Lecture 4: Benchmarks and
Performance Metrics

Prof. Randy H. Katz

Computer Science 252
Spring 1996

RHK.S96 1

Review
Designing to Last through Trends

Capacity Speed
Logic 2X Iin 3years 2X in 3 years

DRAM 4x in 3years 1.4x in 10 years
Disk 4x in 3years 1.4x in 10 years

Time to run the task
— Execution time, response time, latency

Tasks per day, hour, week, sec, ns, ...
— Throughput, bandwidth

“X1s n times faster than Y” means
ExTi me(Y) Per f or mance(X)

ExTi me(X) Per f or mance(Y)

RHK.S96 2

The Danger of Extrapolatlon

Process today: 0.5 pm
Limit of optical litho: - :
(3'1E;Lln1 Ei . ij4;;¥ﬁ;fﬁ

ﬁf Exponenﬂal

Power dissipation?
Cost of new fabs?
Alternative :] |
technologies?

—GaAs ; =w¥5 ff T%!f;ff;j;;;?%ﬁw5 ;¥
—Optical g e

_ AR R i
1830 40 50 60 70 80 90 1900 10 20 30 40 50

Doing Poorly by Doing Well

 Windows 95 drives
huge demand for
DRAM

e 16 Mbit chips not
conveniently
packaged for PCs

(4 MByte SIMMSs vs.

16 MByte SIMMs)

4 Mbit-by-4vs. 1
Mbit-by-16

1990 91 92 93 94 .95 96 97 98 99112000
MForemstM

Source VLSI Research

Aspects of CPU Performance

CPUtime = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle
Inst Count | CPI Clock Rate

Program X
Compiler X (X)
Inst. Set. X X
Organization X X
Technology X

RHK.S96 5

Marketing Metrics

MIPS = Instruction Count / Time * 1076 = Clock Rate / CPI * 10”6
 Machines with different instruction sets ?
* Programs with different instruction mixes ?
— Dynamic frequency of instructions

* Uncorrelated with performance

MFLOP/s = FP Operations / Time * 1076

« Machine dependent

o Normalized:
« Often not where time is spent
add,sub,compare,mult 1
divide, sqrt 4

exp, sin, . .. 8

RHK.S96 6

Cycles Per Instruction

“Average cycles per instruction”

CPI = Instruction Count / (CPU Time * Clock Rate)
= Instruction Count / Cycles

n
@)
CPU time = CycleTime * a CPIi * Ii
i =1
“Instruction Frequency”

n

o
CPI = CPi * F. where Fj = ¥
4

Instruction Count

Invest resources where time Is spent!

RHK.S96 7

Example: Calculating CPI

Base Machine (Reg / ReqQ)

Op Freq Cycles CPI(i) (% Time)

ALU 50% 1 5 (33%)

Load 20% 2 4 (27%)

Store 10% 2 2 (13%)

Branch 20% 2 4 (27%)
1.5

Typical Mix

RHK.S96 8

Example

Add register / memory operations:

— One source operand in memory
— One source operand in register
— Cycle count of 2

Branch cycle count to increase to 3.

What fraction of the loads must be eliminated for this
to pay off?

Base Machine (Reg / Reg)

Op Freqg Cycles
ALU 50% 1
Load 20% 2
Store 10% 2

Branch 20% 2

Typical Mix RHK.S96 9

Example Solution

Exec Time = Instr Cnt x CPI x Clock

Op Freq Cycles
ALU .50 1 5
Load .20 2 4
Store .10 2 2
Branch .20 2 3
Reg/Mem

1.00 1.5

RHK.S96 10

Example Solution

Exec Time = Instr Cnt x CPI x Clock

Op Freq Cycles Freq Cycles
ALU .50 1 5 5-X 1 5-X
Load .20 2 4 2-X 4 —2X
Store 10 2 2 i 2 2
Branch .20 2 3 2 3 .6
Reg/Mem X 2 2X
1.00 1.5 1-X (1.7 — X)/(1 — X)
Cyclesy,,
Instructions,,,
CPl., must be normalized to new instruction frequency

New

RHK.S96 11

Example Solution

Exec Time = Instr Cnt x CPI x Clock

Op Freq Cycles Freq Cycles
ALU .50 1 5 5-X 1 5-X
Load 20 2 4 2—-X 2 4 —2X
Store .10 2 2 A1 2 2
Branch .20 2 3 2 3 .6
Reg/Mem X 2 2X

1.00 1.5 1-X (1.7 — X)/(1 — X)
Instr Cntg 4 X CPly 4 X Clockg,4 = Instr Cnty,,, X CPly., X Clocky.,

1.00 x 15 = (1-X) x(L.7=X)/1-X)

RHK.S96 12

Example Solution

Exec Time = Instr Cnt x CPI x Clock

Op Freq Cycles Freq Cycles
ALU .50 1 5 5-X 1 5-X
Load 20 2 4 2—-X 2 4 —2X
Store .10 2 2 A1 2 2
Branch .20 2 3 2 3 .6
Reg/Mem X 2 2X
1.00 1.5 1-X (1.7 — X)/(1 — X)
Instr Cntg 4 X CPly 4 X Clockg,4 = Instr Cnty,,, X CPly., X Clocky.,
1.00 x 1.5 = (1-X) x(@7-X)/1-X)
1.5 = 1.7-X
0.2 = X

ALL loads must be eliminated for this to be a win!
RHK.S96 13

Programs to Evaluate
Processor Performance

(Toy) Benchmarks
— 10-100 line program
— e.g.: sieve, puzzle, quicksort

Synthetic Benchmarks

— Attempt to match average frequencies of real workloads
— e.g., Whetstone, dhrystone

Kernels

— Time critical excerpts of real programs
— e.g., Livermore loops

Real programs
— e.g., gcc, spice

RHK.S96 14

Benchmarking Games

Differing configurations used to run the same
workload on two systems

Compiler wired to optimize the workload

Test specification written to be biased towards one
machine

Synchronized CPU/IO intensive job sequence used
Workload arbitrarily picked
Very small benchmarks used

Benchmarks manually translated to optimize
performance

RHK.S96 15

Common Benchmarking
Mistakes

Only average behavior represented in test workload
Skewness of device demands ignored

Loading level controlled inappropriately

Caching effects ignored

Buffer sizes not appropriate

Inaccuracies due to sampling ignored

RHK.S96 16

Common Benchmarking
Mistakes

lgnoring monitoring overhead

Not validating measurements

Not ensuring same initial conditions

Not measuring transient (cold start) performance
Using device utilizations for performance comparisons
Collecting too much data but doing too little analysis

RHK.S96 17

SPEC: System Performance
Evaluation Cooperative

e First Round 1989

— 10 programs yielding a single number

e Second Round 1992

— SpeciInt92 (6 integer programs) and SpecFP92 (14 floating point
programs)

» Compiler Flags unlimited. March 93 of DEC 4000 Model 610:

spice: unix.c:/def=(sysv, has_bcopy, "bcopy(a, b, c) =
mencpy(b, a, c)”

waveb: /ali=(all,dcom=nat)/ag=a/ ur=4/ur =200
nasa7:. /norecu/ag=al/ur=4/ur2=200/1c=bl as

e Third Round 1995

— Single flag setting for all programs; new set of programs
“benchmarks useful for 3 years”

RHK.S96 18

SPEC First Round

 One program: 99% of time in single line of code
 New front-end compiler could improve dramatically

SPEC Perf

800 1

700 -

600 -

500 -

400 -

300 -

200 -

100 A

gce A

epresso T

spice +

doduc +

Benchmark

egntott +

matrix300 +

fpppp T

tomcatv +

RHK.S96 19

How to Summarize Performance

Arithmetic mean (weighted arithmetic mean)
tracks execution time: a(T,)/n or a(W*T))

Harmonic mean (weighted harmonic mean) of
rates (e.g., MFLOPS) tracks execution time:
n/a(1l/R)) or n/a(W/R))

Normalized execution time is handy for scaling
performance

But do not take the arithmetic mean of
normalized execution time, use the geometric
mean (O(R)"1/n)

RHK.S96 20

Performance Evaluation

Given sales is a function of performance relative to
the competition, big investment in improving
product as reported by performance summary

Good products created when have:
— Good benchmarks
— Good ways to summarize performance

If benchmarks/summary inadequate, then choose
between improving product for real programs vs.
Improving product to get more sales;

Sales almost always wins!

Ex. time Is the measure of computer performance!
What about cost?

RHK.S96 21

