
RHK.S96 1

Lecture 4: Benchmarks and
Performance Metrics

Prof. Randy H. Katz
Computer Science 252

Spring 1996

RHK.S96 2

Review
• Designing to Last through Trends

Capacity Speed

Logic 2x in 3 years 2x in 3 years

DRAM 4x in 3 years 1.4x in 10 years

Disk 4x in 3 years 1.4x in 10 years

• Time to run the task
– Execution time, response time, latency

• Tasks per day, hour, week, sec, ns, …
– Throughput, bandwidth

• “X is n times faster than Y” means
 ExTime(Y) Performance(X)

 --------- = --------------

 ExTime(X) Performance(Y)

RHK.S96 3

The Danger of Extrapolation

• Process today: 0.5 µm
• Limit of optical litho:

0.18 µm

• Power dissipation?
• Cost of new fabs?
• Alternative

technologies?
– GaAs
– Optical

RHK.S96 4

Doing Poorly by Doing Well

• Windows 95 drives
huge demand for
DRAM

• 16 Mbit chips not
conveniently
packaged for PCs
(4 MByte SIMMs vs.
16 MByte SIMMs)

• 4 Mbit-by-4 vs. 1
Mbit-by-16

RHK.S96 5

Aspects of CPU Performance
CPU time = Seconds = Instructions x Cycles x Seconds

 Program Program Instruction Cycle

 Inst Count CPI Clock Rate
Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

RHK.S96 6

Marketing Metrics

MIPS = Instruction Count / Time * 10^6 = Clock Rate / CPI * 10^6

• Machines with different instruction sets ?

• Programs with different instruction mixes ?

– Dynamic frequency of instructions

• Uncorrelated with performance

MFLOP/s = FP Operations / Time * 10^6

• Machine dependent

• Often not where time is spent
Normalized:

add,sub,compare,mult 1

divide, sqrt 4

exp, sin, . . . 8

RHK.S96 7

Cycles Per Instruction

CPU time = CycleTime * ∑ CPI * I
i = 1

n

i i

CPI = ∑ CPI * F where F = I
i = 1

n

i i i i

Instruction Count

“Instruction Frequency”

Invest resources where time is spent!

CPI = Instruction Count / (CPU Time * Clock Rate)
= Instruction Count / Cycles

“Average cycles per instruction”

RHK.S96 8

Example: Calculating CPI

Typical Mix

Base Machine (Reg / Reg)
Op Freq Cycles CPI(i) (% Time)
ALU 50% 1 .5 (33%)
Load 20% 2 .4 (27%)
Store 10% 2 .2 (13%)
Branch 20% 2 .4 (27%)
 1.5

RHK.S96 9

Base Machine (Reg / Reg)
Op Freq Cycles
ALU 50% 1
Load 20% 2
Store 10% 2
Branch 20% 2

Typical Mix

Example
Add register / memory operations:

– One source operand in memory
– One source operand in register
– Cycle count of 2

Branch cycle count to increase to 3.

What fraction of the loads must be eliminated for this
to pay off?

RHK.S96 10

Example Solution
Exec Time = Instr Cnt x CPI x Clock

Op Freq Cycles
ALU .50 1 .5
Load .20 2 .4
Store .10 2 .2
Branch .20 2 .3
Reg/Mem

1.00 1.5

RHK.S96 11

Example Solution
Exec Time = Instr Cnt x CPI x Clock

Op Freq Cycles Freq Cycles
ALU .50 1 .5 .5 – X 1 .5 – X
Load .20 2 .4 .2 – X 2 .4 – 2X
Store .10 2 .2 .1 2 .2
Branch .20 2 .3 .2 3 .6
Reg/Mem X 2 2X

1.00 1.5 1 – X (1.7 – X)/(1 – X)

CPINew must be normalized to new instruction frequency

CyclesNew

InstructionsNew

RHK.S96 12

Example Solution
Exec Time = Instr Cnt x CPI x Clock

Op Freq Cycles Freq Cycles
ALU .50 1 .5 .5 – X 1 .5 – X
Load .20 2 .4 .2 – X 2 .4 – 2X
Store .10 2 .2 .1 2 .2
Branch .20 2 .3 .2 3 .6
Reg/Mem X 2 2X

1.00 1.5 1 – X (1.7 – X)/(1 – X)

Instr CntOld x CPIOld x ClockOld = Instr CntNew x CPINew x ClockNew

 1.00 x 1.5 = (1 – X) x (1.7 – X)/(1 – X)

RHK.S96 13

Example Solution
Exec Time = Instr Cnt x CPI x Clock

Op Freq Cycles Freq Cycles
ALU .50 1 .5 .5 – X 1 .5 – X
Load .20 2 .4 .2 – X 2 .4 – 2X
Store .10 2 .2 .1 2 .2
Branch .20 2 .3 .2 3 .6
Reg/Mem X 2 2X

1.00 1.5 1 – X (1.7 – X)/(1 – X)

Instr CntOld x CPIOld x ClockOld = Instr CntNew x CPINew x ClockNew

 1.00 x 1.5 = (1 – X) x (1.7 – X)/(1 – X)
 1.5 = 1.7 – X
 0.2 = X

ALL loads must be eliminated for this to be a win!

RHK.S96 14

Programs to Evaluate
Processor Performance

• (Toy) Benchmarks
– 10-100 line program
– e.g.: sieve, puzzle, quicksort

• Synthetic Benchmarks
– Attempt to match average frequencies of real workloads
– e.g., Whetstone, dhrystone

• Kernels
– Time critical excerpts of real programs
– e.g., Livermore loops

• Real programs
– e.g., gcc, spice

RHK.S96 15

Benchmarking Games

• Differing configurations used to run the same
workload on two systems

• Compiler wired to optimize the workload
• Test specification written to be biased towards one

machine
• Synchronized CPU/IO intensive job sequence used
• Workload arbitrarily picked
• Very small benchmarks used
• Benchmarks manually translated to optimize

performance

RHK.S96 16

Common Benchmarking
Mistakes

• Only average behavior represented in test workload
• Skewness of device demands ignored
• Loading level controlled inappropriately
• Caching effects ignored
• Buffer sizes not appropriate
• Inaccuracies due to sampling ignored

RHK.S96 17

Common Benchmarking
Mistakes

• Ignoring monitoring overhead
• Not validating measurements
• Not ensuring same initial conditions
• Not measuring transient (cold start) performance
• Using device utilizations for performance comparisons
• Collecting too much data but doing too little analysis

RHK.S96 18

SPEC: System Performance
Evaluation Cooperative

• First Round 1989
– 10 programs yielding a single number

• Second Round 1992
– SpecInt92 (6 integer programs) and SpecFP92 (14 floating point

programs)
» Compiler Flags unlimited. March 93 of DEC 4000 Model 610:
spice: unix.c:/def=(sysv,has_bcopy,”bcopy(a,b,c)=

memcpy(b,a,c)”

wave5: /ali=(all,dcom=nat)/ag=a/ur=4/ur=200

nasa7: /norecu/ag=a/ur=4/ur2=200/lc=blas

• Third Round 1995
– Single flag setting for all programs; new set of programs

“benchmarks useful for 3 years”

RHK.S96 19

SPEC First Round
• One program: 99% of time in single line of code
• New front-end compiler could improve dramatically

Benchmark

S
P
E
C
 P

e
rf

0

100

200

300

400

500

600

700

800

gc
c

ep
re

ss
o

sp
ic

e

do
du

c

na
sa

7 li

eq
nt

ot
t

m
a
tr

ix
3

0
0

fp
p
p
p

to
m

ca
tv

RHK.S96 20

How to Summarize Performance
• Arithmetic mean (weighted arithmetic mean)

tracks execution time: ∑(Ti)/n or ∑(Wi*Ti)
• Harmonic mean (weighted harmonic mean) of

rates (e.g., MFLOPS) tracks execution time:
n/∑(1/Ri) or n/∑(Wi/Ri)

• Normalized execution time is handy for scaling
performance

• But do not take the arithmetic mean of
normalized execution time, use the geometric
mean (∏(Ri)^1/n)

RHK.S96 21

Performance Evaluation
• Given sales is a function of performance relative to

the competition, big investment in improving
product as reported by performance summary

• Good products created when have:
– Good benchmarks
– Good ways to summarize performance

• If benchmarks/summary inadequate, then choose
between improving product for real programs vs.
improving product to get more sales;
Sales almost always wins!

• Ex. time is the measure of computer performance!
• What about cost?

