the adversary can invoke 𝑆2 many times (reusability). Sec. 6.1.2 already gave an
overview of the idea behind our construction, so we proceed to the construction. Let E = (E.KeyGen,
E.Enc, E.Dec) be a semantically secure symmetric-key encryption scheme.

Garbling RGb.Garble(1𝜅, 𝐶):

1. Generate FE keys (fmpk, fmsk)← FE.Setup(1𝜅) and a secret key sk← E.KeyGen(1𝜅).

2. Let 𝐸 := E.Enc(sk, 𝐶).

3. Define 𝑈𝐸 to be the following universal circuit:

𝑈𝐸 takes as input a secret key sk and
a value 𝑥:

(a) Compute 𝐶 := E.Dec(sk, 𝐸).
(b) Run 𝐶 on 𝑥.

4. Let Γ← FE.KeyGen(fmsk, 𝑈𝐸) be the reusable garbled circuit.

5. Output gsk := (fmpk, sk) as the secret key and Γ as the garbling of 𝐶.

Encoding RGb.Enc(gsk, 𝑥): Compute 𝑐𝑥← FE.Enc(fmpk, (sk, 𝑥)) and output 𝑐𝑥.
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Evaluation RGb.Eval(Γ, 𝑐𝑥): Compute and output FE.Dec(Γ, 𝑐𝑥).

The existence of a semantically secure encryption scheme does not introduce new assumptions
because the FE scheme itself is a semantically secure encryption scheme if no key (computed by
FE.KeyGen) is ever provided to an adversary.

Tightness of the scheme. The astute reader may have observed that the resulting scheme requires
that the encodings be generated in the secret key setting because the encoding of 𝑥 includes sk. It
turns out that generating encodings privately is in fact necessary; if the encodings were publicly
generated, the power of the adversary would be the same as in traditional obfuscation, which was
shown impossible [BGI+11, GK05] (see discussion in Sec. 6.1.1).

One might wonder though, whether a reusable garbling scheme exists where the encoding gen-
eration is secret key, but RGb.Garble is public key. We prove in our full paper that this is also not
possible based on the impossibility result of [AGVW12]; hence, with regard to public versus private
key, our reusable garbling result is tight.

Proof sketch of Theorem 5. Let us first argue RGb.Eval is correct. By the definition of RGb.Eval,
RGb.Eval(Γ, 𝑐𝑥) equals FE.Dec(Γ, 𝑐𝑥), which equals 𝑈𝐸(sk, 𝑥) by the correctness of FE. Finally, by
the definition of 𝑈𝐸 , 𝑈𝐸(sk, 𝑥) = 𝐶(𝑥).

Notice that the encoding algorithm RGb.Enc produces ciphertexts that do not depend on the
circuit size, because of the succinctness property of FE.

We can see that to obtain a RGb scheme for circuits of depth 𝑑, we need a FE scheme for
polynomially deeper circuits: the overhead comes from the fact that 𝑈 is universal and it also needs
to perform decryption of 𝐸 to obtain 𝐶.

Intuitively, the scheme is secure because 𝐸 hides the circuit 𝐶. Now since FE hides the inputs
to FE.Enc, it hides 𝑥 and sk, and reveals only the result of the computation which is 𝐶(𝑥). To
prove security formally, we need to construct a simulator 𝑆 = (𝑆1, 𝑆2) such that the simulated
garbled circuit and encodings are computationally indistinguishable from the real ones. (Our full
paper [GKP+12] precisely defines security for RGb, including the games for the simulator.) To
produce a simulated garbled circuit Γ̃, 𝑆1 on input (1𝜅, 1|𝐶|) runs:

1. Generate fresh fmpk, fmsk, and sk as in RGb.Garble.

2. Compute 𝐸̃ := E.Enc(sk, 0|𝐶|). (The reason for encrypting 0|𝐶| is that 𝑆1 does not know 𝐶).

3. Compute and output Γ̃← FE.KeyGen(fmsk, 𝑈𝐸̃).

𝑆2 receives queries for values 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}* for some 𝑡 and needs to output a simulated
encoding for each of these. To produce a simulated encoding for 𝑥𝑖, 𝑆2 receives inputs (𝐶(𝑥𝑖), 1|𝑥𝑖|,
and the latest simulator’s state) and invokes the simulator SimFE of the FE scheme and outputs

𝑐𝑥 := SimFE(fmpk, fsk𝑈𝐸̃
, 𝑈𝐸̃, 𝐶(𝑥), 1|sk|+|𝑥𝑖|).

A potentially alarming aspect of this simulation is that 𝑆 generates a key for the circuit 0|𝐶|.
Whatever circuit 0|𝐶| may represent, it may happen that there is no input 𝑥 to 0|𝐶| that results in the
value 𝐶(𝑥). The concern may then be that SimFE may not simulate correctly. However, this is not
a problem because, by semantic security, 𝐸 and 𝐸̃ are computationally indistinguishable so SimFE

must work correctly, otherwise it breaks semantic security of the encryption scheme E.
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To prove indistinguishability of the simulated/ideal and real experiment outputs, we introduce
a hybrid experiment. This experiment is the same as the ideal experiment, but 𝐸̃ is replaced with
𝐸 = E.Enc(sk, 𝐶). This means that the adversary receives a real garbled circuit, but the encodings
are still simulated. Note that the view of the adversary in the ideal and the hybrid experiment dif-
fers only in 𝐸̃ and 𝐸. Since these views do not contain sk or any other function of sk other than
𝐸/𝐸̃, by semantic security of the encryption scheme, they are computationally indistinguishable.
Finally, the hybrid and the real experiment are computationally indistinguishable based on the prop-
erties of SimFE guaranteed by the security of FE. For the full proof, we refer the reader to our full
paper [GKP+12].
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CHAPTER 7

Impact: industry and academia

The work in this thesis has had both academic and industrial impact: it spurred new research in the
academic community investigating a rich set of directions (Sec. 7.2) as well as determined real de-
ployment by existing companies (Sec. 7.1). CryptDB has had the most impact; hence, the academic
impact section below focuses only on CryptDB.

2 7.1 Industrial impact and deployments

The following companies or institutions adopted CryptDB or Mylar.

◁ Google recently deployed a system for performing SQL-like queries over an encrypted database
following (and giving credit to) the CryptDB design. Their service, called the Encrypted Big-
Query, uses the encryption building blocks from CryptDB (RND, DET, HOM, and SEARCH),
rewrites queries and annotates the schema as in CryptDB. Google made available the source
code of the Encrypted BigQuery client [Goo].

◁ SAP AG, a well-known software company, implemented CryptDB on top of their HANA
database system. The resulting system is called SEEED. Grofig et al. [GHH+14] describes
their experiences and observations with the system.

◁ Lincoln Labs implemented CryptDB’s design on top of their D4M Accumulo no-SQL engine
(using the RND, DET, OPE and HOM building blocks). The resulting system, called CMD, is
documented in Kepner et al. [KGM+14].

◁ sql.mit.edu is a SQL server at MIT hosting many MIT-ran applications. Volunteering users
of Wordpress ran their Wordpress applications through CryptDB, using our source code.

◁ Newton-Wellesley Hospital, Boston. The endometriosis medical application of this hospital
is a web application that collects private information from patients suffering from the disease
endometriosis. It was secured with Mylar, was initially tested by patients who suffered from
endometriosis, and is in alpha deployment.
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2 7.2 Academic impact

A number of papers followed the work on CryptDB. In this section, we summarize only the high-
lights of such works. We can split such work in the following categories (not necessarily mutu-
ally exclusive): extending the functionality CryptDB supports (for example, to full SQL), applying
CryptDB to different system settings (e.g., Java programs or MapReduce), using it in various appli-
cations (e.g., genomic computation), or to Java programs), security-related proposals (e.g., giving
users’ control on the encryption policy), and miscellaneous.

◇ 7.2.1 Extending CryptDB’s functionality

Since CryptDB supports a limited set of SQL, some work focused on extending CryptDB to support
all of SQL. It is currently unknown how to achieve this goal in a practical way by simply using
richer encryption schemes. Instead, these works chose either to weaken the threat model or to
perform more work at a trusted entity (e.g., the client).

◁ Cipherbase [ABE+13, AEK+13] extends CryptDB’s design to support any SQL queries at the
expense of adding trusted hardware on the server side. The trusted hardware has the ability
to decrypt the data and compute on it decrypted. To execute a query, Cipherbase works as
follows. If CryptDB’s approach supports that query, the query is processed as in CryptDB
over encrypted data without invoking the trusted hardware. If CryptDB’s approach does not
support the query, it is sent to a trusted hardware module, which pulls in and decrypts the
relevant data, executes the query on unencrypted data, and returns encrypted results.

◁ Monomi [TKMZ13] also aims to extend CryptDB to support arbitrary SQL queries. Instead of
using trusted hardware, the approach is to split each query into computation that the CryptDB
server can handle over encrypted data and computation that should be performed at the client
over unencrypted data. Hence, the trusted client now does more work: it downloads some
data and decrypts it, it performs some location computation, and sometimes reencrypts the
data with a new encryption scheme.

◇ 7.2.2 Adapting CryptDB beyond SQL

Computation on encrypted data is also useful for systems or operations other than SQL databases or
SQL queries: for example, Java programs, algebraic manipulations, MapReduce jobs, or untrusted
VMs. The line of work in this subsection extends CryptDB’s approach to such settings. They
largely use the same encryption mechanisms and building blocks as in CryptDB, but combine them
using new systems techniques. It is interesting to note that the same set of primitive operations that
CryptDB uses were found to be useful in these settings as well.

◁ MrCrypt [TLMM13] extends CryptDB to Java programs. MrCrypt statically analyzes a pro-
gram to identify the set of operations performed on each input data who is a column in a
confidential database. Then, it selects an appropriate encryption scheme from CryptDB’s list
for that column, and transforms the program to operate over encrypted data.

◁ The CMD system of Kepner et al. [KGM+14] applies CryptDB’s design to support a wide
range of linear algebraic operations on encrypted data. CMD is especially fit for databases
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performing linear algebra operations on sparse matrices, such as SciDB or Apache Accumulo.
The authors show the use of CMD for two applications: complex DNA matching and database
operations over social media data.

◁ Cryptsis [SSSE14] is a system that applies CryptDB’s design to execute MapReduce jobs on
encrypted data. The motivation of Cryptsis is to provide privacy for big data. Cryptsis analyzes
entire data flow programs (written in Pig Latin) to find as many opportunities to run the scripts
over encrypted data as possible. The unsupported computation is ran over unencrypted data.

◁ Autocrypt [TSCS13] is a system for protecting data confidentiality from an untrusted VM
running on a trusted cloud platform. The untrusted VM only sees encrypted data and performs
computation on encrypted data as in CryptDB. To be able to combine the various encryption
schemes in CryptDB and compose them to support general computation, Autocrypt has a
mechanism to convert between encryption schemes using a small TCB in the trusted cloud
hypervisor. Autocrypt transforms a subset of existing C functionality in the web stack to
operate on encrypted sensitive content. For example, Autocrypt supports several standard
Unix utilities available in a typical LAMP stack, with no developer effort.

◇ 7.2.3 Using CryptDB in applications handling private data

Some works suggest using CryptDB (largely unchanged) for various applications that handle sensi-
tive data:

◁ Erman et al. [ARH+13] follow a similar approach to CryptDB’s to store encrypted genomic
data in a biobank (represented as a database) and then execute queries over the encrypted
database.

◁ Clome [NA14] proposes using CryptDB for home applications in the cloud. Users of home
applications store sensitive data about their homes in the cloud, and CryptDB can serve to
protect its privacy from the cloud.

◁ Corena and Ohtsuki [CO12] apply CryptDB’s building blocks for aggregating financial infor-
mation at an untrusted cloud.

◁ SensorCloud [HHCW12] applies CryptDB’s approach to storing and querying sensor data in
the cloud.

◁ Kagadis et al. [KKM+13] propose using CryptDB for medical imagining.

◇ 7.2.4 Follow-up work related to the encryption schemes CryptDB uses

A category of work improves or further analyzes the encryption schemes used in CryptDB.
Some works [BCO11], [PLZ13], [LW12b], [LW13], [KS12], [MTY13], [LCY+14] provide var-

ious improvements or analysis for order-preserving encryption, often with the purpose of using this
scheme in a CryptDB-like setting.

Other works [CJJ+13], [MMA14] try to improve the performance of searchable encryption in a
database by adding indexing.
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Kerschbaum et al. [KHG+13] studied an optimal way of applying CryptDB’s adjustable join in
order to adjust the smallest amount of columns possible, when join queries are not a priori known.
Naı̈ve strategies may perform too many or even infinitely many re-encryptions. They provide two
strategies, with O(𝑛3/2) and O(𝑛 log 𝑛) re-encryptions for 𝑛 columns respectively. They further show
that no algorithm can be better than O(𝑛 log 𝑛). Similarly, Bkakria et al. [BSK+14] provide a tool
that computes the optimal balance between security and functionality.

◇ 7.2.5 Security

Some works enhance CryptDB by enabling the user to specify a security policy for the data, try to
find an optimal balance between security and functionality or performance, or try to quantify the
leakage in a global system.

◁ SMC [LSSD14] is a tool for quantifying leakage in systems that compute functions over en-
crypted data such as CryptDB. It solves a problem of model counting – determining the num-
ber of solutions that satisfy a given set of constraints – to which the problem of estimating
leakage in CryptDB can be reduced.

◁ Securus [KJ14] allows users to specify the privacy requirements for data in the database and
the queries they expect to run, and tries to find a combination of encryption schemes as in
CryptDB that addresses these specifications as closely as possible.

◇ 7.2.6 Miscellaneous

A few other works addressed miscellaneous topics related to CryptDB.

◁ Ferretti et al. [FPCM13] measure CryptDB’s onion encryption strategy in a cloud setting sce-
nario and conclude that it can be well applied to a cloud database paradigm, because most
performance overheads are masked by network latencies. In [FCM13], the same authors pro-
vide a solution for a distributed proxy for the multi-principal mode in CryptDB (we did not
discuss the multi-principal mode of CryptDB in this thesis, so please refer to our CryptDB
paper [PRZB11]).

◁ Ferretti et al. [FCM12] improve CryptDB’s design by distributing CryptDB’s proxy at each
client. This improves scalability for many clients. SecureDBaaS [FCM14] also distribute the
CryptDB proxy to the client (thus, physically eliminating the proxy) and allows concurrent
accesses from multiple clients to the encrypted database.

◁ Bohli et al. [BGJ+13] discuss applying CryptDB’s design to a setting with multiple clouds.

◁ Tomiyama et al. [TKK12] apply CryptDB’s design to computing over encrypted data streams
in a public cloud.

◁ Islam and Chanchary [IC12] provide a mechanism for migrating database data to new appli-
cations while maintaining data privacy using CryptDB as well as other useful properties.
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CHAPTER 8

Related work

This chapter surveys the related work to this thesis. We organize it in two components: work related
to the global vision of this work (and hence common to all our systems) and work related to a specific
system.

2 8.1 Global related work

◇ 8.1.1 Secure systems work

Untrusted servers. Some systems also attempted to prevent against attackers that get access to all
server data. They also stored the data encrypted on the server. However, the crucial difference of
these systems from our work is that they do not compute on the encrypted data. Hence, they can
only support storage-like systems. Most systems, though, need to compute on the sensitive data: for
example, database systems, web applications, mobile applications, and machine learning tools.

SUNDR [LKMS04] uses cryptography to provide privacy and integrity in a file system on top of
an untrusted file server. Using a SUNDR-like model, SPORC [FZFF10] and Depot [MSL+10] show
how to build low-latency applications, running mostly on the clients, without having to trust a server.
However, existing server-side applications that involve separate database and application servers
cannot be used with these systems unless they are rewritten as distributed client-side applications to
work with SPORC or Depot. Many applications are not amenable to such a structure.

Disk encryption. Various commercial database products, such as Oracle’s Transparent Data En-
cryption [Ora], encrypt data on disk, but decrypt it to perform query processing. As a result, the
server must have access to decryption keys, and an adversary compromising the DBMS software
can gain access to the entire data.

Trusted hardware. An alternative approach to computing over encrypted data is to rely on trusted
hardware [KMC11, BS11, ABE+13]. Such approaches are complementary to CryptDB and Mylar,
and could be used to extend the kinds of computations that our systems can perform over encrypted
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data at the server, as long as the application developer and the users believe that trusted hardware is
trustworthy.

Software security. Many tools help programmers either find or mitigate mistakes in their code
that may lead to vulnerabilities, including static analysis tools like PQL [LL05, MLL05] and Ur-
Flow [Chl10], and runtime tools like Resin [YWZK09] and CLAMP [PMW+09]. However, if an
attacker manages to get access to the server (e.g., perhaps by having legitimate access to the server
as in the case of an employee of a cloud), the attacker can see all sensitive data. Our systems protect
data confidentiality even against such situations.

◇ 8.1.2 Cryptography work

Using cryptographic tools directly to enable systems to run over encrypted data results in using
encryption schemes that can support complex or arbitrary functions because systems today com-
pute complex operations. Hence, one would use encryption schemes such as fully homomorphic
encryption [Gen09, DGHV10, SS10b, BV11b, BV11a, Vai11, BGV12, GHS12a, GHS12b, LTV12,
Bra12, GSW13, Hal13, HS14], general functional encryption [GKP+13a, GKP+13b, GGH+13], or
generic secure multi-party computation [Yao82, GMW87, LP07, IPS08, LP09, HKS+10, MNPS04,
BDNP08, BHKR13]. As we discussed in Chapter 1 and 2, these schemes are prohibitively imprac-
tical. Our thesis constructs practical systems.

2 8.2 Work related to a specific chapter

◇ 8.2.1 Work related to CryptDB

Data tokenization. Companies like Navajo Systems and Ciphercloud provide a trusted application-
level proxy that intercepts network traffic between clients and cloud-hosted servers (e.g., IMAP), and
encrypts sensitive data stored on the server. These products appear to break up sensitive data (spec-
ified by application-specific rules) into tokens (such as words in a string), and encrypt each of these
tokens using an order-preserving encryption scheme, which allows token-level searching and sort-
ing. In contrast, CryptDB supports a richer set of operations (most of SQL), reveals only relations
for the necessary classes of computation to the server based on the queries issued by the application,
and allows chaining of encryption keys to user passwords, to restrict data leaks from a compromised
proxy.

Search and queries over encrypted data. Song et al. [SWP00] describe cryptographic tools for
performing keyword search over encrypted data, which we use to implement SEARCH. Amana-
tidis et al. [ABO07] propose methods for exact searches that do not require scanning the entire
database and could be used to process certain restricted SQL queries. Bao et al. [BDDY08] ex-
tend these encrypted search methods to the multi-user case. Yang et al. [YZW06] run selections
with equality predicates over encrypted data. Evdokimov and Guenther present methods for the
same selections, as well as Cartesian products and projections [EG]. Agrawal et al. develop a sta-
tistical encoding that preserves the order of numerical data in a column [AKSX04], but it does
not have sound cryptographic properties, unlike the scheme we use [BCLO09]. Boneh and Waters
show public-key schemes for comparisons, subset checks, and conjunctions of such queries over
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encrypted data [BW07], but these schemes have ciphertext lengths that are exponential in the length
of the plaintext, limiting their practical applicability.

When applied to processing SQL on encrypted data, these techniques suffer from some of the
following limitations: certain basic queries are not supported or are too inefficient (especially joins
and order checks), they require significant client-side query processing, users either have to build and
maintain indexes on the data at the server or to perform sequential scans for every selection/search,
and implementing these techniques requires unattractive changes to the innards of the DBMS.

Some researchers have developed prototype systems for subsets of SQL, but they provide no
confidentiality guarantees, require a significant DBMS rewrite, and rely on client-side process-
ing [HILM02, DdVJ+03, CdVF+09]. For example, Hacigumus et al. [HILM02] heuristically split
the domain of possible values for each column into partitions, storing the partition number unen-
crypted for each data item, and rely on extensive client-side filtering of query results. Chow et
al. [CLS09] require trusted entities and two non-colluding untrusted DBMSes.

Privacy-preserving aggregates. Privacy-preserving data integration, mining, and aggregation schemes
are useful [KC05, XCL07], but are not usable by many applications because they support only spe-
cialized query types and require a rewrite of the DBMS. Differential privacy [Dwo08] is com-
plementary to CryptDB; it allows a trusted server to decide what answers to release and how to
obfuscate answers to aggregation queries to avoid leaking information about any specific record in
the database.

Query integrity. Techniques for SQL query integrity can be integrated into CryptDB because
CryptDB allows relational queries on encrypted data to be processed just like on plaintext. These
methods can provide integrity by adding a MAC to each tuple [LKMS04, SMB03], freshness using
hash chains [PLM+11, SMB03], and both freshness and completeness of query results [NDSK07].
In addition, the client can verify the results of aggregation queries [THH+09], and provide query
assurance for most read queries [Sio05].

Outsourced databases. Curino et al. advocate the idea of a relational cloud [CJP+11], a context
in which CryptDB fits well.

◇ 8.2.2 Work related to Mylar

Mylar is the first system to protect data confidentiality in a wide range of web applications against
arbitrary server compromises.

Much of the work on web application security focuses on preventing security vulnerabilities
caused by bugs in the application’s source code, either by statically checking that the code follows
a security policy [XA06, Chl10], or by catching policy violations at runtime [Kro04, YWZK09,
GLS+12]. In contrast, Mylar assumes that any part of the server can be compromised, either as a
result of software vulnerabilities or because the server operator is untrustworthy, and protects data
confidentiality in this setting.

On the browser side, prior work has explored techniques to mitigate vulnerabilities in Javascript
code that allow an adversary to leak data or otherwise compromise the application [YNKM09,
FSF04, ASS12]. Mylar assumes that the developer does not inadvertently leak data from client-side
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code, but in principle could be extended to use these techniques for dealing with buggy client-side
code.

There has been some work on using encryption to protect confidential data in web applications,
as we describe next. Unlike Mylar, none of them can support a wide range of complex web applica-
tions, nor compute over encrypted data at the server, nor address the problem of securely managing
access to shared data.

A position paper by Christodorescu [Chr08] proposes encrypting and decrypting data in a web
browser before sending it to an untrusted server, but lacks any details of how to build a practical
system.

Several data sharing sites encrypt data in the browser before uploading it to the server, and
decrypt it in the browser when a user wants to download the data [Sau13, Def13, Meg13]. The key
is either stored in the URL’s hash fragment [Sau13, Meg13], or typed in by the user [Def13], and
both the key and data are accessible to any Javascript code from the page. As a result, an active
adversary could serve Javascript code to a client that leaks the key. In contrast, Mylar’s browser
extension verifies that the client-side code has not been tampered with.

Several systems transparently encrypt and decrypt data sent to a server [PKZ11, Ras11, Cip,
BKW11]. These suffer from the same problems as above: they cannot handle active attacks, and
cannot compute over encrypted data at the server without revealing a significant amount of informa-
tion.

Cryptocat [The13], an encrypted chat application, distributes the application code as a browser
extension rather than a web application, in order to deal with active attacks [The12]. Mylar’s browser
extension is general-purpose: it allows verifying the code of web applications without requiring
users to install a separate extension for each application. Cryptocat could also benefit from Mylar’s
search scheme to perform keyword search over encrypted data at the server.

◇ 8.2.3 Work related to multi-key search

Most of the research on searchable encryption [SWP00, Goh, BCOP04, CM05, BBO07, CGKO06,
BW07, BDDY08, ZNS11, YLW11, Raj12, KPR12, CJJ+13] focused on the case when the data is
encrypted with the same key, and considered various aspects of the resulting cryptosystem, such
as public- versus secret-key, more expressive computation such as conjunctions and disjunctions,
indexable schemes, and others.

To the best of our knowledge, Lopez-Alt et al. [LTV12] is the only work considering computa-
tion over data encrypted with different keys. They design a fully homomorphic encryption (FHE)
scheme in which anyone can evaluate a function over data encrypted with different keys. However,
the decryption requires all the parties to come together and run an MPC protocol. Translated to
our setting, this requires a client to retrieve all the keys under which the data is encrypted so the
client still needs to do work proportional in the number of keys, which is what we are trying to
avoid. Moreover, due to the semantic security of FHE, the server does not learn whether a document
matches a keyword: it only learns the encryption of whether the document matches; therefore, the
server would have to return the entire data, which is not practical.

A related scheme is the one of Bao et al. [BDDY08], who consider a setting where users have
different keys but all the data is encrypted with one key and the search happens over data encrypted
with one key. One cannot directly apply their scheme to the multi-key setting by creating an instance
of the scheme for every key because this results in many search tokens; the reason is that the search
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tokens are tied to a secret different for every different key. Moreover, one requires different security
definitions and security proofs when considering data encrypted under different keys with users
only accessing a subset of them. Other works [CGKO06, YLW11, ZNS11, Raj12] fall in the same
category of multi-user one-key schemes, and have similar properties.
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CHAPTER 9

Conclusion

This dissertation shows how to protect data confidentiality even against attackers who get access
to all server data. To achieve this goal, it introduces a new approach to building secure systems:
building practical systems that compute on encrypted data.

To implement this approach, we identified a meta-strategy to guide building such systems. We
also provided background on cryptographic resources that could be useful in implementing this strat-
egy. We illustrated this strategy by presenting in depth the design of two novel systems: CryptDB for
securing databases and Mylar for securing web applications, as well as a novel encryption scheme,
multi-key search, which we designed to enable Mylar; we also presented our theoretical work on
functional encryption that enables computing any function on encrypted data.

We showed that the systems we designed are practical. For example, CryptDB supports all
queries from TPC-C, an industry standard benchmark for SQL, and decreases throughput by only
26% as compared to vanilla MySQL (a popular SQL DBMS). Crucially, CryptDB requires no
changes to existing DBMSs, and almost no change to applications, making it easy to adopt. More-
over, we ported 6 web applications to Mylar which required changing just 35 lines of code on
average; the performance overheads introduced by Mylar were modest and largely did not affect
user experience.

We believe that cloud computing will gravitate towards processing encrypted data whenever pos-
sible because of its benefits: both clients and cloud providers are protected against cloud employees
or hackers accessing their sensitive data or the data of their customers, respectively. CryptDB proved
that such an approach can be practical and in the few years since its publication, we already started
to see such a movement with Google, SAP AG, MIT’s Lincoln Labs, and other companies adopting
CryptDB’s approach. We hope that companies will continue to adopt such an approach.

2 9.1 Future directions

Looking forward, practical computation on encrypted data promises to address many other important
problems. Here are some examples:
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∙ Network middleboxes processing encrypted traffic. Network middleboxes execute a variety of
useful functions, such as intrusion detection, exfiltration detection, running firewalls, WAN
optimization and others. For various security reasons, many people use https connections
which encrypt the content of the network packets. Hence, such encryption prevents middle-
boxes from analyzing the traffic. Enabling middleboxes to compute on the encrypted traffic
could both maintain the confidentiality of the data packets and allow middleboxes to perform
their tasks.

∙ Big data analytics over encrypted data. Big data systems can also store sensitive data, so
computing on encrypted data could protect its confidentiality and enable data analytics. Due
to the large amount of data, compression is crucial, but encryption and compression seem
contradictory. A useful solution would enable both the space gains of compression and the
confidentiality guarantees of encryption.

∙ Machine learning or classification over encrypted data. A lot of machine learning algorithms
run over sensitive data, such as medical or financial, and such an approach would protect data
confidentiality.

∙ Data mining over encrypted genomics data. There is an increasing amount of genomics data
so performing analysis and research using this data is valuable. However, privacy concerns
limit access to such data. A solution that computes on encrypted data and decrypts only
allowed computation results has the potential to enables both privacy and research.

∙ Integrity of server results. Most of my work has focused on protecting data confidentiality,
but a malicious server can return incorrect results to client queries. This can affect client
functionality and even data confidentiality. Hence, it is useful to build systems in which
clients can check efficiently the correctness of query results. Hopefully, one can come up
with a meta strategy for achieving this goal similar to the one we presented in this thesis for
confidentiality.
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