Lecture 34: Portable Systems— Technology Background

Professor Randy H. Katz Computer Science 252 Fall 1995

Technology Trends: Microprocessor Capacity

RHK.F95 2

Technology Trends

- Charge on the gate controls the movement of negative charge from source to drain (Vd > Vs) through the channel
 - No charge on gate => open switch
 - V_{gs} > V_{th} => conducting path
- Size of minimum transistor is determined by minimum width of polysilicon line, minimum feature size, λ

MOS Scaling

• Scaling factor α:

CMOS Logic Gates

power density?

What if you don't scale the voltage?

RHK.F95 7

MOS Scaling Summary

Parameters		Scaling	Effects	
Length	L	1/	Channel length to width ratio unchanged	
Width	W	1/	Gate area reduced by 1/ ²	
Gate Oxide	D	1/	Gate dielectric thickness reduced by 1/	
Junction Depth	Xj	1/	Gate cap sq Cg reduced by 1/	
Layer Thickness	t	1/	Parasitic capacitances (fXj) reduced by 1/	
			Resistance layer thickness reduced by 1/	
Subs. Doping N			Resistivity reduced by 1/	
			Sheet resistance Rs = /t unchanged	
			Time delay = Rs x sq Cg reduced by 1/	
			Inverter/gate delay reduced by 1/	
Supply Voltage	Vdd 1/ Current reduced by 1/		Current reduced by 1/	
			X-section of conductors reduced by 1/ ²	
			Current density increased by	
			Logic levels reduced by 1/	
			Power diss Pd reduced by 1/ ²	
			Power-speed product reduced by 1/ ³	
			Switching Energy/circuit f CgVdd ² reduced by 1/ ³	
			Components/unit area increased by ²	
			Complexity/chip increased by ²	
			Power diss/unit area unchanged	

Wire and Interconnect Scaling

Wire and Interconnect Scaling Summary

Current density: J = I / (W t)

Scaled current density: Jsc = (I /) = J(W t / 2)

Parameters	Scaling Factor
Line Resistance R	-
Line Voltage Drop Vd	1
Normalized Line Volt drop Vd/V	
Current Density J	
Normalized contact, voltage drop Vc	/V 2

Transistor Timing Model

$$I_{ds} = \underline{charge in transit}_{transit time} = \underline{Q}_{\tau} = -\underline{C_g (Vgs - Vth)}_{\tau}$$

 $\tau\,$ = time for charge to travel across channel

$$=\frac{L}{velocity} = \frac{L}{\mu E} = \frac{L^2}{\mu V} ds$$

$$\frac{C_g = \varepsilon A}{D} = \frac{\varepsilon W L}{D}$$
mobility (cm² / volt-sec)
$$\frac{L}{\mu E} = \frac{L^2}{\mu V} ds$$
permittivity

$$Ids = \frac{\mu e W}{LD} (V_{gs} - V_{th}) V_{ds}$$

in resistive region

$$I_{ds} = \frac{\mu e W}{LD} (V_{gs} - V_{th})^2$$
 in saturation

Model of Behavior

Performance Capacity

- Feature size shrinks about 10% per year
 - Switch speeds improve by 1.2x per year
 - Switching density increases by 1.2x per year
- Die area increases by about 20% per year
 - Total computing power increases by 1.73 x per year (1.2³)

If we can utilize every gate all the time!

Processor Structure

FO4 Timing Model

Gates:

Inv	1.0	Passgate	0.5 (FO2)
Nand2	1.5	Mux2	1.5
Nand4	2.0	Mux4	2.0
Nor2	1.5		
Nor4	3.0	TriBuff	2.0
Latch	1.5		2.5 (FO16)

Larger Units

Adder (32 bit, not ALU)	12 - 14
RegFile	11 - 13
Precharge compare	1.25 / 4 bits
Memory (address to data, 8Kbyte)	16-20

Wires (32 bit data path in .8 µ, 1mm x 4mm)

Control wire (1 mm X 2) = 10 Cg + 32 gates > 3 FO4 Global data bus = 20 Cg + GateCap + DiffCap

Typical Critical Paths

- Sparc / MIPS R3000 style pipelines ~ 24-25 FO4
- Alpha, R4400 style ~ 20 FO4
- Where is the critical path?
 - Register file access
 - ALU
 - Address -> cache
 - Cache data -> DP
 - Branch condition and address
 - TLB

What goes in a RAM?

Spliting the address into row x col allows aspect ratio and speed to be controlled.

RAM Cells

6-T Static RAM cell

Read:

precharge bit and bit to Vdd

row select

cell pulls one line low

sense amp on each column detects differential signal

Dual Ported SRAM cell

VLSI Design Styles

NRE, Inventory Risks, Design Risks, Turn-around

